
ARTICLE

Geochemical and mineralogical evidence that
Rodinian assembly was unique
Chao Liu1, Andrew H. Knoll2 & Robert M. Hazen1

The mineralogy and geochemistry associated with Rodinian assembly (~1.3–0.9 Ga) are

significantly different from those of other supercontinents. Compared to other super-

continents, relatively more Nb-bearing minerals, Y-bearing minerals, and zircons formed

during Rodinian assembly, with corresponding enrichments of Nb, Y, and Zr concentrations in

igneous rocks. By contrast, minerals bearing many other elements (e.g., Ni, Co, Au, Se, and

platinum group elements) are significantly less abundant, without corresponding depletion of

Ni and Co concentrations in igneous rocks. Here we suggest that the Nb, Y, and Zr

enrichments in igneous rocks and relatively more occurrences of corresponding Nb-bearing

minerals, Y-bearing minerals, and zircons result from significant non-arc magmatism during

the mid-Proterozoic, while fewer occurrences of many other minerals suggest enhanced

erosion of Rodinian volcanic arcs and orogens. The prolonged, extrovert assembly of Rodinia

from thickened mid-Proterozoic continental crust via two-sided subduction can account for

both the prevalence of non-arc magmatism and the enhanced erosion.
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Supercontinents have assembled and disperzed repeatedly
since the late Archean Eon, recorded most conspicuously by
the age frequency distribution of detrital zircons1. Episodes

of supercontinent amalgamation share a number of tectonic and
geochemical features2; however, increasing evidence suggests that
no two supercontinents formed in quite the same manner3,4,5. In
particular, it has been hypothesized that the supercontinent
Rodinia differs distinctly from other supercontinents3; Rodinia
was assembled through a series of accretionary and collisional
events between 1.3 and 0.9 billion years ago6; endured through
the late stages of Earth’s middle age7; and broke apart in asso-
ciation with pronounced perturbations to the carbon cycle, global
glaciations8, and the rise of complex multicellular life9. Similar to
those of other supercontinents, Rodinian assembly (RA) is
marked by a peak in the abundance of detrital zircons with
contemporary ages, archiving an integrated result of crustal
generation and preservation3,10 or punctuated crustal growth11,12.
Previous studies proposed that Rodinia stands out from other
supercontinents in many aspects, such as enhanced anorogenic
magmatism, deficiency in continental margins and collisional
belts, and dearth in ore deposits and minerals of precious metals,
Hg, and other elements7,13–17. Many of these proposed aspects,
however, are based on regional or outdated geologic and geo-
chemical databases with limited data15,18,19. Recently, rapidly
expanding global databases of geochemistry, mineralogy, and
stratigraphy have begun to facilitate studies of Earth as a system,
with emphasis on our planet’s evolution through time20–22. In
this study, we compile and analyze existing global databases of
minerals (data from rruff.info/ima) and igneous geochemistry
(data from earthchem.org) through time to test the extent to
which Rodinia is geochemically and mineralogically distinct from
other supercontinents, and to explore possible reasons underlying
observed differences.

Our results indicate that niobium (Nb), yttrium (Y), and zir-
conium (Zr) concentrations in igneous rocks formed during RA
are statistically higher, coupled with more abundances of Nb-
bearing and Y-bearing minerals, but many other minerals are less
abundant during RA than during assembly of other super-
continents. Such anomalies can be explained by prevalence of
non-arc magmatism and enhanced erosion during RA.

Results
Mineral data. From rruff.info/ima, we compiled 108,857 age-
locality records of high-temperature (high-T, i.e., igneous, meta-
morphic, and hydrothermal) minerals for which ages are well
constrained from radiometric dating of corresponding magmatic,
metamorphic, or hydrothermal events. Spatially, these minerals
are distributed globally (Supplementary information; Supple-
mentary Fig. 1). Temporally, despite a preservational bias toward
deposits of the Phanerozoic Eon, the high-T minerals exhibit ages
more commonly associated with supercontinent assembly
(Fig. 1), similar to detrital zircons23,24. This similarity, however,
breaks down during RA; the abundance of detrital zircons exhibit
one of the strongest peaks observed throughout Earth history, but
occurrences of high-T minerals in total are much less pronounced
(Fig. 1). Analysis of the high-T mineral data based on mineral
chemistry reveals that only a few minerals, including Nb-bearing
and Y-bearing minerals, are relatively more abundant than zir-
cons during RA, and that most high-T minerals, especially
minerals bearing selenium (Se), gold (Au), nickel (Ni), cobalt
(Co), and platinum group elements (PGE), are significantly less
abundant at the same time (Fig. 1).

Geochemical data. We compiled whole-rock chemical analyses of
dated igneous rocks from http://www.earthchem.org/portal,

including concentration data on 129,161 samples for Zr, 105,045
for Nb, 121,373 for Y, 77,835 for Co, and 82,611 for Ni—all
are associated with SiO2 content (wt%) and modern geographic
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Fig. 1 Temporal distribution of global high-T minerals and detrital zircons.
Igneous, metamorphic, and hydrothermal minerals (a) and detrital zircons
(b) through the last 3.0 Ga, with a bin size of 50Ma. Mineral occurrence is
defined in the Methods section. Detrital zircon distribution data is based on
ref. 24. In spite of the significant preservation bias toward the present, high-
T minerals are generally enriched during supercontinental assemblies,
similar to detrital zircons. During Rodinian assembly, high-T minerals are
relatively less abundant compared to other supercontinents Panel a
displays 3000-500 Ma; inset displays 3000-0 Ma. c A survey based on
mineral chemistry showing relative abundances of minerals containing
different elements. Y-axis is defined as the percentage of entry numbers of
specific minerals occurring during RA relative to total entry numbers of
those minerals occurring during assemblies of all pre-Pangia
supercontinents (dashed blue lines: the percentage of detrital zircon).
Except for Nb-bearing and Y-bearing minerals, most minerals are relatively
depleted compared to detrital zircon during Rodinia assembly
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coordinates. Similar to our mineral data, the extracted
geochemical data are globally distributed (Supplementary Fig. 1).
During RA, multiple statistics of Nb, Y, and Zr concentrations
in igneous rocks exhibit the highest values in the last 3.0 Ga
(Fig. 2), significantly higher than the values during assembly
of any other supercontinent (Table 1). Such geochemical
enrichments are statistically significant in both mafic and felsic
igneous rocks (Table 1), consistent with previous reports of
anomalously high Zr in Laurentian granitoids18 and igneous
samples from a smaller, older-version Earthchem database19.
Unlike Nb, Y, and Zr, neither enrichments nor depletions are

observed for Ni and Co concentrations in igneous rocks formed
during RA (Fig. 2).

Discussion
Compared to other supercontinental assemblies, the enrichments
of Nb, Y, and Zr in igneous rocks and more abundant Nb-
bearing, Y-bearing minerals, and detrital zircons strongly suggest
distinctive tectonics during RA, leading to unique patterns of
magmatism and mineralization. For both mafic and felsic igneous
rocks, tectonic discrimination25,26 based on the immobile trace
elements (Fig. 3) implies that geochemical signatures of “within-

Table 1 Results of two-sample Welch’s t-tests of Zr, Nb, and Y concentrations between igneous rocks formed during Rodinian
assembly and those formed during assemblies of other supercontinents

All Mafic Felsic

t-statistic p-value t-statistic p-value t-statistic p-value

Zr
Rodinia–Kenorland 54.86 0 52.01 0 13.2 3.07E−35
Rodinia–Nuna 24.63 1.10E−128 25.9 1.51E−137 5.15 3.60E−07
Rodinia–Gondwana 2.12 0.03 7.38 3.02E−13 2.42 0.02
Rodinia–Pangea 26.47 1.67E−149 23.16 1.86E−113 6.81 1.77E−11
Nb
Rodinia–Kenorland 46.08 0 22.58 2.72E−101 19.74 6.15E−66
Rodinia–Nuna 14.36 3.37E−46 8.03 1.51E−15 4.16 3.51E−05
Rodinia–Gondwana 4.33 1.52E−05 −0.13 0.88 3.88 0.0001
Rodinia–Pangea 15.24 7.11E−52 2.05 0.04 1.7 0.09
Y
Rodinia–Kenorland 44.02 0 40.3 5.25E−304 23.38 1.91E−96
Rodinia–Nuna 19.59 1.76E−83 24.49 1.57E−123 6.99 5.24E−12
Rodinia–Gondwana 13.35 2.59E−40 10.62 5.03E−25 9.83 8.69E−22
Rodinia–Pangea 24.1 6.43E−125 25.07 1.07E−132 7.65 3.49E−14

The t statistics between Rodinia and another supercontinent are mostly positive with corresponding p-values <0.05, suggesting statistically significant enrichments of Zr, Nb, and Y for Rodinian igneous
rocks
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Fig. 2 Trace element concentration. (a, Zr; b, Nb; c, Y; d, Ni; and e, Co) in global igneous rocks through the last 3.0 Ga. Zr, Nb, and Y exhibit the highest
values during and immediately before Rodinian assembly, while Ni and Co show no depletions at the same time. The gray filled circles are data resampled
from Earthchem with bootstrap resampling. Moving averages and medians of samples within ±100Ma bin size are calculated for each 100Ma. Red solid
line: average; Red dashed lines: 95% confidence interval of the moving average; Blue solid line: median; Blue dashed lines: the lower (25%) and upper
(75%) quantiles
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plate” magmatism prevail during RA, whereas island arc and
collisional magmatism is more, or at least equally, significant
during the assembly of other supercontinents (e.g., Nuna,
Gondwana). Unlike “within-plate” magmatic rocks normally
discovered in intraplate settings, these rocks formed during RA
are associated with not only intracontinental rifting27,28, but also
back-arc settings29, and zones of orogenic distension/exhumation
during episodic collisional hiatus30–32, as long as the tectonic
setting is extensional. Such widespread extensional magmatism
can be attributed to enhanced asthenosphere–lithosphere inter-
actions27,30,33,34, possibly involving a warmer mantle35 and/or a
thicker continental crust36 than at present. It has been speculated
that there was a large-scale mantle thermal anomaly35,37, possibly
due to thermal blanketing and/or heat down-welling of the
mantle beneath the long-lived supercontinent Nuna38,39. Alter-
natively, it has been proposed that continental lithosphere was
strong enough to be thickened36 and to support the emplacement
of large plutons into the crust, yet the underlying mantle was still
warm enough to result in widespread melting of the lower
thickened continental crust7,13,40.

Many types of magmatic rocks that were formed during RA,
including massif anorthosites41,42, A-type granitoids18,43–45, and
NYF (Nb, Y, and F enriched)-type pegmatites31,46–48, are enri-
ched in Zr, Nb, and Y relative to arc magmatic rocks18,34,47. In arc
magmas, these elements are scavenged by interaction with
depleted mantle peridotite during subduction49,50, while this
interaction was mitigated during enhanced
asthenosphere–lithosphere interaction30,33 or even circumvented
during the melting of continental crust40, due to a warmer
mantle35 and/or a thickened continental crust36 during RA. Of all
the non-arc magmatic rocks formed during RA, NYF-type peg-
matites are the most enriched in Nb and Y, together with fluorine
(F). The enrichment of Nb and Y is amplified by the strong
partitioning of Nb and Y into F-rich fluids and melts51–54, and F
has been proposed to be sourced from decomposing F-rich biotite
and amphibole during crustal anatexis31,55,56. As a result, NYF-
type pegmatites bear a plethora of rare Nb-bearing and Y-bearing
minerals, consistent with the observed Nb and Y mineral
enrichment during RA.

Unlike the coupled mineral and geochemical enrichments of
Nb, Y, and Zr during RA, the significant depletions in the
abundances of many other minerals (e.g., Se, Au, Ni, Co, and PGE
minerals) are not accompanied by any corresponding elemental

depletion in igneous rocks (Fig. 2). Rather, diminished miner-
alization is consistent with a previously reported dearth of ore
deposits enriched in these minerals7, including volcanic-hosted
massive sulfides (VHMS), porphyry-related metals, and Au
deposits14,16. Why these ore deposits are scarce is still an open
question. Although many other processes are possible, currently
proposed mechanisms include rarity of reduced ore fluids in a
relatively oxidized Mesoproterozoic atmosphere57, or poor pre-
servation because of erosion14,16. We speculate that the former is
less likely, not only because it is at odds with reported low
atmospheric O2

58,59 during the Mesoproterozoic Era, but also
because of the observed enrichment of these deposits during
Nuna assembly when atmospheric O2, at best, was similarly
low57. Instead, our observation of relatively less Nb, Y, Zr-
depleted, arc magmatic samples during RA (Figs. 2, 3) favors
enhanced tectonic erosion of active margins, where most of these
ore deposits occur or are preferentially preserved14,16. Preferential
erosion might be considered a limiting preservational bias, but in
this case we argue that it reflects tectonic processes specifically
associated with RA.

Both pre-collisional and orogenic erosion events might
have contributed to the observed dearth in mineral and ore
deposits during RA. Pre-collisional erosion during RA may
have been more significant than that associated with other
supercontinents, because Rodinia accretion is proposed to have
been prolonged, and extrovert60 via two-sided subduction61,62.
This tectonic context may have doomed the preservation of
VHMS deposits, which requires rapid accretion of continental
margins14. In addition, many Rodinian orogens (e.g., Grenville,
Sveconorwegian, Namaqualand–Natal) exhibit episodic collisions
with distension intervals6,63, which could facilitate orogenic
erosion. Indeed, deep erosion has been observed for the
Grenville63,64 and the Sveconorwegian orogens65,66, which con-
stitute the main collisional suture of Rodinia6. Enhanced orogenic
erosion is consistent with possible development of large-scale
river systems and massive Grenvillian fluvial sediments67,68.
Removal of the shallow part of the orogens could account for the
absence of Au deposits during RA, which normally occur at
<10 km depth16.

In general, the observed mineral enrichments and depletions
during RA (Fig. 1) are an integrated result of mineral crystal-
lization and preservation, instead of purely mineral genesis. The
interplay of formation and destruction can also account for the
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temporal distribution of global detrital zircons3. During RA, a
unique tectonic setting led to non-arc magmatism and enhanced
erosion, which in turn resulted in geochemical, mineral, and ore
enrichments and depletions that established Rodina as distinct
among supercontinental events.

Methods
Database description and compilation. Compilation of the data, including data
query, data filtering, and data resampling, is performed with Pandas 0.21.0
implemented in Python 2.7.11, in which randomness is simulated with Mersenne
Twister pseudo-random number generator.

Data on mineral ages, localities, and coordinates are extracted from rruff.info/
ima (as of May 2016), developed at University of Arizona. It is a relational
database, with attributes including mineral name, structure, chemical formula,
locality name, coordinates, paragenetic mode, and age (if available). Most of the
entries are sourced from mindat.org, in which the localities are typically defined on
a mine level, distributed at least 5 km apart. In addition, we have added new entries
into the rruff database through brute-force search in scientific publications. In this
paper, we queried only high-temperature (high-T, e.g., igneous, metamorphic, and
hydrothermal) minerals, of which the ages are well constrained from dating
corresponding magmatic, metamorphic, or hydrothermal events, for a total of
108,857 entries.

The high-T mineral entries are further queried by mineral chemistry to
investigate occurrences of specific minerals in different geologic time. Queries
based on mineral chemistry reveal that the degree of enrichment vary for different
species during RA. We compiled the queries of elements to show that Nb and Y
minerals are enriched, while most others, especially Se, Ni, Co, Au, and PGE
elements, are relatively depleted during RA (Fig. 1). Note that we only include
elements that make up minerals with at least 20 occurrences during assembly of
each supercontinent to be statistically significant.

Geochemical data of igneous rocks are extracted from http://www.earthchem.
org/portal (as of April 2017), which is a portal of multiple databases including the
Petrological Database (PetDB; http://www.earthchem.org/petdb), North American
Volcanic and Intrusive Rock Database (NAVDAT; http://www.navdat.org), the
Geochemistry of Rocks of the Oceans and Continents database (GEOROC; http://
georoc.mpch-mainz.gwdg.de/georoc), and the U.S. Geological Survey database
(USGS; https://mrdata.usgs.gov/geochem/). It is also a relational database, with
attributes including sample ID, rock type, major element concentrations, trace
element concentrations, coordinates, ages, etc. We compiled concentrations in
igneous samples of 129,161 Zr; 105,045 Nb; 121,373 Y; 77,835 Co; and 82,611 Ni
whole-rock concentrations, all of which are dated, and associated with reported
SiO2 content (wt%). We also tried to compile concentrations of PGE and Au, but
the sample sizes are usually too small (<5000) to be statistically significant. In
addition, we included ~50 data points of Zr, Nb, and Y of igneous rocks19 missing
from EarthChem. The compiled data are further filtered to select only samples of
ages between 0 and 3000Ma, with age uncertainties <±200Ma, and with legitimate
geographic (latitudes within ±90°, longitudes within ±180°).

Resampling. Bootstrap resampling was performed to minimize spatial and tem-
poral sampling bias21. Sample weights were assigned to be inversely dependent on
spatiotemporal sample density, according to the relationship

Wi / 1=
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where n is the number of samples in the database, z is spatial location, t is age of
the rock, and a and b are normalization coefficients of 1.8 arc degrees (200 km)
and 38Myr, respectively. After calculation of weight Wi for each sample i in the
database, bootstrap resampling was carried out by random selection of data
points based on their weights, i.e., data with larger weights have higher chance to
be selected. For each selected data, the synthetic data were drawn from a
Gaussian distribution with a mean equal to the original value of the data point
and standard deviation equal to the estimated 1σ uncertainty of the data point. It is
shown that the analysis is insensitive to the resampling size. We built the resam-
pling data set to a size identical to the original database.

Statistical test and tectonic discrimination. The resampled data are plotted with
a± 100Ma bin size at a frequency of 100Ma (Fig. 2). The apparent enrichments of
Zr, Nb, and Y concentrations during RA in Fig. 2 are examined as follows. First,
trace metal concentrations during the assemblies of Nuna, Rodinia, and Gondwana
share similar distribution patterns, ruling out the possibility that Rodinian
enrichments are caused by outliers. In addition, two-sample Welch’s t-tests
(Table 1) demonstrate that average Zr, Nb, and Y concentrations are generally
higher during RA than other supercontinents (t> 0 and p< 0.05). What is more,
this enrichment is statistically significant for both mafic (SiO2 43–51 wt%) and
felsic (SiO2 62–73 wt%) samples in general. The t-test is performed with Scipy
0.19.0 implemented in Python 2.7.11.

Tectonic discrimination diagrams (Fig. 3) are plotted based on immobile
trace elements (Zr, Nb, Y) in igneous rocks25,26. Such tectonic discrimination
diagrams should be used with caution, especially when the rocks have a
small sample size or are of limited spatial and temporal distribution69,70.
Nevertheless, rocks in this study are sampled globally, with age ranges of
several hundred million years, and sample sizes of several thousand for each
supercontinent assembly. Therefore, the difference observed for immobile
trace elements of different supercontinent assemblies suggests unequal tectonic
settings.

Data availability. All data analyzed in this study are downloaded from open
source databases rruff.info/ima and http://www.earthchem.org/portal. Python
codes used to analyze these data are available upon request by e-mailing cliu@-
carnegiescience.edu.
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