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Internally symmetric proteins are proteins that have a symmetrical structure in their monomeric single-chain form. Around 10-15%
of the protein domains can be regarded as having some sort of internal symmetry. In this regard, we previously published SymD
(symmetry detection), an algorithm that determines whether a given protein structure has internal symmetry by attempting to align
the protein to its own copy after the copy is circularly permuted by all possible numbers of residues. SymD has proven to be a useful
algorithm to detect symmetry. In this paper, we present a new parallelized algorithm called Parallel-SymD for detecting symmetry
of proteins on clusters of computers. The achieved speedup of the new Parallel-SymD algorithm scales well with the number of com-
puting processors. Scaling is better for proteins with a larger number of residues. For a protein of 509 residues, a speedup of 63 was

achieved on a parallel system with 100 processors.

1. Introduction

Not only multimeric proteins and protein complexes, but also
the repeating units in monomeric proteins are arranged in a
symmetric manner. We previously reported a method called
SymD [1] and a webserver [2] based on SymD to determine
internally symmetric proteins. Using SymD [1], around 10%
of SCOP 1.73 ASTRAL40 domain database [3] is determined
to be internally symmetric. Figure1 shows examples of a
symmetric 7-bladed beta propeller.

In comparison to other existing algorithms, SymD has
proven to be a robust algorithm to determine internal
symmetry in proteins. On the other hand, the exponential
increase in computer power has made it possible to perform
complex matrix operations in much less time. Many tech-
niques exist for detecting the internal symmetry in protein
domains. Some techniques use the structure alignment pro-
gram [4-8] and others use periodic occurrence of repeats
along the primary sequence [9-12].

The SymD algorithm makes use of an alignment scan
procedure where the original protein structure is aligned to
copies of itself obtained by circular permutation of all possible
numbers of residues. A webserver of SymD algorithm has also

been made publicly available [2]. SymD has demonstrated its
ability to find a large number of symmetric proteins across
various protein folds. SymD performs quite well in terms of
accuracy when compared to other protein symmetry detec-
tion algorithms. Some algorithms detect a specific domain
within the protein structure really well, but when tested
extensively with all domains they tend to perform poorly. But
SymD performs remarkably well for all protein domains and
particularly for beta propellers where it detects the protein
symmetry with 100 percent accuracy. Despite its robustness,
emerging problems in bioinformatics require dramatically
faster methods of detecting internal symmetry in protein
domains, and hence SymD requires improvement.

The large size of protein structures presents a challenge
to commonly used symmetry detection algorithms. The time
taken to compute the symmetry of protein structure increases
significantly with the size of protein structure due to the huge
number of matrix operations. In spite of being consistently
accurate across all protein domains, SymD lags behind in
terms of speed and scalability. With little increase in input
size, the speed decreases drastically, and, moreover, it does
not have the capability to scale over multiple processors and
multiple cores.
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FIGURE 1: Symmetric 7-bladed beta propeller. The black dot shows
the axis of rotation.

To reduce the limitation of SymD, we have come up
with a new parallel algorithm that basically uses the same
SymD design at its core but extends its capability to multiple
processors and distributed computing systems which in turn
help SymD to utilize multiple processors available to improve
the speed of computation.

The need of parallelization arises because of this increased
computational time with respect to the size of protein struc-
tures. Conversely, contemporary computers have typically
multiple computing units (cores) [13]. Although aligning the
original structure with one copy of the circularly permuted
structure can be done in a much lesser time, performing
the alignment scan for all possible numbers of circularly
permuted structures requires high computational time. Con-
sequently, as the size of protein structure increases, faster
symmetry detection methods are required to handle the
increasing computational load.

The message passing interface (MPI) standard for com-
munication in parallel computing offers a solution to this
problem [14]. The central processing units (CPUs) of mod-
ern computers have multiple cores that are separately pro-
grammable and can, when used proficiently, offer a signif-
icant increase in computation speed over single CPUs [15].
Furthermore, parallelization has been applied effectively to
many problems in bioinformatics [16, 17].

In this article, we present Parallel-SymD, the parallelized
SymD algorithm for detection of internal symmetry in
protein domains. This new algorithm that detects symmetry
in protein domains is especially suited to efficient execution
on multiple CPUs and computer of varying power intercon-
nected in a network, which are available in contemporary
computing platforms or computing clouds. When detecting
the symmetry of a protein that has 509 residues, Parallel-
SymD is around 63 times faster compared to the existing
SymD algorithm when run in a parallel system using 100
processors. We explain the SymD algorithm, provide the
description of our new Parallel-SymD algorithm, and discuss
the performance and comparison between the two algo-
rithms.
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2. Materials and Methods

We describe Parallel-SymD algorithm by describing in short
the original SymD algorithm [1] followed by the detailed
algorithmic description of the Parallel-SymD algorithm.

2.1. Overview of SymD Algorithm. The SymD [1] algorithm
works by performing the alignment scan between the original
structure and copies of itself, circularly permuted by all possi-
ble numbers of residues. It finds the score that determines the
symmetricity of the original structure. Briefly, the algorithm
first makes a copy of the original structure and circularly
permutes its residues at all positions from 1to N — 3, where
N is the number of residues of the protein. The algorithm
then finds the best non-self-structural alignment between the
original and each of the N — 3 permuted structures. This
process is called the “alignment scan.” The best alignment
with each permuted structure is obtained using the RSE
algorithm [18], which iterates a two-step cycle. In the first
step, the Kabsch algorithm [19, 20] is used to optimally
superimpose the two structures by minimizing the weighted
sum of squares of the distances between aligned pairs of
residues. Then, in the second step, optimal structure-based
sequence alignment is obtained from the superimposed
structures using the SE algorithm [21]. The two-step cycle is
terminated when the procedure has converged or when a set
number of cycles are finished. The final alignment reported is
the one with the best score during the cycle. The Z-score [1] of
the T-score, which is a weighted number of aligned residues,
similar to the sum of the similarity matrices S;; of Gerstein
and Levitt [22, 23], is finally reported.

In this regard, SymD outputs the N — 3 alignment scores
and also the position and orientation of the symmetry axis for
each of the alignments. The information about the position
and orientation of the symmetry axis is obtained from the
transformation matrix. Finally, a protein is deemed to be
symmetric if one of the Z-scores of the alignments is greater
than the cut-off value (Z-score of 8 or 10). It has to be
noted here that symmetricity is not exact and it depends
on the scoring function and the cut-off value associated
with the scoring function. In this regard, a comprehensive
and systematic analysis of various scoring functions and
a systematic determination of cut-off value are required.
Furthermore, SymD can also provide information about
repeating units in a symmetric protein.

2.2. Parallel-SymD Implementation. At the heart of the SymD
algorithm is the “alignment scan” procedure that aligns the
original structure with each of the N — 3 permuted structures
and finds the best non-self-structural alignment between
the original and each of the N — 3 permuted structures.
Each of the iterations in the alignment scan procedure is
independent and thus SymD algorithm is well suited for
parallelization. Here, an iteration consists of finding the best
non-self-structural alignment between the original and each
of the N — 3 permuted structures and calculating optimal
structure-based sequence alignment from the superimposed
structures using the SE algorithm [21] and then calculating
the similarity score.
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FIGURE 2: Overview of Parallel-SymD algorithm. Process 0 acts as a master node. If the rank ID of a process is not 0, then it will wait to receive
the workload from process 0. After process 0 divides the problem and sends it to the rest of the processes, then each processor independently
solves the subproblem and generates the results that are then sent back to the master node. Finally, the master node displays the results.

Parallelization of the SymD algorithm should be accom-
plished in such a way that the algorithm should automatically
be able to share the workload equally among the available
number of processors. If we increase the number of proces-
sors, it should again redistribute the workload so that each
processor will have the same amount of workload.

Parallelization of the time-consuming alignment scan
should be accomplished in such a way that it is equally
efficient in single or parallel computing systems. This implies
that the parallelization methodology must incorporate auto-
matic balancing of computation. The alignment scan between
original structure and the copy of circularly permuted struc-
ture of itself is independent for each permutation, and thus
the algorithm is appropriate for parallelization. Parallelization
can also be achieved on the level of single computing node
but such approach is not effective on parallel and distributed

computing platforms with a lot of interconnected nodes.
Because the alignment scan procedure implies high ratio
between computation time and communication time, it can
be better parallelized on a task level [15]. The Parallel-SymD
algorithm is depicted in Figure 2.

A parallel platform can be represented as a set of slave
nodes with a single master node. Bookkeeping is imple-
mented as a separate process that runs on the master node.
Usually, the master bookkeeping process is much simpler
that the alignment scan processes and master node can run
concurrently with slave nodes.

This can be achieved by removing any hard coded area
that restricts the number of processors and workloads from
being shared. Instead of hard coding at the compilation
time, we implement the program according to the following
guidelines: (a) decide at runtime how and among how many



processes should the workload be distributed; (b) as soon as
a new processor is available, automatically redistribute the
work share among the newly available resources.

Obviously, one must check that SymD and Parallel-SymD
yield the same results. To achieve this, we start by assigning
the roles for each processor as a master or slave and design our
program in such a way that even though the computations are
done in individual processor, the results are sent back to one
place and final results are shown by one processor.

For accomplishing this, we assign the role of housekeep-
ing to the master processor (i.e., processor with rank 0). The
master processor will handle the decomposition of tasks into
subtasks and mapping of those subtasks to other processors,
collecting the results from each processor, and analyzing
those local results and generating the final answer. In this
regard, an iteration of “alignment scan” is run on slave nodes.
The communication between processes is implemented using
a standard MPI library and consists of master node sending
the “specific number of iterations of alignment scan” to the
slave node that will return the best Z-score for the alignment
scans to the master node.

As soon as the master processor gets the input and the
information about the total number of processors, it reads
the input protein and calculates the total number of residues
in the input protein. Based on the number of processors
available, the master processor then decomposes the task. If
the residues lengths are not exactly divisible by the number
of processes, the last processes as per the rank will be loaded
with little extra work. After the decomposition of the task
into subtasks, the master processor goes on a waiting phase
where it seeks results from each processor. Sometimes, a
process may take a long time to carry out execution and
another process may complete the execution in a short time.
But process 0 will not continue executing and analyzing
the results until and unless it receives the result from each
processor.

Once the master processor collects all the N -3 alignment
scores, it displays all the results. Finally, a protein is consid-
ered symmetric if the Z-score of the best of these alignments
exceeds a certain cut-off value.

The program that activates the SymD algorithm is the
same for all computing slave nodes and has two parts: first for
supervising master process with process identification (ID) =
0 and second for the remaining of the slave processes. The
communication between parallel processes is implemented
using standard MPI library [14] and consists of a master
node sending the circularly permuted structure and original
structure to slave nodes that will return the symmetric scores
between the two structures to the master node. Communi-
cation is short: for each alignment scan, only the matrices
of the two structures are sent to slave nodes, and only the
information regarding the optimal alignment is returned by
each slave node to the master node. In addition, queues
of permuted structures on the slave nodes serve as buffers
providing slave nodes with work. Since the computation of
symmetric scores involves huge matrix operations, the time
lost on communication between processes is several orders of
magnitude shorter than the computation time. Consequently,
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the restrictions posed by communication channel bandwidth
and message latency are very low.

As the MPI is available in a standard form for most
existing platforms [14], our approach is highly portable. The
communication requirements are minimal and computa-
tional load is automatically balanced.

3. Results and Discussion

To validate and assess the performance of the Parallel-
SymD algorithm, we performed a series of computational
experiments that are presented below. The computational
experiments were performed on a CRAY XC30 system. This
parallel computer system is composed of 6 CPU quad-socket
8-core Intel nodes and two CPU/GPU 10-core Intel nodes
with 4 K40 NVidia GPU. The operating system is Linux
Kernel, CRAY CLE based on SuSE SLES release 11.3. MPICH
(version 2) was used and CRAY compilers were used to
compile the source program. The nodes are connected with
Aries Interconnect. Please refer to [24] for the details.

3.1. Validation of Parallel-SymD Algorithm. In order to val-
idate that the Parallel-SymD algorithm works, we ran a set
of 2000 proteins of various lengths and compared the Z-
scores using the SymD [1] and Parallel-SymD and plotted
these scores in Figure 3. It can be observed from the figure
that Parallel-SymD and SymD produce the same Z-score
for a set of 2000 proteins which validates the notion that
Parallel-SymD and SymD produce the same results. We
also show in Figure 4 the variation of computation time
as the size of the protein increases in a single processor.
Though not shown, it has to be noted that as the size of
the protein increases (beyond 500 residues) the computation
time increases polynomially.

3.2. Communication Time. Performance gain depends upon
various factors like communication time (time taken for two
processors to communicate, that is, sending and receiving
messages), computation time (actual time taken for com-
putation of solution), and protein size. If the protein size
is increased, the communication time increases for a given
processors number. For example, if we choose to use 20
processors, the communication time increases as we keep
increasing the protein size.

A plot of communication time versus the number of
residues of proteins for 20 processors is shown in Figure 5,
which in general demonstrates that the communication time
shows quadratic growth with increase in the number of
residues.

3.3. Computation Time. We also examined the effects of
increasing the protein size on the computation time of
calculating the symmetricity of a given protein. We observed
that computation time shows quadratic growth as the protein
size increases when the processor count is kept constant (=
20). The results of this analysis are shown in Figure 6.

Apart from the number of residues or protein size,
the communication time and computation time are also
dependent on the number of processors used. If we vary
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FIGURE 3: Comparison of Z-score between SymD and Parallel-
SymD using a set of 200 proteins.
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time in serial processor

Time (seconds)

100 200 300 400 500

Protein size

FIGURE 4: Change in computation time as the size of the protein
increases for a single processor. Results obtained from 200 randomly
selected proteins of various lengths on a CRAY XC30-AC parallel
system using a single processor. The trend line is a quadratic fit to
the data.

the number of processors keeping the protein size constant,
we could see how the communication time increases and
computation time decreases as we increase the processor
count.

Figure 7(a) shows how the communication time and
Figure 7(b) shows how the computation time vary as the
number of processors is varied while keeping the protein size
constant. We have executed this on five proteins of various
lengths and each protein was run on CRAY XC30-AC parallel

Size of protein versus communication time
(processors = 20)

Time (seconds)

T
100 200 300 400 500

Protein size

FIGURE 5: Change in communication time as the size of the protein
increases for a fixed number of processors (= 20). Results obtained
from 200 randomly selected proteins of various lengths on a CRAY
XC30-AC parallel system using 20 processors.

Size of the protein versus computation time
(processors = 20)
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FIGURE 6: Change in computation time as the size of the protein
increases for a fixed number of processors (= 20). The computation
time measured is the actual time taken for computation. The results
were obtained after executing 200 randomly selected proteins of

various lengths on a CRAY XC30-AC parallel computer system
using a constant processors number of 20.

system using 20, 30, 40, 50, 60, 70, and 80 processors. It is
interesting to note that, for smaller proteins, the computation
time increases as the number of processors is increased.
This is due to the fact that for smaller proteins the ratio of
the cost of communication time increases compared to the
computation cost. Computation time in general decreases
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number of processors increases keeping the protein size constant as
proteins of sizes 29, 107, 233, 360, and 509.

executed on CRAY XC30-AC parallel system on 5 randomly selected
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when we increase the number of processors keeping the
protein size constant.

3.4. Performance Gain. Next, we measured the speedup of
the proposed parallelization on a number of proteins taken
from ASTRAL40 dataset [3]. We have selected around 2500
proteins from the dataset to measure the impact of protein
size on the performance of the Parallel-SymD algorithm.

We first ran the SymD algorithm on a single processor to
find out the execution time T, of the nonparallel version of the
algorithm. Then, we ran the Parallel-SymD algorithm on 20,
30, 40, 50, 60, 70, 80, and 100 processors of a CRAY XC30-AC
parallel computer system. We measured the execution time of
Parallel-SymD T, and calculated speedup [16] as S = T'/T,.
The maximum theoretical speed also known as ideal speed is
equal to (p — 1) since only p — 1 processors are involved in
performing the computation.

We plotted the performance gain (speedup) when
Parallel-SymD is run on different numbers of processors
ranging from 20 to 80. The results are shown in Figures
8(a)-8(g). It can be observed from the results that for the
smaller protein of ~100 residues the speed does not increase
when using 100 processors. Therefore, the smaller proteins
should not be calculated on higher number of processors.
The parallel scaling efficiency, which is defined as the ratio
between measured speed up and ideal speedup, is in between
50% and 81%. It decreases with the number of computing
nodes and increases with protein size. The speedup was
close to 64 when used with 100 processors, and it was
close to 55 when used with 80 processors and decreases
as we decrease the number of processors. The proposed
methodology is very appropriate for the network and cluster
computing. Further increase of the speedup is possible by the
parallelization on the level of symmetry detection algorithm
itself, which will result in finer granularity of the problem
and easier load-balancing of processors. In particular, we can
parallelize the RSE routine that is the essential building block
of the proposed symmetry detection algorithms. Future work
includes exploring the efliciency of many-core and graphic
processing unit (GPU) platforms in further parallelization
approaches.

The advantage of the proposed Parallel-SymD is its ease
of use and better performance, compared to naive paral-
lelization. The only requirement is that the Parallel-SymD
program is properly installed and that the master node is able
to communicate with all slave nodes through the MPI library.

3.5. Postprocessing Time. We also plotted the time taken by
the master node from the moment it receives data from
the slave node to the point when it displays the result,
postprocessing time. Since a single processor does the post-
processing, we have plotted the graph of postprocessing time
against the protein size in Figure 9. It can be observed that
postprocessing time is relatively insignificant compared to the
computation time.

4. Conclusions and Discussion

In this work, we presented a parallel strategy to determine
internal symmetry in a protein called Parallel-SymD. As the

BioMed Research International

Size of the protein versus postprocessing time
(processors = 60)
0.008 .

0.007

0.006 —

0.005

0.004 —

Time (seconds)

0.003

0.002

0.001 - -

100 200 300 400 500

Protein size

FIGURE 9: Variation in postprocessing time with increase in protein
size as performed on CRAY XC30-AC parallel system using 60
processors.

number of proteins structures continues to grow, it becomes
very important to understand and characterize the structural
features of these proteins including internal symmetry of the
protein. The proposed parallel algorithm has been imple-
mented on distributed computing system environment. The
experimental results show that the algorithm presents good
scalability and a nearly linear speedup. With the use of 100
processing nodes, the system achieved a 65x speedup. Thus,
the proposed parallel algorithm scales well with the number
of processors, enabling high performance on parallel systems.

As observed from Section3, Parallel-SymD helped
achieve a huge amount of performance gain compared with
the serial version of SymD. As the performance gain depends
upon various factors like computation time, communication
time, size of protein, and so forth, thus the performance gain
does not necessarily increase in the same ratio as the number
of processors for all protein sizes.

We have also characterized speedup of the algorithm by
running the algorithm using 20, 30, 40, 50, 60, 70, 80, and 100
processors. Although we were not able to achieve the ideal
speedup in each case (which should be 19, 29, 39, 49, 59, 69,
79, and 99 times, resp.) (total processors — 1), however, we
were able to achieve a nearly linear speedup. To be precise,
in the case of 20 processors, we achieved performance gain
closer to 81% of the ideal value. Similarly, in the case of 80
processors, we achieved performance gain closer to 74% of
the ideal value.

Finally, Parallel-SymD approach is one of the first types
of approaches to detect symmetricity in proteins which
harnesses the massive parallel architecture of existing compu-
tational infrastructures. To facilitate the use of Parallel-SymD
source code, an executable of the program can be obtained
from the corresponding author.
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