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A B S T R A C T

Rationale and objectives: To analyze morphological changes in patients with COVID-19-associated
pneumonia over time, a nonrigid registration technique is required that reduces differences in
respiratory phase and imaging position and does not excessively deform the lesion region. A
nonrigid registration method using deep learning was applied for lung field alignment, and its
practicality was verified through quantitative evaluation, such as image similarity of whole lung
region and image similarity of lesion region, as well as visual evaluation by a physician.
Materials and methods: First, the lung field positions and sizes of the first and second CT images
were roughly matched using a classical registration method based on iterative calculations as a
preprocessing step. Then, voxel-by-voxel transformation was performed using VoxelMorph, a
nonrigid deep learning registration method. As an objective evaluation, the similarity of the
images was calculated. To evaluate the invariance of image features in the lesion site, primary
statistics and 3D shape features were calculated and statistically analyzed. Furthermore, as a
subjective evaluation, the similarity of images and whether nonrigid transformation caused un-
natural changes in the shape and size of the lesion region were visually evaluated by a
pulmonologist.
Results: The proposed method was applied to 509 patient data points with high image similarity.
The variances in histogram characteristics before and after image deformation were confirmed.
Visual evaluation confirmed the agreement between the shape and internal structure of the lung
field and the natural deformation of the lesion region.
Conclusion: The developed nonrigid registration method was shown to be effective for quantita-
tive time series analysis of the lungs.
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1. Introduction

Coronavirus disease 2019 (COVID-19) has infected more than 670million people worldwide as of January 2023, and the number of
deaths has reached 6.8 million, with no signs of abatement [1]. Reverse transcription polymerase chain reaction (RT‒PCR) tests [2,3]
are used to diagnose the presence of COVID-19 infection, but their sensitivity and specificity vary depending on the timing and
technique of the test, and their inability to diagnose the presence of COVID-19-related pneumonia is problematic. On the other hand,
chest computed tomography (CT) has been reported to have a high diagnostic rate for COVID-19-related pneumonia, exceeding 80 %
[4], and many previous reports have described the usefulness of CT and its combination with deep learning to improve the pneumonia
diagnosis rate [5].

However, most of these reports used cross-sectional CT and clinical data in the early stages of infection, and there have been few
reports of COVID-associated pneumonia using longitudinal data. In other respiratory diseases, for example, chronic progressive res-
piratory diseases such as chronic obstructive pulmonary disease (COPD) and idiopathic lung fibrosis, image analysis using CT over time
has been reported, including the relationship between morphological changes over time (such as emphysema, airway lesions, vascular
lesions, and interstitial lesions) and physiological changes and prognosis [6,7], and the potential utility of longitudinal analysis in
COVID-19 has also been presented [8].

To analyze changes over time in the CT image of the lung field, linear transformation such as rigid-body transformation and affine
transformation is not sufficient. Instead, nonrigid registration processing is required to account for differences in inspiratory volume
and posture during examination. This is a very important process not only for quantitative comparative analysis of images on a voxel-
by-voxel basis but also for visual diagnosis by physicians in which images are displayed on a slice-by-slice basis and the same slice
needs to be provided quickly and accurately. Nonrigid registration methods are an important preprocessing step in various medical
image processing tasks and have been widely studied [9–11]. However, the number of parameters to be obtained is large, and classical
methods require considerable processing time. In recent years, many methods using deep learning have been proposed [12–17],
enabling highly accurate positioning in a few seconds. In particular, VoxelMorph [12] is an unsupervised learning method that
transforms a pair of images to be aligned into a voxel translation vector map, enabling fast and accurate alignment. The code is
available on GitHub [18], making it easy for radiologists and researchers to test it.

Based on the above-mentioned advantages, we use VoxelMorph for image registration between two CT images of COVID-19 pa-
tients scanned during hospitalization. However, the direct registration using VoxelMorph is prone to generate unexpected distortion in
the image. VoxelMorph is a method for obtaining local deformations, and for highly accurate registration, a proper linear translation
must be performed as preprocessing to align the global position. In fact, the authors who developed VoxelMorph assumed that two
images to be registered are affinely aligned as a preprocessing [12]. Therefore, following the original paper of VoxelMorph, we employ
a two-step registration: affine transformation to align the rough lung field shape and position and VoxelMorph-based transformation to
align the detailed structures.

It should be evaluated both objectively and subjectively if the proposed approach generates reasonably deformed images. CT
images of COVID-19 patients over time are predicted to show large differences in the distribution of lesions in the lung fields, and the
effect of such differences on alignment accuracy has not been clarified. The registration process should register the outer shape of the
lung, bronchi and main vascular structure inside the lung between the first and second CT images. On the other hand, the fine structure
should not be deformed too much in this process, especially in the lesion region. It is possible that the size and shape of a lesion will be
highly different between the first and second CT images as the disease progresses. Such disease-oriented changes in lesions should
remain. Therefore, it is necessary to objectively evaluate two factors: (1) the whole image similarity after alignment and (2) the
invariance of the lesion region. The whole image similarity was evaluated by four different indices: zero mean normalized cross-
correlation (ZNCC), structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and dice coefficient. For lesion invariance, we
evaluated the similarity of the lesion region, specifically by a number of first-order statistics calculated from histograms of voxel
intensities, and 3D shape features of lesion region in the lung. Finally, to subjectively verify whether the transformed lesion region
shows clinically practical performance, a visual evaluation of the shape concordance and lesion region constancy was performed by a
pulmonologist on a set of randomly selected samples.

Abbreviation list

Chronic obstructive pulmonary disease COPD
Coronavirus disease 2019 COVID-19
Computed tomography CT
Extracorporeal membrane oxygenation ECMO
High-flow nasal cannula HFNC
Peak signal-to-noise ratio PSNR
Reverse transcription polymerase chain reaction RT‒PCR
Structural similarity SSIM
Zero mean normalized cross-correlation ZNCC
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2. Materials and methods

2.1. Study subjects

We enrolled 819 consecutive COVID-19 patients who were hospitalized and treated at Aoba Municipal Hospital from February
2020 to September 2021. The inclusion criterion for this retrospective study was patients with symptoms suspicious for COVID-19 who
were diagnosed with COVID-19 during the COVID-19 outbreak. The patients underwent RT‒PCR tests of nasopharyngeal swab
samples to establish a COVID-19 diagnosis. Patients with a positive PCR test result and a request for treatment and hospitalization were
enrolled. During hospitalization, a first CT scan was performed at admission except for some patients, and a second CT scan was
performed to follow the progression of pneumonia, including exacerbations. After excluding subjects under 20 years of age (n = 31),
subjects who did not undergo the first CT scan (n = 32), subjects with data mismatches (n = 14), pregnant individuals (n = 3),
transferred patients (n = 1), and subjects who did not undergo the second CT scan (n = 229), 509 patients were enrolled (Fig. 1).

This retrospective multicenter study was approved by the Institutional Review Boards of Chiba University (No. 4074) and Aoba
Municipal Hospital (No. 20200301). The requirement for written informed consent was waived. To avoid any potential breach of
patient confidentiality, the data were deidentified and had no linkage to the researchers.

2.2. Details of CT image data

The details of the first and second CT images used in this study are as follows. At the first CT scan, the patients underwent chest CT
using 80-row CT scanners (Siemens, Erlangen, Germany) and were scanned from the thoracic inlet to the diaphragm during full
inspiration without contrast enhancement. The CT settings were as follows: 120 kV, CT automatic exposure control, and a gantry
rotation time of 0.5s. All images were reconstructed using a soft reconstruction kernel (I40f) and a sharp reconstruction kernel (B70f)
with a slice thickness of 3 mm and a reconstruction interval of 3 mm. At the second CT scan, the patients underwent chest CT using 64-
row CT scanners (Aquilion Precision, Canon Medical Systems, Otawara, Tochigi, Japan). The CT settings on the second scan were the

Fig. 1. Flowchart of the patient population.
Note: COVID-19 = coronavirus disease 2019. Of the 819 participants, 81 were excluded because of the following reasons: age <20 years (n = 31),
pregnancy (n = 3), no CT scans (n = 32), hospital transfer (n = 1), and data mismatch (n = 14). Another 229 patients were excluded because they
had not undergone longitudinal scans.
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same as those on the first scan. All images were reconstructed using a soft reconstruction kernel (FC13) and a sharp reconstruction
kernel (FC53) with a slice thickness of 3 mm and a reconstruction interval of 3 mm.

2.3. Registration method

In the proposed process, the first and second CT images of the same patient were used as inputs. Because the effect of scanner
differences appeared in the high-frequency component between the first and the second CT images, a Gaussian filter (σ = 1.0) was
applied as a preprocessing step to reduce the differences in CT scanners. The images were then cropped with a rectangle around the
lung fields and resized to an image size of 256 × 256× 128 voxels. As mentioned in the introduction, two-step registration technique
was applied to the second CT image. As mentioned in the introduction, two types of registration techniques were considered for the
second CT images as a preprocess. One was rigid body transformation, which derives 6 parameters consisting of rotation and trans-
lation, and the other was affine transformation, which derives 15 parameters including scale change and shear deformation. Since the
lung field is a region that is scaled and deformed by breathing, we chose the affine transformation. VoxelMorph was then applied to the
output of the affine transformation. The details of each process are as follows.

2.3.1. 3D affine transformation
A 3D affine transformation was performed to match the differences in posture and rough lung field shape during imaging. The 3D

translations are represented as tx, ty,and tz; the rotations about each axis are represented as rx,ry,and rz; the scaling about each axis is
represented as sx,sy,and sz; and the 6 parameters responsible for the 3D shear deformation are represented as hxy,hyx,hxz,hzx,hyz,and hzy.
A total of 15 parameters were estimated. If the 3D coordinates before deformation are expressed as (i, j, k,1) using homogeneous
coordinates, the coordinates after deformation (́i, j́, ḱ,1) are expressed as follows using the product of homogeneous transformation
matrices:
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The Nelder‒Mead method [19], which does not require the derivation of derivatives, was used to estimate the set of parameters
that maximized the amount of mutual information [20] between the first and second CT images transformed using Equation (1). The
above positioning method was implemented in C++.

Fig. 2. Network architecture for VoxelMorph.
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2.3.2. Nonrigid registration by VoxelMorph
The network architecture of VoxelMorph is shown in Fig. 2. The 3D-UNet structure was used to transform an input pair of first CT

image and second CT image after affine transformation into a 3D deformation vector map. Nonrigid registration was completed by
applying this vector map shift to each voxel in the second CT image. In addition to image similarity, the complexity of the trans-
formation vector was used as the loss to enforce a smooth deformation. Unsupervised learning with VoxelMorph was performed on
pairs of first CT images and second CT images with 3D affine transformations. VoxelMorph is a framework uploaded to GitHub by the
original developer [17].

2.3.3. Experimental settings
Of the 509 datasets, 409 were used for training, and the remaining 100 were used for accuracy tests. In VoxelMorph training, loss

was defined by a weighted sum of cross-correlation and gradient loss. Preliminary experimental validation showed that setting the
weights to 1.0, based on the optimal value proposed by Balakrishnan G et al. [12], provided the best balance between accuracy and
stability. The training epoch was 120 using a workstation equipped with a GeForce RTX3090 (NVIDIA Corp., Santa Clara, CA, USA).

The proposed process was followed to deform the lungs nonrigidly, and the lung field shape in the second CT image was registered
to the first CT image.

2.4. Evaluation

The learned parameters were applied to the evaluation data for accuracy verification. The Gaussian filter applied as a preprocessing
step to the training data was not applied to the evaluation data to preserve imaging features.

As mentioned earlier, we evaluated the image registration result in both objective and subjective ways. The details of the evaluation
method are described in this subsection. Fig. 3 shows the scheme of the objective evaluation. Note that while the whole image sim-
ilarity is evaluated between the first CT (Fig. 3 (a)) and the second CT image after deformation (Fig. 3 (c, d)), the lesion similarity is
evaluated between the original second CT image (Fig. 3 (b)) and the second CT image after deformation (Fig. 3 (d)).

2.4.1. Whole image similarity
In Fig. 3, the solid line indicates the similarity of the affine-transformed second CT image (Fig. 3 (c)) and the VoxelMorph-

transformed second CT image (Fig. 3 (d)) to the first CT image (Fig. 3 (a)). The ZNCC, PSNR, and SSIM values were derived as the
pixel similarity. In addition, pulmonary vascular regions were extracted using − 720 HU as the threshold [21], and anatomical shape
similarity was calculated using dice coefficients.

2.4.2. Invariance of the lesion region
For the analysis, the area above − 500 HU in the inner lung field was extracted by thresholding as a high-attenuation area and used

as a lesion mask [22]. This mask was extracted from the original 2nd CT image (Fig. 3 (b)) and the 2nd CT image after applying affine
+ VoxelMorph (Fig. 3 (d)). To confirm the invariance of the lesion regions, the first-order statistics calculated from the histogram of
voxel intensities and the 3D shape features of the extracted lesion regions were measured using Pyradiomics (dotted line in Fig. 3). If
the respiratory phase is significantly different, the CT values of the lung parenchyma region will change, resulting in a change in the
histogram distribution. However, the COVID-19 CT images used in this study were all taken in the maximal inspiratory state, and it was
assumed that such effects were minimal.

The Python package Pyradiomics [23] was used to extract image features from the lesion region within the original second CT
images and the second CT images after nonrigid registration, and theWilcoxon signed-rank test was performed for each feature to see if
statistically significant differences occurred.

Fig. 3. Objective evaluation scheme.
Note: First CT images (a) and second CT images (c) and (d) were compared.The second CT images were generated from the original image (b), an
image with affine transformation (c), and an image with affine transformation + VoxelMorph (d).Comparisons were made with the first CT images.
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2.4.3. Visual evaluation by a pulmonologist
Scoring of emphysema and interstitial pneumonia has been reported for the quantitative assessment of observers. Referring to

previous reports [24], in the present study, an evaluation was performed on the agreement rate of some typical structures in the lung
field.

Visual evaluation by a pulmonologist (NK experience>20 years) was performed on the data of 50 randomly selected cases for
evaluation. Two types of evaluation items were used. One was shape congruency, which was assessed in three cross sections of the
lower pulmonary vein inlet, tracheal branch, and upper end of the arch, which are commonly used in the evaluation of clinical images.

The specific evaluation items were whether (1) the running direction and branching of pulmonary vessels and (2) the position of
bronchi in the lung field were consistent within the cross section on the first and second CT images. The areas of congruence were
evaluated at four levels: less than 20 %, 20 %–50 %, 50 %–80 %, and 80 % or higher.

The other evaluation item was whether there was any significant deformation in the size, shape or texture of the lesion, which
indicated COVID-19-related pneumonia, between the original second CT image and the registered second CT image within the same
three cross sections. If the morphing process causes excessive changes in the size, shape or texture of the lesion, it will have a significant
impact on diagnostic accuracy, which is undesirable. The visual agreement was evaluated at four levels: less than 20 % (disagree), 20
%–50 %, 50 %–80 %, and 80 % or higher (agree).

3. Results

The demographics of the participants are shown in Table 1. The average patient age was 54 years, males predominated, and the
average time interval from symptom onset to the first CT scan was 5.8 days and from onset to the second CT scan was 8.8 days. The
number of patients receiving oxygen was 213 (41.9 %), and 24 (4.7 %) were on oxygenation at the time of admission. The number of
patients with high-flow nasal cannula (HFNC) therapy was 68 (13.4%). Eighteen patients (3.5 %) were intubated. Two patients needed
extracorporeal membrane oxygenation (ECMO). Thirteen patients did not survive.

3.1. Nonrigid registration

An example of the results of applying nonrigid deformation is shown in Fig. 4. Panels (a)-(d) show slices with identical image
coordinates. In Fig. 4 (a) and 4 (b), which are original CT pairs, there are significant differences in the position, external shape, and
internal structure of the lungs. In Fig. 4 (c), the affine transformation improves the rough shape of the lungs in each axial, coronal, and
sagittal slice, as well as the similarity of their positions in the images. Nevertheless, there are some differences in the vessel direction in
the right lung in Axial 2, bronchial shape in the coronal slice, and vessel direction in the lower right lung (sagittal). In Fig. 4 (d), it is
shown that VoxelMorph greatly improves the similarity of microstructures within the lung field as described above. Furthermore, in
some cases, such as the lower right lung in Axial 3 of Fig. 4, lesions that were not present on the first CT image but are present on the
second CT image may be seen due to progression of the disease stage. Note that such areas are not lost due to over-alignment with the
first CT, but remain after registration.

3.2. Evaluation of image similarity

The similarity between the first CT images and the second CT images with affine transformation and with VoxelMorph were
evaluated using four indices: ZNCC (Fig. 5 (a)), SSIM (Fig. 5 (b)), PSNR (Fig. 5 (c)), and dice coefficient (Fig. 5 (d)). All indices were
significantly superior to that when only affine transformations were applied.

Table 1
Patient characteristics and disease severity.

(n = 509)

Age 54 (20–97)
Gender (male) 333 (65.4 %)
BMI 25.2 ± 4.4
Symptom onset to Admission CT (days) 5.8 ± 3.2
Symptom onset to discharge CT (days) 14.6 ± 6.1

Disease Severity

oxygen supplementation 213 (41.9 %)
oxygen supplementation 24 (4.7 %)
at admission
High-flow nasal oxygen 68 (13.4 %)
intubation 18 (3.5 %)
ECMO 2 (0.0/39 %)
Survival/death 496 (97.4 %)/13 (2.6 %)

Note: BMI = body mass index, ECMO = extracorporeal membrane oxygenation.

Y. Iwao et al.
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3.3. Verification of lesion region invariance

Fig. 6 lists the first-order statistics and 3D shape features of lesion region obtained from the second CT images before and after the
nonrigid registration, and the p values in the Wilcoxon signed-rank test were used to evaluate significant differences. First-order
statistics refers to 19 features derived from statistics of voxel intensities in an image, such as the maximum, minimum, median, and
entropy. 3D shape features include volume, maximum length, sphericity, etc.

No significant differences were confirmed, as all of the features had p values well above 0.05, which is the criterion for determining
significant differences. This suggests that the characteristics of the lesion region did not change significantly before and after nonrigid
registration.

3.4. Visual evaluation by a pulmonologist

Fig. 7 shows the results of visual evaluation by a pulmonologist.
Approximately 80 % of the data for both shape (Fig. 7 (a)) and lesion similarity (Fig. 7 (b)) showed the best performance in all three

slices evaluated, and the other slices showed the next best performance.
The percentage of a score of 3 (agreement of 80 % or higher) for agreement of lung structure and pneumonia exceeded 90 %. The

percentage of a score of 2 (agreement between 50 and 80 %) was less than 10 %.
The causes of a score of 2 included individuals with poor breath-holding (n = 1) and individuals with severe pneumonia and

considerably low lung field permeability (n = 1).

4. Discussion

The processing developed in the present study enabled highly accurate nonrigid registration in lung fields with various de-
formations. Visual evaluation clearly showed that the lung structures, such as the distribution of pulmonary vessels and bronchi, were
well matched.

Fig. 4. The same-level slices for the upper end of the arch (Axial 1), trachea (Axial 2), and lower pulmonary vein inlet (Axial 3) are shown ((a)–(b)).
The tracheal branch (coronal) and right lung center (sagittal) of the aorta in the first CT image are shown for each image ((b)–(d)).
Note: First CT image (a); second CT image (b); affine alignment result of second CT image (c); VoxelMorph applied to second CT image (d).

Y. Iwao et al.
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The median values for each quantitative evaluation were 0.87 for ZNCC, 0.80 for SSIM, and 22 dB for the PSNR, all showing very
high similarity. The improvement in similarity from the affine-transformed state to nonrigid registration was also visually and sta-
tistically evident. On the other hand, several results showed values as low as 0.6 for ZNCC, 0.5 for SSIM, and 13 for the PSNR. A typical
example is shown in Fig. 8. As Fig. 8 (a) and 8 (b) show, one of the reasons for the decrease in image similarity was the increase in the
number of lesion sites due to the progression of the disease stage. The increase in lesions can be observed in Fig. 8 (c) after affine
transformation and Fig. 8 (d) with non-rigid deformation. Actually, the median value of the dice coefficient for anatomical similarity
was also as low as 0.7. We speculated that the structure of pulmonary vessels obtained by the simple thresholding method might be
useful for evaluating anatomical similarity. However, the simple thresholding method could hardly separate pulmonary vessels from
lung field lesions. Due to the progression of the disease, it was difficult to clearly evaluate the similarity of pulmonary vessels in an
objective way. Nevertheless, the similarity of the internal structures was subjectively confirmed by the fact that some of the structures
were consistent with those in the first CT image, such as the interlobar cleft that can be seen in the upper right lung of Axial 2, the
distribution of pulmonary vessels in the middle right lung of Axial 3, and the interlobar cleft in the coronal and sagittal slices.
Interestingly, when this alignment process was applied to COVID-19 patients with different stages and lesions, there was no significant
lesion loss or enhancement in visual assessment, although there was some change in shape. This was also evident from the analysis of
changes in radiomics first-order features. None of the first-order features and 3D shape features showed a significant change in trend
before or after registration.

Our results indicate that the lung field nonrigid alignment process is capable of highly accurate alignment even in patients with
COVID-19 pneumonia and retains the image features that are necessary for observation of changes over time. Since the beginning of
the pandemic, numerous cross-sectional studies on CT analysis of COVID-19-related pneumonia have been reported [25–27]. There
have also been several reports on morphologic changes over time [28,29]. Longitudinal morphological changes need to be elucidated
for COVID-19. The proposed method will be useful for the quantitative assessment of those changes.

In COPD and idiopathic pulmonary fibrosis, morphological changes over time and their association with prognosis have been
reported. The majority of longitudinal studies have analyzed lung parenchyma with conventional methods after confirming that total

Fig. 5. Image similarity evaluation results between the first CT image and affine alignment or affine + VoxelMorph results. Comparison of zero
mean normalized cross-correlation (a), comparison of structural similarity (b), comparison of the peak signal-to-noise ratio (c), and dice coefficient
of pulmonary vascular region (d).

Y. Iwao et al.
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lung area or total lung volume did not change [30]. In COPD, nonrigid registration processing using inspiratory and expiratory images
has been proposed for morphological and longitudinal analyses of disease progression [31–33]. When examining morphological
changes over time, it is necessary to correct the changes in the images caused by inspiratory level and body position at the time of
imaging.

The present method may be applicable to the image evaluation of these chronic progressive diseases and the assessment of disease
progression. The application of CT images to multiple time phases containing lesion changes, such as in COVID-19-associated
pneumonia, is likely to be more technically challenging than the application of CT images of inspiration and expiration in the same
time phase. The data used in the present study included data with different respiratory dynamics, but visual assessment by an expert
physician allowed registration without major problems. The maximum and average amount of transformation by VoxelMorph were
about 31 mm and 2 mm, respectively. The small average value means that the whole region is roughly registered by the affine

Fig. 6. P value summary of the Wilcoxon signed-rank test for first order statistics and 3D shape features before and after nonrigid registration in the
lung lesion region.

Fig. 7. Summary of visual evaluation results in the three axial level slices.
Similarity of the structure (a). Similarity of lesion region shape, size, and texture of COVID-19 pneumonia (b).

Y. Iwao et al.
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transformation. On the other hand, the maximum amount of transformation means that the VoxelMorph allows the local large
movements in registration. In the post pandemic era, the proposed method may also be useful for longitudinal morphological analysis
of chronic respiratory diseases.

This study had several limitations. First, this was a retrospective study. Our data were obtained from a relatively small number of
participants recruited from a single institution. Second, data on treatment and vaccination for COVID-19 infection were not included in
the current study. These preliminary results should be confirmed in a larger multicenter longitudinal cohort.

5. Conclusion

We applied VoxelMorph, a nonrigid registration method using deep learning, to time series chest CT images and demonstrated that
it could achieve highly accurate registration. The results also showed that there was no significant change in image features before and
after deformation, indicating that the method can be applied to time series analysis.
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[16] B.D. de Vos, F.F. Berendsen, M.A. Viergever, H. Sokooti, M. Staring, I. Ǐsgum, A deep learning framework for unsupervised affine and deformable image
registration, Med. Image Anal. 52 (2018) 128–143, https://doi.org/10.1016/j.media.2018.11.010.

[17] X. Yang, R. Kwitt, M. Styner, M. Niethammer, Quicksilver: fast predictive image registration – a deep learning approach, Neuroimage 158 (2017) 378–396,
https://doi.org/10.1016/J.NEUROIMAGE.2017.07.008.

[18] GitHub - voxelmorph/voxelmorph: Unsupervised Learning for Image Registration, (n.d.). https://github.com/voxelmorph/voxelmorph (accessed February 8,
2023).

[19] J.A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313, https://doi.org/10.1093/comjnl/7.4.308.
[20] P. Viola, W.M. Wells III, Alignment by maximization of mutual information, Int. J. Comput. Vis. 24 (1997) 137–154, https://doi.org/10.1023/A:

1007958904918.
[21] S. Matsuoka, G.R. Washko, T. Yamashiro, R.S.J. Estepar, A. Diaz, E.K. Silverman, E. Hoffman, H.E. Fessler, G.J. Criner, N. Marchetti, S.M. Scharf, F.J. Martinez,

J.J. Reilly, H. Hatabu, Pulmonary hypertension and computed tomography measurement of small pulmonary vessels in severe emphysema, Am. J. Respir. Crit.
Care Med. 181 (2010) 218–225, https://doi.org/10.1164/rccm.200908-1189OC.

[22] P. Klapsing, P. Herrmann, M. Quintel, O. Moerer, Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute
respiratory distress syndrome—a comparative diagnostic study, J. Crit. Care 42 (2017) 184–191, https://doi.org/10.1016/j.jcrc.2016.11.001.

[23] pyradiomics, (n.d.). https://pyradiomics.readthedocs.io/en/latest/(accessed February 8, 2023).
[24] A. Araiza, M. Duran, C. Patiño, P.E. Marik, J. Varon, The Ichikado CT score as a prognostic tool for coronavirus disease 2019 pneumonia: a retrospective cohort

study, J Intensive Care 9 (2021), https://doi.org/10.1186/s40560-021-00566-4.
[25] Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, W. Ji, Sensitivity of chest CT for COVID-19: comparison to RT-PCR, Radiology 296 (2020) E115–E117,

https://doi.org/10.1148/radiol.2020200432.

Y. Iwao et al.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
https://doi.org/10.1016/J.JIAC.2020.05.002
https://doi.org/10.1136/JCLINPATH-2020-206972
https://doi.org/10.1148/RADIOL.2020200432
https://doi.org/10.1007/S00259-020-05075-4
https://doi.org/10.1164/RCCM.201711-2174OC
https://doi.org/10.1164/RCCM.201711-2174OC
https://doi.org/10.1136/thoraxjnl-2021-218288
https://doi.org/10.1007/s11604-023-01466-3
https://doi.org/10.1016/J.NEUROIMAGE.2008.12.037
https://doi.org/10.1016/J.NEUROIMAGE.2010.09.025
https://doi.org/10.1016/J.NEUROIMAGE.2012.01.021
https://doi.org/10.1109/TMI.2019.2897538
https://doi.org/10.1117/12.2292443
https://doi.org/10.1117/12.2292443
https://doi.org/10.1007/978-3-319-66182-7_31
https://doi.org/10.1007/978-3-319-66182-7_31
https://doi.org/10.1007/978-3-319-66182-7_27
https://doi.org/10.1016/j.media.2018.11.010
https://doi.org/10.1016/J.NEUROIMAGE.2017.07.008
https://github.com/voxelmorph/voxelmorph
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1023/A:1007958904918
https://doi.org/10.1023/A:1007958904918
https://doi.org/10.1164/rccm.200908-1189OC
https://doi.org/10.1016/j.jcrc.2016.11.001
https://pyradiomics.readthedocs.io/en/latest/
https://doi.org/10.1186/s40560-021-00566-4
https://doi.org/10.1148/radiol.2020200432


Heliyon 10 (2024) e37272

12

[26] D. Colombi, F.C. Bodini, M. Petrini, G. Maffi, N. Morelli, G. Milanese, M. Silva, N. Sverzellati, E. Michieletti, Well-aerated lung on admitting chest CT to predict
adverse outcome in COVID-19 pneumonia, Radiology 296 (2020) E86–E96, https://doi.org/10.1148/radiol.2020201433.

[27] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in
China: a report of 1014 cases, Radiology 296 (2020) E32–E40, https://doi.org/10.1148/radiol.2020200642.

[28] A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus
disease 2019 (COVID-19): relationship to duration of infection, Radiology 295 (2020) 685–691, https://doi.org/10.1148/radiol.2020200463.

[29] F. Pan, T. Ye, P. Sun, S. Gui, B. Liang, L. Li, D. Zheng, J. Wang, R.L. Hesketh, L. Yang, C. Zheng, Time course of lung changes at chest CT during recovery from
Coronavirus disease 2019 (COVID-19), Radiology 295 (2020) 715–721, https://doi.org/10.1148/radiol.2020200370.

[30] T. Shin, N. Kawata, Y. Tada, J. Ikari, Y. Matsuura, S. Matsuoka, S. Matsushita, N. Yanagawa, Y. Kasahara, K. Tatsumi, Longitudinal changes in structural
abnormalities using MDCT in COPD: do the CT measurements of airway wall thickness and small pulmonary vessels change in parallel with emphysematous
progression? International Journal of COPD 12 (2017) 551–560, https://doi.org/10.2147/COPD.S121405.

[31] C.J. Galbán, M.K. Han, J.L. Boes, K.A. Chughtai, C.R. Meyer, T.D. Johnson, S. Galbán, A. Rehemtulla, E.A. Kazerooni, F.J. Martinez, B.D. Ross, Computed
tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression, Nat. Med. 18 (2012) 1711–1715, https://
doi.org/10.1038/nm.2971.

[32] A.L. Young, F.J.S. Bragman, B. Rangelov, M.K. Han, C.J. Galbán, D.A. Lynch, D.J. Hawkes, D.C. Alexander, J.R. Hurst, J.D. Crapo, E.K. Silverman, B.J. Make, E.
A. Regan, T. Beaty, F. Begum, P.J. Castaldi, M. Cho, D.L. DeMeo, A.R. Boueiz, M.G. Foreman, E. Halper-Stromberg, L.P. Hayden, C.P. Hersh, J. Hetmanski, B.
D. Hobbs, J.E. Hokanson, N. Laird, C. Lange, S.M. Lutz, M.L. McDonald, M.M. Parker, D. Qiao, E.A. Regan, E.K. Silverman, E.S. Wan, S. Won, P. Sakornsakolpat,
D. Prokopenko, M. Al Qaisi, H.O. Coxson, T. Gray, E.A. Hoffman, S. Humphries, F.L. Jacobson, P.F. Judy, E.A. Kazerooni, A. Kluiber, D.A. Lynch, J.D. Newell, E.
A. Regan, J.C. Ross, R.S.J. Estepar, J. Schroeder, J. Sieren, D. Stinson, B.C. Stoel, J. Tschirren, E. Van Beek, B. Van Ginneken, E. Van Rikxoort, G. Washko, C.
G. Wilson, R. Jensen, D. Everett, J. Crooks, C. Moore, M. Strand, C.G. Wilson, J.E. Hokanson, J. Hughes, G. Kinney, S.M. Lutz, K. Pratte, K.A. Young, S. Bhatt,
J. Bon, B.J. Make, C. Martinez, S. Murray, E.A. Regan, X. Soler, C.G. Wilson, R.P. Bowler, K. Kechris, F. Banaei-Kashani, J.L. Curtis, C.H. Martinez, P.
G. Pernicano, N. Hanania, P. Alapat, M. Atik, V. Bandi, A. Boriek, K. Guntupalli, E. Guy, A. Nachiappan, A. Parulekar, D.L. DeMeo, C.P. Hersh, F.L. Jacobson,
G. Washko, R.G. Barr, J. Austin, B. D’Souza, G.D.N. Pearson, A. Rozenshtein, B. Thomashow, N. MacIntyre, H.P. McAdams, L. Washington, C. McEvoy,
J. Tashjian, R. Wise, R. Brown, N.N. Hansel, K. Horton, A. Lambert, N. Putcha, R. Casaburi, A. Adami, M. Budoff, H. Fischer, J. Porszasz, H. Rossiter, W. Stringer,
A. Sharafkhaneh, C. Lan, C. Wendt, B. Bell, M.G. Foreman, E. Berkowitz, G. Westney, R.P. Bowler, D.A. Lynch, R. Rosiello, D. Pace, G. Criner, D. Ciccolella,
F. Cordova, C. Dass, G. D’Alonzo, P. Desai, M. Jacobs, S. Kelsen, V. Kim, A.J. Mamary, N. Marchetti, A. Satti, K. Shenoy, R.M. Steiner, A. Swift, I. Swift, M.
E. Vega-Sanchez, M. Dransfield, W. Bailey, S. Bhatt, A. Iyer, H. Nath, J.M. Wells, J. Ramsdell, P. Friedman, X. Soler, A. Yen, A.P. Comellas, K.F. Hoth, J.
D. Newell, B. Thompson, E.A. Kazerooni, C.H. Martinez, J. Billings, A. Begnaud, T. Allen, F. Sciurba, J. Bon, D. Chandra, C. Fuhrman, J. Weissfeld, A. Anzueto,
S. Adams, D. Maselli-Caceres, M.E. Ruiz, Disease progression modeling in chronic obstructive pulmonary disease, Am. J. Respir. Crit. Care Med. 201 (2020)
294–302, https://doi.org/10.1164/rccm.201908-1600OC.

[33] Y. Pu, X. Zhou, D. Zhang, Y. Guan, Y. Xia, W. Tu, Y. Lu, W. Zhang, C.C. Fu, Q. Fang, G.H. de Bock, S. Liu, L. Fan, Re-defining high risk COPD with parameter
response mapping based on machine learning models, International Journal of COPD 17 (2022) 2471–2483, https://doi.org/10.2147/COPD.S369904.

Y. Iwao et al.

https://doi.org/10.1148/radiol.2020201433
https://doi.org/10.1148/radiol.2020200642
https://doi.org/10.1148/radiol.2020200463
https://doi.org/10.1148/radiol.2020200370
https://doi.org/10.2147/COPD.S121405
https://doi.org/10.1038/nm.2971
https://doi.org/10.1038/nm.2971
https://doi.org/10.1164/rccm.201908-1600OC
https://doi.org/10.2147/COPD.S369904

	Nonrigid registration method for longitudinal chest CT images in COVID-19
	1 Introduction
	2 Materials and methods
	2.1 Study subjects
	2.2 Details of CT image data
	2.3 Registration method
	2.3.1 3D affine transformation
	2.3.2 Nonrigid registration by VoxelMorph
	2.3.3 Experimental settings

	2.4 Evaluation
	2.4.1 Whole image similarity
	2.4.2 Invariance of the lesion region
	2.4.3 Visual evaluation by a pulmonologist


	3 Results
	3.1 Nonrigid registration
	3.2 Evaluation of image similarity
	3.3 Verification of lesion region invariance
	3.4 Visual evaluation by a pulmonologist

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


