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Abstract: Athree-layer composite plate element is developed for finite element modeling and
vibration analysis of sandwich plate with frequency-dependent viscoelastic material core. The plate
element is quadrilateral element bounded by four-node with 7-degree-of-freedom per node. The
frequency-dependent characteristics of viscoelastic material parameters are described using the
Biot model. The method of identifying the parameters of the Biot model is given. By introducing
auxiliary coordinates, the Biot model is combined with the finite element equation of the viscoelastic
sandwich plate. Through a series of mathematical transformations, the equation is transformed into a
standard second-order steady linear system equation form to simplify the solution process. Finally,
the vibration characteristics of the viscoelastic sandwich plate are analyzed and experimentally
studied. The results show that the method in this paper is correct and reliable, and it has certain
reference and application value for solving similar engineering vibration problems.

Keywords: viscoelastic sandwich plate; viscoelastic material; Biot model; finite element method;
vibration characteristics

1. Introduction

Many materials have viscoelastic properties [1–3], among which viscoelastic materials have
excellent energy dissipation properties [4]. In engineering, they are usually laminated with elastic
materials to construct viscoelastic sandwich structures, which are widely used for vibration suppression
of the thin-walled structures in aerospace, automotive and ship equipment [5–8]. Figure 1 shows a
viscoelastic sandwich plate structure. A viscoelastic material layer with a high loss factor is sandwiched
by the base plate and the constraining layer. When the base plate is subjected to vibration, the
viscoelastic layer will undergo shear deformation, which converts vibration energy into heat and
dissipates it. This structure can effectively suppress the vibration without significantly changing the
weight of the components. Therefore, it is widely used in the situation of strict weight restrictions [9].
For decades, the studies on the dynamic modeling, vibration and damping characteristics of the
viscoelastic sandwich plates have been hot topics.
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The finite element method is commonly used in engineering applications to study the vibration
of viscoelastic sandwich plate structures. Johnson et al. [10] used three-dimensional solid elements
to model three-layer viscoelastic composite structures in the commercial finite element software
NASTRAN. The viscoelastic layer was divided by solid element (HEXA8), and the elastic surface layer
was divided by quadrilateral thick shell element (QUAD4). Plouin et al. [11] also used a similar method,
in which the elastic surface layer and the viscoelastic core layer were modeled by the traditional
shell element and the solid element, respectively. These methods are complex and time-consuming.
In order to improve these problems, some composite elements were used to model sandwich plate
structures. Chen et al. [12] proposed four types of three-layer composite elements to study the dynamic
characteristics of viscoelastic composite plate structures. Park et al. [13] derived two kinds of finite
element models of active constrained layer damping plates based on classical and laminated plate
theory, respectively, and compared their accuracy and efficiency. Huang et al. [14,15] studied the
vibration characteristics of sandwich plate using three-layer composite plate elements. Some other
finite element methods were also used to study the vibration of sandwich plates. Zhao et al. [16]
proposed the finite element model for the sandwich plate by using a single-layer equivalent method,
which was based on the equivalent material properties. Zhang et al. [17] established a sound radiation
optimization model for sandwich plates. The finite element method was used to formulate the
normal vibration velocities, and the boundary element method was used to derive the sound power.
Kumar et al. [18] developed a finite element model to investigate the damping mechanisms of the plate
structures with 0-3 viscoelastic layer. Ojha et al. [19] carried out a dynamic analysis of sandwich plates
with a viscoelastic core using finite element method.

The parameters of viscoelastic materials are frequency-dependent, which leads to the difficulty
of mathematical modeling of viscoelastic sandwich structures. Most of the above works did not
consider the frequency dependence of viscoelastic materials. In order to solve this problem, some
viscoelastic material constitutive models were used to consider the frequency-dependent characteristic.
Ayodele et al. [20] presented a finite element model for sandwich structures with multi-layered,
frequency-dependent viscoelastic cores based on the zig-zag approach. Hamdaoui et al. [21] compared
the computational times and accuracy of the non-linear Arnoldi method, non-linear Jacobi–Davidson
method, inverse iteration and iterative shift-invert method on relevant use cases with frequency
dependent visco-elastic materials. Alvelid and Enelund developed an interface finite element for
sandwich structures. The constitutive behavior of the viscoelastic material was described by a fractional
order viscoelastic model [22].Hamdaoui et al. [23] used an adjoint method to identify the viscoelastic
parameter of frequency-dependent viscoelastic damped structures. Wang et al. [24] investigated
the frequency-dependent viscoelastic dynamics of viscoelastic composite structure by finite element
analysis and experimental validation. The GHM and ADF approaches are used to implement the
viscoelastic material model. Rijnen et al. [25] studied the viscoelastic damping of a 3D structure. The
fractional derivative model was used to simulate the viscoelastic materials. Xie et al. [26] proposed
a strategy for the vibration analysis of viscoelastic damping structures. Three damping models,
called the GHM model, generalized Maxwell model and fractional derivative model were used to
describe the frequency dependency of the viscoelastic materials. Kumar et al. [27] introduced the
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frequency-dependent Young’s modulus and loss factors in power series in the sandwich plate finite
model by using an iterative scheme. Huang et al. [28] studied the damping mechanism of viscoelastic
sandwich structures by modeling viscoelastic materials with a GHM model. In the above models, the
GHM leads to too many dimensions of system equations; the generalized Maxwell model needs to
obtain the performance parameters of viscoelastic materials in a wide frequency range, which will
cause difficulties in practical applications, and the fractional derivative model has a large amount of
calculation in the vibration analysis of viscoelastic composite structure.

This work presents a new finite element method combined with Biot model for
frequency-dependent viscoelastic sandwich plates. The Biot model is used to consider the
frequency-dependent properties of viscoelastic materials, and the method to determine its parameters
is presented. A type of three-layer four-node 28-degree-freedom composite plate element is developed
for finite element modeling of the viscoelastic sandwich plate structure. By introducing auxiliary
coordinates, the Biot model is incorporated into the finite element equation of the viscoelastic sandwich
plate, and then transforms it into a standard second-order differential equation form to simplify the
solution process. Finally, the vibration characteristics of viscoelastic sandwich plates are numerically
analyzed and experimentally researched. The results show that the method presented this paper is
correct and reliable.

2. Finite Element Modeling for the Sandwich Plate

2.1. Assumptions

It is assumed that the plate satisfies the Kirchhoff–Love hypothesis. The shear strains of the two
elastic surface layers (the constraining layer and the base plate) are ignored, and only the shear strain
of the viscoelastic layer is considered. The deflections of the layers in the thickness direction can be
ignored, that is, the three layers have the same deflection. The elastic layers do not dissipate vibration
energy, the viscoelastic layer is incompressible material, and the vibration energy is dissipated only
through its shear deformation. The viscoelastic layer is a linear viscoelastic material. Each layer is
perfectly bonded and there is no relative sliding.

2.2. Description of Geometry and Kinematics

The geometric deformation relationship of each layer of a sandwich plate in the XOZ plane is
shown in Figure 2. u1x, u2x and u3x are the mid-plane displacements of the base plate, the viscoelastic
layer and the constraining layer along the X direction, respectively. h1, h2 and h3 are the thickness of
the base plate, the viscoelastic layer and the constraining layer, respectively. w and ∂w/∂x denote the
deflection and the angle around the y-axis of the sandwich plate, respectively. ψv

x and γv
xz denote the

angle around the Y-axis and shear strain in the XOZ plane of the viscoelastic layer, respectively.
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Figure 2. Geometry and deformation of sandwich plate. 
Figure 2. Geometry and deformation of sandwich plate.
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The displacements and the shear strains of the viscoelastic layer can be determined from the
geometry of the sandwich plate in Figure 2 [15],

u2x =
1
2

[
(u1x + u3x) +

(
h3 − h1

2

)
∂w
∂x

]
, u2y =

1
2

[(
u3y + u1y

)
+

(
h3 − h1

2

)
∂w
∂y

]
(1)

γv
xz =

1
h2

[
(u3x − u1x) + d

∂w
∂x

]
,γv

yz =
1
h2

[(
u3y − u1y

)
+ d

∂w
∂y

]
(2)

where u1y, u2y and u3y are the mid-plane displacements of the base plate, the viscoelastic layer and the
constraining layer along the Y direction, respectively, γv

yz denotes the shear strain of the viscoelastic
layer in the YOZ plane, d = (h3 + h1)/2 + h2 is the mid-plane distance between the two elastic
surface layers.

2.3. Degrees of Freedom and Shape Functions

The sandwich plate element developed here is shown in Figure 3. It is a rectangular element
with the dimension of 2a× 2b. Each node has 7 DOF, which respectively represent the longitudinal
displacement u1x (x-direction) and u1y (y-direction) of the base plate layer, the longitudinal displacement
u3x (x-direction) and u3y (y-direction) of the constraining layer, the transverse deflection w, and the
deflection angles θx and θy of the sandwich plate element.
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Figure 3. The element of sandwich plate.

Over any element i of the sandwich plate, their spatial distributions (interpolation functions) can
be given by

u3 = a1 + a2x + a3y + a4xy, v3 = a5 + a6x + a7y + a8xy
u1 = a9 + a10x + a11y + a12xy, v1 = a13 + a14x + a15y + a16xy

w = a17 + a18x + a19y + a20x2 + a21xy + a22y2 + a23x3 + a24x2y
+a25xy2 + a26y3 + a27x3y + a28xy3

θx = ∂w
∂y , θy = −∂w

∂x

(3)

wherethe constant coefficient a1, a2, . . . , a28 are determined by the 28 node displacement vectors ∆e of
the four element nodes 1,2,3 and 4. The displacement vector of the node is given by

∆e =
{

∆1 ∆2 ∆3 ∆4
}T

(4)

where
∆i =

{
u3i v3i u1i v1i wi θxi θyi

}T
, i = 1, 2, 3, 4 (5)
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Therefore, the displacement ∆ of any position (x, y) in the ith element can be obtained by
interpolation of the element node displacement vector, that is

∆ =
[

u3 v3 u1 v1 w θx θy
]T

= N∆e (6)

where N=
[

N1 N2 N3 N4 N5 N6 N7
]T

are the spatial interpolating vectors (shape function),
corresponding to u3, v3 , u1, v1, w, θx and θy.

Substituting the shape function N into Equations (1) and (2), respectively, the longitudinal
displacement and shear strain of the viscoelastic layer can be obtained as

u2x = N8∆e, u2y = N9∆e, γv
xz = N10∆e, γv

yz = N11∆e (7)

where N8, N9, N10 and N11 are the shape functions corresponding to the longitudinal displacement
u2x, u2y and the shear strain γv

xz, γv
yz of the viscoelastic layer, respectively, where

N8 =
1
2

[
(N1+N3) +

(
h3 − h1

2

)
(−N7)

]
(8)

N9 =
1
2

[
(N2+N4) +

(
h3 − h1

2

)
(N6)

]
(9)

N10 =
1
hv

[
(N1−N3) +

(
h1 + h3

2
+ h2

)
(−N7)

]
(10)

N11 =
1
hv

[
(N2−N4) +

(
h3 + h1

2
+ h2

)
(N6)

]
(11)

2.4. Equations of Motion of the Sandwich Plate Element

2.4.1. Potential Energy

The potential energy of the ith layer of the element due to stretching and bending are given by

Ui =
1
2

∆eT
hi

∫ a

−a

∫ b

−b
(Bei

TDeiBei+Bbi
TDbiBbi)dxdy

∆e =
1
2

∆eT(
Ke

ei
+Ke

bi

)
∆e (12)

where the subscript i (i = 1, 2, 3) indicates that the parameter belongs to the base plate, the
viscoelastic layer and the constraint layer, respectively, Bei and Bbi are the stretching and bending
strain-displacement matrix, respectively. Their expressions are as follows:

Be1 =
[
∂N3
∂x

∂N4
∂y

∂N3
∂y + ∂N4

∂x

]T
, Be2 =

[
∂N8
∂x

∂N9
∂y

∂N8
∂y + ∂N9

∂x

]T
,

Be3 =
[
∂N1
∂x

∂N2
∂y

∂N1
∂y + ∂N2

∂x

]T
, Bbi =

[
∂2N5
∂x2

∂2N5
∂y2 2∂

2N5
∂xy

]T (13)

Dei and Dbi are thein-plane stiffness matrices andthe bending stiffness matrices of the ith layer,
respectively. They are given by

Dei =
Ei

1− νi2


1 νi 0
νi 1 0
0 0 1−vi

2

, Dbi =
Eihi

3

12(1− νi2)


1 νi 0
νi 1 0
0 0 1−νi

2

 (14)
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where Ei and νi are the elasticity modulus and Poisson’s ratio of the ith layer, respectively, Ke
ei and

Ke
bi are the in-plane stretching and bending stiffness matrices of the ith layer, respectively. They are

defined as follows:

Ke
ei = hi

∫ a

−a

∫ b

−b
(BT

eiDeiBei)dxdy, Ke
bi = hi

∫ a

−a

∫ b

−b
(BT

biDbiBbi)dxdy (15)

The strain energy corresponding to shear of the viscoelastic layer can be written as

Usv =
1
2

∆eT
h2

∫ a

−a

∫ b

−b
BT

svGBsvdxdy

∆e =
1
2

∆eT
Ke

sv∆e (16)

where Ke
sv is the shear stiffness matrix of the viscoelastic layer, which is defined as

Ke
sv = h2

∫ a

−a

∫ b

−b
BT

svGBsvdxdy = GvKe
v (17)

where Ke
v is the viscous stiffness matrix, which is given by

Ke
v = h2

∫ a

−a

∫ b

−b
(N10

TN10 + N11
TN11)dxdy (18)

Bsv is the shear strain-displacement matrix given by

Bsv =
[

N10 N11
]T

(19)

G is the shear modulus matrix of the viscoelastic layer, which is defined as

G =

[
Gv 0
0 Gv

]
(20)

where Gv is the shear modulus of the viscoelastic materials, which is generally in the form of a complex
variable and is frequency-dependent.

Then, the total stiffness matrix Ke is the sum of the stiffness matrices of each layer

Ke=

3∑
i=1

(Ke
ei+Ke

bi)︸            ︷︷            ︸
Ke

e

+GvKe
v︸︷︷︸

Ke
sv

(21)

where ke
e =

3∑
i=1

(kei+kbi) is the elastic stiffness matrix of the element.

Obviously, the total potential energy of the element is the sum of the potential energy of each layer

U =
3∑

i=1

Ui + Usv (22)

2.4.2. Kinetic Energy

The kinetic energy of the ith (i = 1, 2, 3) layer of the element due to stretching and bending are
given by

Ti =
1
2
ρi

y

V

(∂uxi
∂t

)2

+

(
∂uyi

∂t

)2

+

(
∂wi
∂t

)2
dV (23)
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where ρi is the density of the ith layer. At the right side of the equation, the sum of the first two terms
is the tensile kinetic energy, and the third term is the bending kinetic energy.

The total kinetic energy of the element is the sum of the kinetic energy of each layer

T =
3∑

i=1

Ti (24)

Applying the shape functions, the total mass matrix Me of the element can be obtained as

Me =
3∑

i=1

(
Me

ei+Me
bi

)
(25)

where Me
ei and Me

bi are the stretching and bending mass matrix of the ith layer, respectively. The
expressions for these mass matrices are given by

Me
e1 = ρ1h1

∫ b
−a

∫ b
−a

(
N3

TN3+N4
TN4

)
dxdy, Me

e2 = ρ2h2
∫ b
−a

∫ b
−a

(
N8

TN8+N9
TN9

)
dxdy

Me
e3 = ρ3h3

∫ b
−a

∫ b
−a

(
N1

TN1+N2
TN2

)
dxdy, Me

bi = ρihi
∫ b
−a

∫ b
−a N5

TN5dxdy
(26)

2.4.3. Dynamic Equations of the Sandwich Plate Element

The equations of motion can be derived using Hamilton’s principle. The variational form of
Hamilton’s principle can be expressed as∫ t2

t1

δ(T −U)dt +
∫ t2

t1

δWdt = 0 (27)

where W = ∆eT
Fe is the work done by the force of the element, where Fe is the external force vector.

Substituting Equations (22) and (24) into Equation (27) gives

Me
..
∆

e
+Ke

e∆e+GvKe
v∆e=Fe (28)

2.5. Convergence Analysis of the Element

In this section, an example will be used to analyze the convergence of the element. Consider a
sandwich plate structure, whose boundary condition is fixed on the opposite side, as shown in Figure 4.
Table 1 lists its material and geometric parameters.
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Table 1. Material and geometric parameters of the sandwich plate.

Material Properties Constraining Layer Base Plate Viscoelastic Core

Elastic Modulus(GPa) 71 71 0.000896
Density(kg/m3) 2700 2700 999
Poisson’s ratio 0.3 0.3 0.498

Loss factor - - 0.9683
Thickness (mm) 1.0 3.0 1.0

Length (mm) 400 400 400
Width (mm) 400 400 400

The 28-degree-of-freedom element model here is used to calculate the natural frequencies and
loss factors corresponding to the first three modes. When calculating, 3 × 3,4 × 4,5 × 5elements are
divided along the length and width of the plate. The calculation results are shown in Table 2.

Table 2. The frequencies and loss factors versus the number of elements.

Modes

9 Element (3 × 3) 16Element (4 × 4) 25Element (5 × 5)

Natural
Frequencyω

(Hz)

Loss
Factorsη

Natural
Frequencyω

(Hz)

Loss
Factorsη

Natural
Frequencyω

(Hz)

Loss
Factorsη

1 95.96 0.1331 95.09 0.1315 94.97 0.1295
2 112.93 0.1303 112.70 0.1274 112.70 0.1270
3 187.62 0.1431 187.25 0.1397 187.24 0.1402

It can be seen from Table 2 that the element has good convergence. When the number of elements
is nine, the calculation results of the system’s natural frequency and loss factor begin to converge
obviously. When the number of elements reaches 16 and 25, the calculation results are basically
unchanged. It can be considered that 16 elements completely meet the convergence requirements. This
shows that the element has very good convergence characteristics.

2.6. Applying Biot Model

The Biot model can accurately describe the frequency-dependent characteristics of the viscoelastic
materials. In Biot model, a series of mini-oscillator terms are used to describe the shear modulus
function Gv of the viscoelastic materials [29]. In the Laplace domain, its expression is [30]

sGv(s) = G∞
1 + n∑

i=1

ais
s + bi

 (29)

where G∞ represents the equilibrium value of the shear modulus. n is the number of the mini-oscillator
terms, {ai, bi}with i = 1, 2, 3, . . . n as positive constants. These parameters can be determined by the
following nonlinear curve fitting method.

In Equation (29), let, S = jw, one gets

Gv( jω) = G∞
1 + n∑

i=1

ai( jw)

( jw) + bi

 (30)

The nonlinear curve fitting function expression in the frequency domain can be written as

F(x) =
m∑

i=1

∣∣∣Gv(x, ωi) −G0(ωi)
∣∣∣2 = min (31)
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where Gv(x, ωi) is the Biot model with parameters to be determined, G0(ωi) is the measured complex
modulus value in the complex frequency domain or other viscoelastic material damping model
expressions obtained from experimental data, m is the number of the measured complex modulus
value, x with xi > 0, i = 1, 2, 3 · · · 2n + 1 is the parameters of the Biot model to be determined, and its
expression is

x1 = G∞; x2 = a1, x3 = a2, · · ·xn+1 = an; xn+2 = b1, xn+3 = b2, · · ·x2n+1 = bn (32)

Solving the above optimization problems, one can obtain the Biot model parameters of
viscoelastic materials.

Carrying on Laplace transform to Equation (28), one gets(
s2Me + Ke

e + sGv(s)Ke
v

)
∆e(s) = Fe(s) (33)

Substituting Equation (29) into Equation (33) and introducing the auxiliary dissipation coordinates

^
Zi(s) =

bi
s + bi

∆e(s), i = 1, 2, 3 · · ·N (34)

one can obtain the equation of motion of the sandwich plate elements incorporating the Biot model

~
M

..
q+

~
C

.
q+

~
Kq=

~
F (35)

where

~
M =


Me 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

,
~
C =


0 0 · · · 0
0 a1

b1
Λ · · · 0

...
...

. . .
...

0 0 · · ·
an
bn

Λ

,

~
K =


Ke

e + A
(
1 +

n∑
k=1

ak

)
−a1B · · · −anB

−a1BT a1Λ · · · 0
...

...
. . .

...
−anBT 0 · · · anΛ


, q =


∆e

Z1
...

Zn


,

~
F =


Fe

0
...
0



(36)

where A = G∞kv
v, ke

v=BvΛvBT
v , Λ = G∞Λv, B=BvΛ, Zj=BT

v
^
Zj, ( j = 1, 2, · · · , n), where Λv is a

diagonal matrix composed of the positive eigenvalues of the viscosity stiffness matrix kv
v, Bv is the

matrix with corresponding orthogonal eigenvectors as columns.
Equation (35) is the dynamic equation incorporating the Biot model of the sandwich plate element.

According to the general element integration method in the finite element theory, integrating the
physical coordinates X of the sandwich plate structure, one can obtain the overall dynamic equation of
the sandwich plate structure as follows

M
..
X+C

.
X+KX=F (37)

where M, C and K are the total mass, damping and stiffness matrices of the sandwich plate, and F is
the excitation force.

Obviously, Equation (37) is a general second-order, steady-state linear system dynamics equation.
It is very convenient to solve the natural frequency, damping and other modal parameters, which
makes the Biot model have good engineering application value.
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2.7. Non-Linear Eigenvalue Problem

After applying the Biot model, the structural dynamics equation contains the physical nonlinear
of the viscoelastic material, and the vibration is nonlinear, the eigenvalue problem is nonlinear as well.
Therefore, in order to solve this problem, Equation (37) needs to be decoupled and transformed from
the second-order differential equation to the first-order state equation.

Set y=
{
X

.
X
}T

,introduce auxiliary equation M
.
X−M

.
X=0, Equation (37) can be written as

¯
A

.
y+

¯
By=

¯
F (38)

where
¯

A=
[

C M
M 0

]
,

¯
B=

[
K 0
0 −M

]
,

¯
F=

[
F
0

]
(39)

In the free vibration, F=0, and the Equation (38) can be expressed as

¯
A

.
y+

¯
By=0 (40)

With the mathematical software MATLAB, it is easy to solve the eigenvalue problem of Equation
(40) to get the complex eigenvalue matrix:


. . .

λ
. . .

 =


λ1

λ∗1
. . .

λN

λ∗N


(41)

Then the natural frequency and loss factor are determined by [31]

ωN =

√
Im(λN)

2
−Re(λN)

2, ηN =
−2Re(λN)Im(λN)

Im(λN)
2
−Re(λN)

2 (42)

3. Numerical Simulation and Validation

Three cantilever sandwich plate structures with different lengths are considered here. Their
geometry and parameters are shown in Table 3. In reference [32], a series of experiments were
carried out on them to determine the mechanical properties of viscoelastic materials and the vibration
properties of the plates. In this section, the finite element method developed is used to analyze these
plates, and the first three natural frequencies and loss factors are obtained. The results are compared
with the experimental values to verify the finite element model in this paper.

Table 3. Geometric and material parameters of cantilever viscoelastic sandwich plate.

Material Properties Constraining Layer Base Plate Viscoelastic Layer

Young’s modulus(GPa) 68.7 68.7 Frequency-dependent
Density(kg/m3) 2690 2690 795
Poisson’s ratio 0.3 0.3 0.3

Thickness (mm) 3 3 2
Length (mm) L1 = 500, L2 = 800, L3 = 1000
Width (mm) 24 24 24



Materials 2020, 13, 2296 11 of 17

In Table 3, the elastic modulus of the viscoelastic materials are frequency-dependent and the
reference [32] experimentally determined their expressions as

E ∗ (ω) = ε+
αω2

(
−ω2 + iβω

)
−ω2 + iβω+ δ

(43)

where α = 5.26MPa, β = 55.59× 106s−1, δ = 6.98× 109s−2, ε = 0.58MPa.
According to Equation (43), one can get the measured complex modulus value G0(ωi) of the

viscoelastic materials, and then substituting them into Equation (31), by nonlinear curve fitting, and the
parameters of the Biot model can be obtained as shown in Table 4. Figures 5–7 show the comparison of
the fitted Biot model and the experimental value in reference [32]. The fitting of the real and imaginary
parts are shown in Figures 5 and 6, respectively. The fitting error is shown in Figure 7.

Table 4. The Biot model parameters of viscoelastic materials.

k G∞ ak bk

1
5.8× 105

2.8378 151.9889
2 0.0552 151.9900
3 2.6365 2.3122e6

It can be seen from Figures 5–7 that, when three micro-vibrators are used, the Biot model can well
simulate the modulus of viscoelastic materials. The fitting accuracy of real and imaginary parts is very
good. In a wide frequency band of 10 to 500 Hz, the fitting errors of the imaginary and real parts are
below 3%. This proves that the fitting method presented here is correct.

The finite element method presented this paper is used to calculate the first three order natural
frequencies and loss factors of the three sandwich plates with different lengths, respectively, and the
results are listed in Table 5. When calculating, all the plates are divided into 20 × 5 elements along
the length and width directions. All solving processes are completed by self-programming with
MATLAB software.
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It can be seen from Table 5 that, when the lengths of the sandwich plates are increased from
500to 1000mm, the natural frequencies and loss factors of the plate system are significantly changed,
which indicates that the vibration characteristics of the sandwich plate structure are very sensitive to
the length.

In addition, as can be seen from Table 5, in the estimation of the natural frequencies, the accuracy
of the finite element model in this paper for all three plates is less than 3%, the minimum error is 1.32%,
the maximum error is 2.34%, and the average error is 1.88%. In the structural loss factor estimation,
the prediction accuracy of the model is below 4%, the minimum error is 2.10%, the maximum error is
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3.40%, and the average error is 2.62%. Therefore, the method in this paper can be considered to be
accurate and effective.

Table 5. The first three natural frequencies and loss factors of viscoelastic sandwich plates of different
lengths: comparison of experimental values and numerical simulation results.

Length Modal
Order

Experimental
Results [32] Results of the Finite Element Method of This Paper

Natural
Frequency

(Hz)

Loss
Factor

Natural
Frequency

(Hz)
Error (%) Loss

Factor Error (%)

L1=500mm
1 16.95 0.1748 17.20 1.77 0.1790 2.40
2 79.33 0.1350 80.51 1.48 0.1382 2.37
3 184.44 0.0765 187.80 1.82 0.0791 3.40

L2=800mm
1 7.55 0.1770 7.65 1.32 0.1818 2.71
2 37.13 0.1768 38.00 2.34 0.1807 2.21
3 93.18 0.0788 95.52 2.51 0.0808 2.54

L3=1000mm
1 5.05 0.1434 5.12 1.38 0.1431 2.10
2 24.54 0.1508 25.03 2.00 0.1540 2.12
3 60.13 0.1754 61.54 2.34 0.1819 3.71

In addition, the reference [32] also provides a GHM-based sandwich finite element model to
obtain the first three natural frequencies of the three sandwich structures. In order to further verify the
finite element of this paper, the calculation results of the two numerical methods are listed in Table 6.

Table 6. Comparison of the numerical simulation results of the GHM-based sandwich finite element
model and the finite element method of this paper.

Length Modal Order

Results of the GHM-Based
Sandwich Finite Element

Model [32]

Results of the Finite Element
Method of This Paper

Natural Frequency (Hz) Natural
Frequency (Hz) Error (%)

L1=500mm
1 14.86 17.20 13.6
2 88.75 80.51 10.2
3 166.83 187.80 11.2

L2=800mm
1 6.61 7.65 13.4
2 32.05 38.00 15.6
3 83.16 95.52 12.4

L3=1000mm
1 4.32 5.12 15.6
2 22.88 25.03 8.6
3 53.66 61.54 12.8

It can be seen from Table 6 that the differences between these results are inferior to 15.60%.
Such differences may be explained by the quality of the curve fitting. The GHM curve fitting of
the reference [32] is four parameters, and the Biot model curve fitting presented this paper is seven
parameters. In general, in terms of calculation accuracy, the results of the finite element method of this
paper better agree with the experimental values than the GHM-based sandwich finite element model
of the reference [32].

4. Experimental Validation and Comparison

A clamped-free sandwich plate is used to validate the accuracy of the FE model. Figure 8 shows
the experimental set-up. The sandwich plate is 280 mm long and 200mm wide. The constraining layer
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is an aluminum sheet. The base plate is 45 steel. The core layer is ZN-1 viscoelastic materials made in
the Chinese Aerospace Research Institute of Materials & Processing Technology. The physical and
geometrical parameters of the sandwich plate are shown in Table 7.Materials 2020, 13, x FOR PEER REVIEW 15 of 18 
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Table 7. Physical and geometrical properties of the base plate, the viscoelastic layer and the
constraining layer.

Material Properties Constraining Layer Base Plate Viscoelastic Layer

Young’s modulus(GPa) 71 210 Frequency-dependent
Density(kg/m3) 2710 7850 1000
Poisson’s ratio 0.3 0.3 0.3

Thickness (mm) 1 1 2

The sandwich plate is excited by an impact hammer with a hard hammerhead. The top
displacement signal of the plate is measured by a laser displacement sensor (LK-G500, Keyence
Corporation, Osaka, Japan) at the middle-end of the test plate which has an accuracy of 0.005 µm
over a frequency band between 0 and 392 KHz. The laser displacement sensor is equipped with data
acquisition software named LK-Navigator which is installed on the computer. Through the acquisition
software, one can issue commands to the controller to control the sampling points and the sampling
frequency. In the experiment, the sampling points are set to 50,000 and the sampling frequency is set
to 5000Hz.

During the experiment, first fix the laser displacement sensor on a liftable bracket, then connect
the laser displacement sensor and its controller (the controller is connected to the DC 24V power
supply), and the controller is connected to the computer. After the power is turned on, adjust the
distance between the laser displacement sensor and the sandwich plate and the horizontal position of
the sensor, and ensure that the distance of the laser displacement sensor and the sandwich plate is
within the specified range, so that the indicator light of the sensor lights normally, and the controller
screen displays green numbers.

Open the measurement software in the computer, and then hit the different positions of the
sandwich plate with the hammer. The software will automatically collect the displacement and time
data measured by the laser displacement sensor. Repeat five times at each position and average the
measured data to consider the variability in the measurements. Finally, the Matlab software is used to
process the experimental data, the natural frequency is obtained by Fourier transform, and the loss
factor value is obtained by the half power method.

The theoretical modal parameters, the first two natural frequencies and associated loss factors,
evaluated by the finite element method, are experimentally verified at 30 ◦C. In the theoretical
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calculations, the Biot model parameters of the ZN-1 viscoelastic material in Table 7 are taken from
reference [33]. The sandwich plate is divided into 10×8elements. The natural frequencies and associated
loss factors of the first two modes are presented in Table 8.

Table 8. Natural frequencies and loss factors of the sandwich plate.

Mode
Order

Experimental Finite Element Model

Natural
Frequencies
ω(Hz)

Loss
Factors
η

Natural
Frequencies
ω(Hz)

Error
(%)

Loss
Factors
η

Error
(%)

1 24.73 0.218 25.21 1.9 0.228 4.6
2 69.17 0.098 71.00 2.6 0.102 4.1

The results presented in Table 8 show a good agreement between the theoretical predictions and
experimental values for the first two natural frequencies and loss factors. The average error of the
natural frequencies is 2.25%, and all errors are below 3%. The average error of the loss factors is 4.75%,
and all errors are below 5%. The major reasons for the error are twofold: first, it is difficult to achieve
strict clamping in the experiment; second, some simplified assumptions are made in the modeling
process. However, in general, the errors are within the acceptable range, which can prove that the
finite element method presented is correct and effective.

5. Conclusions

A finite element modeling is developed for the sandwich plate with a frequency-dependent
viscoelastic material core. The elements are three-layer composite quadrilateral plate elements bounded
by four nodes with seven degrees of freedom per node. The Biot model is used to describe the frequency
dependent properties of the viscoelastic materials. The method to determine the parameters of the
Biot model is presented. The Biot model is combined into the finite element dynamic equation of
the sandwich plate structure by introducing auxiliary coordinates. The new dynamic equation is
transformed into a second-order linear system form by matrix transformation, which reduces the
difficulty of solving the conventional nonlinear system equation. The finite element method is verified
by numerical simulation and experimental research. The results show that the finite element model has
a good accuracy in predicting the natural frequencies and loss factors of the sandwich plate structures.

At present, this method is limited to the viscoelastic sandwich plate structure with isotropic
material layers. In the next step, the method will be improved to make it suitable for a viscoelastic
sandwich plate with anisotropic materials.
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