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Abstract: Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood cells.
Prx2 belongs to a well-known family of antioxidants, the peroxiredoxins (Prxs), that are widely
expressed in mammalian cells. Prx2 is a typical, homodimeric, 2-Cys Prx that uses two cysteine
residues to accomplish the task of detoxifying a vast range of organic peroxides, H2O2, and per-
oxynitrite. Although progress has been made on functional characterization of Prx2, much still
remains to be investigated on Prx2 post-translational changes. Here, we first show that Prx2 is
Tyrosine (Tyr) phosphorylated by Syk in red cells exposed to oxidation induced by diamide. We
identified Tyr-193 in both recombinant Prx2 and native Prx2 from red cells as a specific target of Syk.
Bioinformatic analysis suggests that phosphorylation of Tyr-193 allows Prx2 conformational change
that is more favorable for its peroxidase activity. Indeed, Syk-induced Tyr phosphorylation of Prx2
enhances in vitro Prx2 activity, but also contributes to Prx2 translocation to the membrane of red cells
exposed to diamide. The biologic importance of Tyr-193 phospho-Prx2 is further supported by data
on red cells from a mouse model of humanized sickle cell disease (SCD). SCD is globally distributed,
hereditary red cell disorder, characterized by severe red cell oxidation due to the pathologic sickle
hemoglobin. SCD red cells show Tyr-phosphorylated Prx2 bound to the membrane and increased
Prx2 activity when compared to healthy erythrocytes. Collectively, our data highlight the novel link
between redox related signaling and Prx2 function in normal and diseased red cells.

Keywords: peroxiredoxin-2; tyrosine phosphorylation; Syk; sickle cell disease; oxidation

1. Introduction

Peroxiredoxin-2 (Prx2) is the third most abundant cytoplasmic protein in red blood
cells. Prx2 belongs to a well-known family of antioxidant proteins, the peroxiredoxins
(Prxs), widely expressed in mammalian cells [1–7]. Prx2 is a member of the typical,
homodimeric, 2-Cys Prxs, a wider group that uses two cysteine residues to accomplish
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the task of detoxifying a vast range of organic peroxides, H2O2, and peroxynitrite. The
catalytic mechanism is characterized by a sequence of events, starting from one cysteine
sulfhydryl of the first subunit that is oxidized by the substrate, to sulfenic acid (the so-called
peroxidatic cysteine, Cys-SPH). This is then resolved by the action of a second cysteine
sulfhydryl of the cognate subunit (the so-called resolving cysteine, Cys-SRH) through the
formation of a disulfide subsequently re-reduced by the action of thioredoxin or glutathione
and glutathione reductase [2,8].

In addition to the enzymatic function, Prxs have been shown to acquire a chaper-
one function under oxidative stress conditions, and are able to interact with multiple
proteins [2,9]. Accordingly, a crucial role is played by the possibility of switching the
oligomeric structure from a homodimer to a homodecamer in the reduced state, while
sulfur oxidation of the two essential cysteine residues leads to decamer dissociation into
disulfide-linked dimers. Hyperoxidation of the peroxidatic cysteine (Cys-SPO2H) leads to
the formation of catalytically inactive, high-molecular-weight oligomers with chaperone
function [2]. Since redox conditions are so crucial for cell viability, it is not strange that
Prxs could be highly regulated by several modifications, such as phosphorylation, acetyla-
tion, glutathionylation, and nitrosylation. Prx1 and Prx2 exhibit particular sensitivity to
post-translational changes [8,10,11].

Focusing on phosphorylation, Prx1 has been reported to be phosphorylated both
on tyrosine (Tyr) and on threonine/serine residues. Although several phosphorylation
sites of Prx1 have been identified, limited data are available on their impact on Prx1
function [10,12]. Concerning Prx2, several threonine/serine residues and only one Tyr
residue (Tyr-193) have been identified as being phosphorylated [12]. We carried out a
revision of the literature and found Tyr-193 to be the most frequently tyrosine residue
identified as phosphorylated in Prx2, suggesting a possible biologic importance of this
post-translation modification for Prx2 function (Figure 1).
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Previous studies have shown that changes in the phosphorylation of Prxs might affect
not only their activity, but also their molecular size, by shifting the dimer–decamer protein
equilibrium to an inactive, high-molecular-weight decamer species with a chaperone
function [12]. This suggests a possible link between oligomerization, peroxidase activity,
chaperone activity, and post-translational modifications.

Red cells are an exceptional model to study Prx2 function and post-translational
modifications, due to their highly oxidative physiologic environment. Recently, we have
shown that Prx2 is important in both red cells and erythropoiesis to ensure cell survival,
growth, and differentiation against physiologic and pathologic oxidation [13–16]. In addi-
tion, we found that Prx2 might act as a chaperone-like protein targeting key membrane
proteins, such as band 3, against oxidation [17–19]. Indeed, mice genetically lacking Prx2
display accelerated red cell senescence. This is associated with an overactivated Syk
kinase-dependent intracellular signaling pathway, ending with the release of erythroid
microparticles to clear damaged proteins [17–20]. In red cells, the biologic importance of
redox-related signaling pathways is supported by studies in red cells from both animal
models and human subjects with hemoglobinopathies or glucose 6-phosphate dehydro-
genase G6PD deficiency [13–15,17,21,22]. In response to oxidation, Syk translocates to the
membrane and favors band 3 clusterization, resulting in erythroid vesiculation followed by
red cell membrane rearrangement [17–19]. This mechanism is important in pathologic red
cells, such as in β-thalassemia, or in sickle cell disease (SCD) [14,17,20]. Both conditions are
characterized by severe membrane oxidation and activation of the intracellular Syk signal-
ing pathway [14,17,20]. In red cells from a mouse model of SCD, we previously reported a
membrane translocation of Prx2 in response to oxidation related to hypoxia/reoxygenation
stress, mimicking sickle cell-related vaso-occlusive crisis [22,23]. This suggests a possible
connection between the redox-related signaling pathway and Prx2 in both normal red cells
exposed to exogenous oxidation and pathologic erythrocytes, such as in SCD.

Here, we first found that Prx2 is Tyr-phosphorylated in response to oxidation and
translocates to the membrane. We identified Tyr-193 on Prx2 as specific target of Syk kinase,
resulting in increased Prx2 activity. The bioinformatic analysis revealed that Tyr-193 is
involved in the conformational changes that Prx2 undergoes during catalysis. The biologic
importance of phosphorylated, active Prx2 is further supported by the observation of
phospho-Prx2 bound to the membrane that is associated with increased Prx2 activity in
sickle red cells. Taken together, our data show that Tyr-phosphorylation of Prx2 contributes
to activating Prx2, and to partitioning Prx2 between the cytoplasm and membrane, thus
participating in redox-related signaling machinery linking the Syk pathway to Prx2 post-
translational changes in normal and diseased red cells.

2. Materials and Methods
2.1. Mouse Strains and Design of the Study

The Institutional Animal Experimental Committee of University of Verona (CIRSAL) and
the Italian Ministry of Health approved the experimental protocols (prot. 56DC9.21). Three-
month old C57B6/2J wild-type (WT) mice and SCD (Hbatm1(HBA)Tow Hbbtm2(HBG1,HBB*)Tow) mice
were studied [24–26]. Whenever indicated, red cells underwent to in vitro treatments with oxida-
tive agents or specific inhibitors [17,27,28]; details are reported in the Supplementary Materials.

2.2. Two-Dimensional Electrophoresis, Phosphoprotein Enrichement, Western-Blot Analysis, and
Immunoprecipitation Assay

Red cell membrane (ghost) and cytosol fractions were obtained as previously re-
ported [13,15,26,29,30] (Figure S1).

2.2.1. Two-Dimensional Electrophoresis (2D) Analysis

Red cell membrane proteins underwent two-dimensional electrophoresis (2D) analysis
and separated, in the first dimension, onto a 3.0–5.6 immobilized pH gradient IPG strip, and
in the second dimension, by SDS-PAGE [31]. Details are in the Supplementary Materials.
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2.2.2. Phosphoprotein-Enriched Samples

Phosphoprotein-enriched samples were generated from red cell membrane protein
extracts using a TALON PMAC Phosphoprotein Enrichment Kit (ClonTech, CA, USA)
according to the manufacturer’s instructions [32,33].

2.2.3. Western-Blot Analysis and Immunoprecipitation Assay

Red cell membrane (ghost) and cytosol fractions were analyzed by SDS-
PAGE [13,15,26,29,30]. Gels were transferred to nitrocellulose membranes for immunoblot
analysis with specific antibodies. Details are in the Supplementary Materials. Immuno-
precipitations of anti-phospho-Tyr proteins from red cells were carried out using Protein
A Agarose (Thermo Fisher Scientific, Waltham, Massachusetts, United States), as well
as a mix of the anti phospho-Tyrosine monoclonal antibodies PY99 (Santa Cruz Biotech-
nology, Dallas, TX, USA) and 4G10 (Merck Group, Darmstadt, Germany) as previously
reported [17].

2.3. Generation of Recombinant Prx2 and In Vitro Prx2 Activity

Human WT Prx2 and mutated Prx2-Y193F and Prx2-Y115F were cloned in a pET15b
vector to produce the recombinant enzymes. Details are reported in the Supplementary
Materials. Prx2 activity of recombinant enzyme (both of the control and the phosphory-
lated enzyme) was performed according to the basic protocol IV reported in Nelson and
Parsonage [34], with minor modifications (see Figure S2 and Supplementary Materials).

2.4. Mass Spectrometry

Proteins were either analyzed by a Tofspec SE (Micromass, Manchester, United King-
dom) and a LTQ Orbitrap XL Hybrid Ion Trap-Orbitrap Mass Spectrometer (Thermo Fisher
Scientific, Bremen, Germany). Details are reported in the Supplementary Materials.

2.5. Bioinformatic Analysis

Structural analysis of the Prx2 active site in its hyperoxidized (PDB = 1qmv) and
oxidized disulfide form (PDB = 5ijt) was carried out using Pymol 2.0 (PyMOL Molecular
Graphics System, Version 2.0 Schrödinger Inc, New York, NY, United States). In order to
simplify the representation, only a dimer for each decamer is shown.

2.6. Prx2 Activity on Mouse Red Cells

Enzymatic activity of Prx2 on red cells from wild-type and humanized sickle cell [24,25]
mice was assayed, as previously reported [15] in the presence of the coupled assay thiore-
doxin, thioredoxin reductase, and NADPH. The relative activity was determined by mea-
suring the ∆A/min at 340 nm of 10 µL of samples for both WT and SCD, considering as a
reference the activity of WT as 100% of peroxidase activity.

2.7. Statistical Analysis

Data were analyzed using either a t-test or one-way ANOVA for longitudinal stud-
ies, or one-way ANOVA for multiple comparisons. A difference with p < 0.05 was
considered significant.

3. Results
3.1. Prx2 Is Tyrosine-Phosphorylated in Response to Oxidation and Associates to the Membrane

To address the question of whether post-translational modification might affect Prx2
in response to oxidation, we exposed wild-type mouse erythrocytes to diamide, an oxi-
dant known to promote red cell membrane damage, requiring Prx2 membrane transloca-
tion [13,17]. We performed 2DE analysis of the membrane fraction (ghost) from mouse
red cells treated with either vehicle or diamide (2 mM) [13,14]. Prx2 was identified by
mass-spectrometric analysis in both vehicle- and diamide-treated red cells (AC #Q61171,
Prdx2_mouse; the vehicle matched 5 peptides, with coverage of 24%, while the Prx2 di-
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amide matched 4 peptides, with coverage of 22%) (Figure 2a). The immunoblot analysis
carried out in twin-gels revealed the presence of trains of Prx2, which were left shifted in
red cells treated with diamide when compared to vehicle-treated erythrocytes, suggesting a
possible post-translational Prx2 modification, such as phosphorylation (Figure 2a). This in-
trigued us, since previous studies on Tyr-phospho-maps of red cells from both healthy mice
and human subjects did not find phospho-Tyr–Prx2 associated with the membrane [14,31].
We then carried out phospho-peptide enrichment using a phospho-specific metal ion affin-
ity resin (TALON PMAC Phosphoprotein Enrichment Kit) of mouse red cells exposed to
diamide [32,33]. Prx2 was identified by MALDI-TOF analysis and further confirmed by
LC-MS/MS analysis (Figure 2b).
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Figure 2. Prx2 is phosphorylated in response to oxidative stress. (a) Two-dimensional electrophoresis (2D) analysis of ghosts
from wild-type (WT) red cells treated with vehicle or 2 mM diamide. Gradient strips of 3.0–5.6 immobilized pH were used.
One representative experiment of three performed with similar results is shown. We ran twin gels, one stained with colloidal
Coomassie and the other one blotted with a specific anti-Prx2 antibody. (b) Phospho-enriched proteins from diamide
(2 mM)-treated, wild-type red cell membrane proteins were obtained by a PMAC metal affinity column and analyzed by
bi-dimensional electrophoresis (2D) in a 3–10 immobilized pH gradient (right panel). Shown is a representative experiment
of three performed with similar results. Gels were stained with colloidal Coomassie. The black circle indicates the spot
identified as Prx2 by MALDI-TOF analysis and further confirmed by LC-MS/MS analysis. Prx2 was identified with the
following peptides: RGLFIIDAKG; KNDEGIAYRG; KSLSQNYGVLKN; RQITVNDLPVGRS; K.SAPDFTATAVVDGAFKE.

Since Syk is the key kinase in red cell signaling networks in response to oxida-
tion, we have explored the Syk pathway in diamide-treated erythrocyte with respect to
Prx2 [17–19,31,35]. As shown in Figure 3a, Syk was activated in diamide-treated red cells,
compared to vehicle-treated erythrocytes. The amount of active phospho-Syk was further
increased in the presence of NaVO4, blocking families of phosphatases (Figure 3a). No ma-
jor change was observed in Syk activity in H2O2-treated erythrocytes (Figure 3a) [13,17,28].
Thus, we focused on diamide-treated red cells. As shown in Figure 3b, we found increased
membrane association of both Tyr-phosphorylated Prx2, corresponding to almost 47% of
total membrane-bound Prx2, and Syk in response to oxidation when compared to vehicle-
treated erythrocytes. This was paralleled with increased Tyr phosphorylation of Prx2, also
in the cytoplasmatic compartment of diamide-treated red cells (corresponding to 3% of
total cytoplasmic Prx2; Figure 3b, see also Figure S3a).
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Figure 3. Prx2 is Tyr-phosphorylated in diamide-treated red cells, characterized by activation of the Syk canonical pathway.
(a) Upper panel: Western blot (Wb) analysis with specific antibodies against P-Syk and Syk of the cytosolic fraction from
red cells of WT mice treated with vehicle or diamide, NAVO4, and/or H2O2. Band 3 is used as loading control. One
representative gel from other four with similar results is presented. Lower panel: densitometric analysis is presented
as means ± standard error of the mean (SEM) (n = 4); * p < 0.05 compared to vehicle-treated red cells. (b) Upper panel:
ghost and cytosol fractions from red cells of wild-type (WT) mice treated with either vehicle or diamide underwent
immunoprecipitation with specific anti-phospho-tyrosine antibodies (IP: pY), and were then revealed with specific anti-Prx2
or anti-P-Syk antibodies. Band 3 and catalase, as well as colloidal Coomassie-stained gels (see Figure S3a) in whole-cell
lysate (WCL), were used as loading controls. One representative gel from the other four with similar results is presented
(see also Figure S3a). Lower panel: densitometric analysis is presented as means ± SEM (n = 4); * p < 0.05 compared to
vehicle treated red cells.

To explore whether the membrane translocation of phospho-Prx2 was dependent on
Syk activation, we used specific inhibitors for either Syk or Src family kinases, such as PP1
and PP2. As shown in Figure 4a, Syk inhibitors I–II fully blocked Prx2 phosphorylation
and Prx2 membrane translocation. However, PP1 and PP2 did not modify the amount
of Tyr-phosphorylated Prx2 associated with the membrane of diamide-treated red cells
(Figure 4a). The oxidative dependent compartmentalization of Prx2 was further supported
by the observation that dithiotretol (DTT), a known thiol group donor, prevented the
membrane association of Tyr-phosphorylated Prx2 (Figure 4b) [15,21]. Noteworthily, Prx2
was associated with the membrane as both a monomer and dimer in diamide-treated red
cells, and DTT again prevented Prx2 dimer formation, as previously reported by us [13,36]
(Figure S3b). Taken together, our data suggest that Prx2 is Tyr-phosphorylated by Syk in
response to oxidation, binding to the membrane of diamide-treated red cells.
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details and the source of the enzymes). The mixture was then resolved by SDS-PAGE and 
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Figure 4. Syk inhibitors and dithiothreitol (DTT) prevents the phosphorylation of Prx2. (a) Ghost fraction from the red
cells of wild-type (WT) mice treated with diamide and/or Syk inhibitors (I–II) and PP1–2 underwent immunoprecipitation
with specific anti-phospho-tyrosine antibodies (IP: pY), and then were used for Western blot (Wb) analysis with anti-Prx2
antibodies. Colloidal Coomassie-stained gels in whole-cell lysate (WCL) were used as loading controls. One representative
gel from three with similar results is presented. Densitometric analysis is presented means ± SEM (n = 4); * p < 0.05
compared to vehicle-treated red cells. (b) Ghost fraction from red cells of wild-type (WT) mice treated with vehicle or
diamide and/or DTT underwent immunoprecipitation with specific anti-phospho-tyrosine antibodies (IP: PY), and then
were used for Western blot (Wb) analysis with either anti-Prx2 or anti-P-Syk antibodies. Band 3, as well as colloidal
Coomassie-stained gels (see Figure S3c) in whole-cell lysate (WCL), was used as a loading control. One representative
gel from three with similar results is presented. Densitometric analysis is presented as means ± SEM (n = 4); * p < 0.05
compared to vehicle-treated red cells; ˆ p < 0.05 compared to diamide-treated red cells.

3.2. Syk Phosphorylates Prx2, Resulting in an Increase in Prx2 Activity

To define the contribution of Syk in the phosphorylation of Prx2, recombinant Prx2
underwent in vitro phosphorylation assays in the presence of equal units of Syk or some of
members of the Src family (Src family kinases, or SFKs), which are known to be sensitive to
PP1/PP2s, such as Lyn, Fyn, or Fgr [37,38] (see Materials and Methods for experimental
details and the source of the enzymes). The mixture was then resolved by SDS-PAGE
and visualized by autoradiography. As shown in Figure 5a, Syk was able to abundantly
phosphorylate Prx2 (lane 1), whereas out of the SFKs added to the kinase mixture, Fyn
only phosphorylated Prx2 to a comparable extent (lane 5). On the other hand, the Prx2
phosphorylation by Lyn and Fgr was negligible (lanes 3 and 5). These results support
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the notion that the substrate specificity of SFKs can widely vary, as further highlighted
recently [36–38]. That the incorporation of 32P labels had occurred on tyrosine residues was
further confirmed by Western blot analysis of Prx2 with anti-phospho-tyrosine antibodies
(Figure 5b). Afterwards, to determine the level of incorporation of phosphate onto Prx2,
time-course phosphorylation in the presence of either enzyme was performed for one hour,
with single aliquots being drawn at discrete time points to be analyzed by autoradiography
after SDS-PAGE (data not shown). The bands corresponding to Prx2 were excised, and the
32P radioactivity was determined by Cerenkov counting (Figure 5c, upper panel), the molar
ratio of phosphate bound to Prx2 being found to be approximately 0.88:1.00. In addition, to
assess the role of phosphorylation on Prx2 by Syk, the peroxidase activity was determined
on Prx2 previously subjected to nearly exhaustive phosphorylation under the conditions
described above. Results shown in Figure 5c clearly highlight that the phosphorylation
of Prx2 increases its enzyme activity 2.3-fold, compared to the non-phosphorylated form
of the enzyme. Noteworthily, the Prx2-specific activity here reported is comparable to
that described for other Prx preparations with the same assay method, using DTT as a
reducing agent [39]. Whereas we used the Trx–TrxR reducing system in red cell preparation
(see Figure below). This method usually obtains more highly specific activities compared
to the DTT system [39]. Independent of the method, the main result to consider is the
increase of Prx2 activity, due to the phosphorylation of the enzyme compared to the
non-phosphorylated form.

Antioxidants 2021, 10, x 8 of 16 
 

recently [36–38]. That the incorporation of 32P labels had occurred on tyrosine residues 
was further confirmed by Western blot analysis of Prx2 with anti-phospho-tyrosine 
antibodies (Figure 5b). Afterwards, to determine the level of incorporation of phosphate 
onto Prx2, time-course phosphorylation in the presence of either enzyme was performed 
for one hour, with single aliquots being drawn at discrete time points to be analyzed by 
autoradiography after SDS-PAGE (data not shown). The bands corresponding to Prx2 
were excised, and the 32P radioactivity was determined by Cerenkov counting (Figure 5c, 
upper panel), the molar ratio of phosphate bound to Prx2 being found to be approximately 
0.88:1.00. In addition, to assess the role of phosphorylation on Prx2 by Syk, the peroxidase 
activity was determined on Prx2 previously subjected to nearly exhaustive 
phosphorylation under the conditions described above. Results shown in Figure 5c clearly 
highlight that the phosphorylation of Prx2 increases its enzyme activity 2.3-fold, 
compared to the non-phosphorylated form of the enzyme. Noteworthily, the Prx2-specific 
activity here reported is comparable to that described for other Prx preparations with the 
same assay method, using DTT as a reducing agent [39]. Whereas we used the Trx–TrxR 
reducing system in red cell preparation (see Figure below). This method usually obtains 
more highly specific activities compared to the DTT system [39]. Independent of the 
method, the main result to consider is the increase of Prx2 activity, due to the 
phosphorylation of the enzyme compared to the non-phosphorylated form.  

 
Figure 5. Prx2 activity is affected by Syk-mediated phosphorylation. (a) Upper panel: Prx2 (0.4 μg) was phosphorylated 
in the presence or absence of either Syk (lanes 1–2), Lyn (lanes 3–4), Fyn (lanes 5–6), or Fgr (lanes 7–8) (see Materials and 
Methods for further details) for 10 min, resolved by SDS-PAGE, and visualized by autoradiography. Lower panel: 
densitometric analysis is presented as means ± SEM (n = 3); * p < 0.05 compared to vehicle-treated red cells. (b) Upper 
panel: tyrosine phosphorylation of Prx2 and autophosphorylation of Syk or Fyn was assessed by Western blot analysis 
with anti-phosphotyrosine antibody after separation on SDS-PAGE, transfer onto nitrocellulose, and reveal by ECL 
peroxidase assay. Lower panel: densitometric analysis is presented as means ± SEM (n = 3); * p < 0.05 compared to vehicle-
treated red cells. (c) Time course of Prx2 phosphorylation by Syk and Fyn. Values are the mean ± SEM of four 
determinations performed at each time point. (d) Enzymatic activity of Prx2 before (vehicle) and after phosphorylation by 
Syk. Values are the mean ± SEM (n = 4; * p < 0.01 compared to control Prx2 by Student’s t-test). 

Figure 5. Prx2 activity is affected by Syk-mediated phosphorylation. (a) Upper panel: Prx2 (0.4 µg) was phosphorylated
in the presence or absence of either Syk (lanes 1–2), Lyn (lanes 3–4), Fyn (lanes 5–6), or Fgr (lanes 7–8) (see Materials
and Methods for further details) for 10 min, resolved by SDS-PAGE, and visualized by autoradiography. Lower panel:
densitometric analysis is presented as means ± SEM (n = 3); * p < 0.05 compared to vehicle-treated red cells. (b) Upper
panel: tyrosine phosphorylation of Prx2 and autophosphorylation of Syk or Fyn was assessed by Western blot analysis with
anti-phosphotyrosine antibody after separation on SDS-PAGE, transfer onto nitrocellulose, and reveal by ECL peroxidase
assay. Lower panel: densitometric analysis is presented as means ± SEM (n = 3); * p < 0.05 compared to vehicle-treated
red cells. (c) Time course of Prx2 phosphorylation by Syk and Fyn. Values are the mean ± SEM of four determinations
performed at each time point. (d) Enzymatic activity of Prx2 before (vehicle) and after phosphorylation by Syk. Values are
the mean ± SEM (n = 4; * p < 0.01 compared to control Prx2 by Student’s t-test).
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3.3. Syk Specifically Targets Tyr-193 Residues on Prx2

We then carried out phospho-proteomic analysis of recombinant Prx2 in vitro, phos-
phorylated by either Syk or Fyn, a Tyr-kinase of the Src family. Following Syk incubation,
Prx2 was digested with trypsin and AspN, and the resulting peptide mixture was directly
analyzed by LC-MS/MS. Mass spectral data showed the occurrence of a triply charged
mass signal at m/z 655.96, corresponding to the peptide DTIKPNVDDSKEYFSK, with a
mass increase of 80 Da, thus suggesting the presence of a phosphate group. Figure 6 shows
the partial MS/MS spectrum of the triply charged ion at m/z 655.96, showing the occur-
rence of both the y and b ion series that confirmed the peptide sequence. As highlighted in
the figure, the 243 Da mass difference between the y ions at m/z 624.25 (y4) and 381.20 (y3)
unambiguously located the phospho-Tyr residue at position 193. Noteworthily, Tyr-193
was also identified in immune-enriched Prx2 from diamide-treated red cells, supporting
the biologic importance of Tyr 193 in Prx2 function against oxidation.
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Figure 6. Identification of Tyr-193 on Syk-phosphorylated recombinant Prx2. Partial MS/MS spectrum of the triply charged
ion at m/z 655.96 from the tryptic and AspN double digest of Prx2 following Syk incubation. Manual inspection of the y
and b fragment ion series confirmed the peptide sequence. The mass difference between the y4 and y3 ions unambiguously
indicate the occurrence of a phosphoTyr residue at position 193.

Similarly, the LC-MS/MS analysis of the tryptic peptides from Prx2 incubated with
Fyn revealed the occurrence of a mass signal at m/z 630.31 that was assigned to the doubly
charged phosphorylated peptide RLSEDYGVLK bearing a phosphate group. The corre-
sponding MS/MS spectrum reported in Figure S4 showed the occurrence of a phosphoTyr
residue at position 115, as demonstrated by the mass difference of 243 Da between the y
ions at m/z 844.32 and 601.30.

3.4. Tyr-193 Is Positioned in Proximity to the Active Site of Prx2

A structural inspection of Prx2 in its hyperoxidized (mimicking the reduced) state
shows that Tyr-193 is part of an extensive hydrogen bond network in place concurrent
with both the resolving Cys-172 (Figure 7a) and the buried catalytic Cys-51 (present in
this structure as hyperoxidated C-SPO2H)) (Figure 7b). In detail, Tyr-193 belongs to the
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important structural YF motif on the C-terminal helix interacting with Phe-194, and is
base-stacked to His-197 and on the same helix. His-197, in turn, stabilizes a loop containing
Trp-176 by subsequential interactions with Asp-181 and Ser-180. In this conformation,
Cys-51 and Cys-172 are ~13.4 Å distant, as visible in Figure 7b. Sulfinic Cys-51-SP-O2H
(mimicking Cys-SPH-51) is buried into the active site and stabilized by a network of
interactions with Arg-127, and with a water molecule that is coordinated also by Thr-48,
Phe-49, and Val-50. The formation of the inter-subunit disulfide bond (Cys-51–SP–SR–Cys-
172) leads to a local unfolding of the C-terminal region: the Trp-176 of one monomer moves
~18 Å apart and is packed in proximity of the GGLG motif of the second monomer, as
shown in Figure 7c. The rearrangement of the C-terminal coil causes a disruption of the
Tyr-193 interactions, and the YF motif completely loses its helical structure and electron
density. Arg-127 is displaced, and Phe-49 is shifted 5.4 Å.
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(from PDB 1qmv). The green color refers to the neighboring subunit. (c) Active site rearrangement in the oxidized form of
Prx2 (from PDB: 5ijt).

Based on our experimental data and the bioinformatic analysis, we argue that negative
charges introduced on the hydroxyl moiety of Tyr-193 upon phosphorylation would on
one side preserve the polar environment, and on the other impair the extensive network
of interactions of the C-terminal domain. It follows that phosphorylated Try-193 could
positively concur with the fully folded-to-locally unfolded conversion.

3.5. Red Cells from a Humanized Mouse Model of Sickle Cell Disease Display Tyr-Phosphorylated
Prx2 Associated with the Membrane

To understand the biologic importance of Prx2 Tyr-phosphorylation in pathologic red
cells, we studied erythrocytes from a humanized mouse model of SCD [24,25].

SCD is a globally distributed hereditary red cell disorder. SCD is character-
ized by presence of the pathologic hemoglobin S (HbS), which polymerizes when
deoxygenated [24,25,40–42]. This promotes a severe red cell membrane oxidative dam-
age, resulting in activation of Syk, aggregation of band 3, and membrane translocation of
Prx2 [14,22]. In red cells from humanized SCD mice, we observed increased membrane
translocation of Prx2 when compared to healthy mice (Figure 8a). Prx2 was present as
both a monomer and dimer only in sickle red cells when compared to healthy erythrocytes.
Noteworthily, we observed high molecular polymers of band 3 again in SCD red cells
when compared to healthy erythrocytes, in agreement with previous reports on membrane
oxidation of SCD red cells [22] (Figure 8a). Indeed, we found sulfonate Prx in both the
cytosol and membrane compartments in SCD red cells, but not in healthy erythrocytes
(Figure S5a). We then evaluated the amount of phospho-Prx2 in both healthy and SCD
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erythrocytes. As shown in Figure 8b, we observed membrane translocation of both active
Syk and Tyr-phosphorylated Prx2 only in SCD red cells. The enzymatic activity of Prx2 was
increased by a factor of 3.6-fold in SCD red cells with respect to healthy erythrocytes, under-
lining the contribution of overactivation of Prx2 as phosphoPrx2 to face severe oxidation in
SCD red cells.
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Figure 8. Prx2 is Tyr-phosphorylated in red cells from humanized mouse model for sickle cell disease. (a) Western blot
(Wb) analysis with specific antibodies against Prx2 of ghost and cytosolic fractions from red cells of WT and SCD mice
with or without β-mercaptoethanol (βM). Band 3 and catalase were used as loading controls. M: monomers, D: dimers,
O: oligomers. One representative gel from three with similar results is presented. Densitometric analysis is presented as
means ± SEM (n = 4); * p < 0.05 compared to vehicle-treated red cells. (b) Ghost fraction from red cells of WT and SCD
mice underwent immunoprecipitation with specific anti-phospho-tyrosine antibodies (IP: PY), and then were used for
Western blot (Wb) analysis with anti-Prx2 and P-Syk antibodies. Band 3, as well as colloidal Coomassie-stained gel (see
Figure S5b) in whole-cell lysate (WCL) were used as loading controls. One representative gel from three with similar results
is presented. Densitometric analysis is presented as means ± SEM (n = 4); * p < 0.05 compared to vehicle-treated red cells.
(c) Prx2 activity of WT and SCD mouse cell ghosts measured as described under Materials and Methods section. Activity of
WT was considered as 100%. Results were repeated three times with a standard error less than 5%.

4. Discussion

Here, we show for the first time that Prx2 is Tyr-phosphorylated in red cells in response
to either exogenous oxidation by diamide or endogenous oxidation, such as in sickle red
cells. We found that Syk specifically phosphorylates Prx2 at Tyr-193, resulting in increased
Prx2 activity. This is extremely interesting, since Prx2 is the third most abundant protein
in red cells, playing a key role in the antioxidant system and as an atypical chaperone in
normal and diseased erythrocytes [17,36,40].

To date, Prx2 function has been mainly related to the redox state of the essential
cysteine residues that are directly involved in the peroxidase activity of Prx2 in response
to oxidation. Our in vitro studies with recombinant Prx2 have allowed us to identify
Syk and Fyn as candidate kinases capable of phosphorylating Prx2. Indeed, we found
Syk to phosphorylate Tyr-193 and Fyn to phosphorylate Tyr-115 residues on Prx2. Our
attention was captured by Syk, since the amount of Prx2 phosphorylated by this Tyr
kinase in vitro was larger than that phosphorylated by Fyn (Figure 5). In addition, Tyr-
115 seems less important in relation to Prx2 function, since this residue is located in a
hydrophobic cleft remote from the active site, its position remaining unchanged both
in the reduced and oxidized form of Prx2 (Figure S6). On the other hand, Tyr-193 is
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situated in a key region, both for the catalytic activity and for the control of the oligomeric
structure. Indeed, Syk-mediated Tyr-phosphorylation of Prx2 enhances Prx2 activity, as
observed using recombinant Prx2 and confirmed by testing the activity of Prx2 from red
cells exposed to oxidation (diamide). Tyr-193 is highly mobile, shifting from the ordered,
fully folded, reduced state to the locally unfolded, disulfide-oxidized form, as shown
by the bioinformatic analyses; it is able to re-order at the end of the catalytic cycle. If
the sulfenic cysteine undergoes hyper-oxidation, Tyr-193 is responsible for an extensive
network of H bonds, which help to stabilize the decameric assembly, thus the chaperone
activity. It is possible that Tyr-193, when phosphorylated, contributes less to the rigid,
fully folded form, thus allowing catalysis to occur in a favorite manner. In this sense,
its post-translational, modified state helps to keep red cells more protected in highly
oxidative conditions, preventing hyper-oxidation by increasing the partition ratio towards
peroxidase rather than chaperone activity. In this sense, the oligomer-to-dimer equilibrium
is more easily achieved at each catalytic cycle, and high molecular weight aggregates are
unfavorably generated.

The biologic importance of Tyr-193, and of its neighboring residues Lys-196 or Phe-
194, located in the C-terminus of Prx2, has been also suggested by studies, both in the
recombinant form and in different cell lines. Although functional studies are limited,
Randall et al. have reported that Prx2 nitration on Tyr-193 results in increased Prx2
activity, associated with increased resistance of Prx2 to overoxidation [12,43]. In our model,
the effects of the phosphorylation of Tyr-193 on Prx2 activity are presented using both
native and recombinant Prx2. Interestingly, there is an increase in activity following the
phosphorylation of Tyr-193, analogous to nitration of the same residue [43], thus suggesting
that the modification of this residue, due to the addition of a negative moiety and the
related structural effect, could play a key role in strengthening the peroxidase activity.

Since red cells should survive 120 days in the peripheral circulation, an efficient
antioxidant and chaperone machinery is required. The functional link between Syk and
Prx2 ends in empowering Prx2 activity and contributes to ensure the survival of red cells
against exogenous or endogenous oxidation, respectively induced by oxidative agents,
such as diamide, or pathologic hemoglobin, such as in SCD.

In erythrocytes, Syk plays a crucial role in transduction cell signaling against oxidation.
We have previously shown that Syk overactivation favors band 3 clusterization, allowing
the release of erythroid microparticles and red cell membrane rearrangement. In addition,
oxidation might also affect band 3 function as an anion exchanger [27,44,45]. Exogenous
antioxidants, such as curcumin or melatonin, as well as the potentiation of endogenous
cytoprotectors like PEP-Prx2, might prevent or limit band 3 oxidative damage, preserving
band 3 structure and function [17,44,45]. Here, we observe that diamide strongly activates
Syk, whereas H2O2 slightly changes the amount of active Syk. Noteworthily, diamide
targets proteins thiol groups promoting S-thiolation, whereas H2O2 irreversibly oxidizes
sulfhydryl groups to sulfinic or sulfonic acid, leading to a peroxidase-incompetent Prx2.
Indeed, diamide promotes diamide cross-linking of band 3 with generation of oligomeric
structures that are Tyr-phophorylated by Syk [18,19]. This requires that phospho-Prx2, the
more active form of Prx2, is located at the red cell membrane. Indeed, our observations
suggest that Tyr-phosphorylated Prx2 translocates to the membrane. However, we cannot
exclude Tyr phosphorylation of the small amount of Prx2 already bound to the membrane,
as the method employed is not sensitive enough to dissect these events. The membrane
localization of more active Prx2 might represent a back-up mechanism to locally minimize
oxidative damage of membrane proteins, such as band 3. In agreement, band 3 was found
mainly in oligomeric state, as clusterized band 3, in sickle red cell membrane, which
showed increased phospho-Prx2 bound to the membrane (Figure 9).
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Under steady-state conditions, Syk is inactive. Cellular stress, such as exogenous oxidation (ROS: reactive oxygen species)
triggers Syk activation, resulting in increased tyrosine (Tyr) band 3 (B3) phosphorylation (PY). This modulates B3 interaction
with neighboring proteins, such as band 4.1, band 4.2, adducin, or ankyrin. These multiprotein complexes bridging the
membrane to the cytoskeleton contribute to the membrane’s mechanical instability. Diseased red cells, such as in sickle
cell disease (SCD), are characterized by severe oxidation. This results in membrane damage and the overactivation of
Syk. The damaged, over-Tyr-phosphorylated B3 forms clusters, which favor erythroid vesicle release and the fast removal
of the damaged red cells by splenic macrophages. Under oxidative stress, Syk targets also Prx2. This affects both the
compartmentalization of Prx2 to the red cell membrane and Prx2 activity, representing a back-up mechanism to locally
minimize oxidative damage of the membrane proteins, such as band 3.

Our data are also important in the unique biologic context of malaria, when Plasmodium
imposes a strong oxidative stress on the host red cells [19,35,46]. To counteract this burden,
the infected erythrocytes over-activate Syk that promotes band 3 clusterization with the
release of erythroid microparticles. The erythrocyte ability to face oxidation is also vital
for parasite blood stage. Noteworthy, Plasmodium has been reported to recruit Prx2 from
red cells, most likely to potentiate its own defense [47,48]. The importance of Prx2 for
Plasmodium is further supported by the observation that parasite growth is prevented in red
cells with inhibited Prx2 [47,48]. Recently, we reported that pharmacologic Syk inhibitors,
such as imatinib, might represent a novel and interesting new therapeutic option for the
design of host-directed intervention strategies. Imatinib potentiates the action of standard
malaria treatment with artemisinin, allowing more rapid parasite clearance [19,35,46]. Our
novel data on Syk-dependent Tyr phosphorylation of Prx2 add a new piece of knowledge
to the molecular mechanisms of malaria infestation, emphasizing at least two functional
targets of therapeutic Syk inhibition in malaria parasite red cells, namely band 3 and Prx2.

Due to the ever-increasing knowledge regarding this complex family of biological
sensors, the Prxs, endowed with both catalytical and regulation activities, this study might
offer new important information on Prx2 function and regulation, as well as its crosstalk
with red cell membranes in normal and diseased red cells, such as with SCD. However,
some other points in the progression of this investigation could be addressed, such as the
absence of mutagenesis experiments and the development of an anti-phspho-Tyr-193 Prx2
antibody to be used in different experimental conditions, in order to further functionally
characterize the role of Tyr-193 Prx2 in different pathologic red cells. In addition, it is
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possible that phosphorylated Prx2 is a small fraction of the total pool, and the site of
phosphorylation (cytosol or membrane) of Prx2 has not been identified. These points are
worth addressing in future investigations.

In fact, further studies are required to fully characterize phospho-Prx2 in both normal
and diseased red cells. In addition, the potentiation of endogenous antioxidant systems
by the modulation of intracellular signaling might represent an interesting new frontier of
investigation.
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