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Abstract

We propose a framework of Resources, Achievement, Status, and Events (RASE) that

allows the many disparate but well-documented phenomena affecting underrepresented

groups in STEM to be assembled into a story of career trajectories, illuminating the possible

cumulative impact of many small inequities. Our framework contains a three-component

deterministic cycle of (1) production of Achievements from Resources, (2) updated commu-

nity Status due to Achievements, and (3) accrual of additional Resources based on commu-

nity Status. A fourth component, stochastic Events, can influence an individual’s level of

Resources or Achievements at each time step of the cycle. We build a specific mathematical

model within the RASE framework and use it to investigate the impact of accumulated disad-

vantages from multiple compounding variables. We demonstrate that the model can repro-

duce data of observed disparities in academia. Finally, we use a publicly available

visualization and networking tool to provide a sandbox for exploring career outcomes within

the model. The modeling exercise, results, and visualization tool may be useful in the con-

text of training STEM faculty to recognize and reduce effects of bias.

Introduction

Diversity and equity researchers have long posited that “molehills can become mountains” [1]

or “a ton of feathers still weighs a ton” [2] to explain how seemingly small, subtle, and short-

term inequities contribute to long-term disparities in success. This type of macroscopic theo-

rizing is used to elucidate observed disparities in academia [1–5]. For example, in terms of gen-

der disparities, men typically outnumber women in full-time university faculty positions and

women in the academy earn less than their male colleagues [6, 7]. Science, technology, engi-

neering, and mathematics (STEM) in particular have persistently maintained demographic

group makeup unrepresentative of the general population, despite evidence that there is more

within-group variability than between-group differences in STEM-relevant skills [8–11].

A robust body of research in the social sciences addresses why disparities in representation

and academic success persist in STEM. Although many isolated inequities in the experiences of
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marginalized groups may seem small, the accretion of these ostensibly minor events can lead to

significant disparities over the course of an academic career [1, 12, 13]. The probability of accu-

mulation of disadvantage is especially striking for women of color [14] and others who have

multiple marginalized identities. For studies examining potential bias and disadvantage in aca-

demia, it is important for researchers to investigate contributing factors of disparate outcomes

narrowly and in as well-controlled a way as possible. For example, some research has examined

the inequitable distribution of resources differently provided to underrepresented and majority

group faculty (e.g., in awarded grant funding; [15–18]), whereas other research has focused on

disparities in achievements (e.g., evaluation of expertise and credentials; [3, 19–22]).

To understand how these individually-documented effects may compound over the course

of a career we: (1) introduce a framework for understanding disadvantage using four elements

—Resources, Achievements, Status, and Events (RASE), (2) situate those elements in evidence

of social disparities in academia, and (3) build and test the utility of a specific mathematical

model within RASE for explaining inequities in academic trajectories. While the framework of

four elements is broad, the mathematical relationship between them can be varied. We use

“model” to refer to the functional form used to define and relate the variables. The framework

organizes a large literature into a few variables and allows competing mathematical models for

the relationships between the variables to be explored. We present an agent-based simulation

of the model [23] in NetLogo [24] and use it to generate accessible visualizations of the cumu-

lative effect of small inequities on academic careers. We demonstrate that real-world data on

inequities in academia can be reproduced by adjusting model parameters that capture the level

of disadvantage experienced by a demographic group. Beyond the results presented here, the

NetLogo tool allows individuals to explore what happens to career success as the level and type

of (dis)advantage given to one group over another varies.

Our work follows previous demonstrations of how “minor” biases impact future success,

especially that of Martell and colleagues [3] who simulated the cumulative effect of a small dis-

advantage for women in the promotion process of a hypothetical company. In addition, our

goal of understanding the accumulation of relative advantage/disadvantage between demo-

graphic groups can be situated within the much broader field of inquiry into the dynamics of

success [25–27]. Merton [28] introduced the idea of the “Matthew effect” to describe the phe-

nomenon where scientists of high status are given disproportionate rewards for their work

compared to less well-known individuals. Recent randomized experiments [29] and empirical

studies related to grant funding [30, 31] continue to find evidence, with interesting caveats,

that status is an important component of how achievements are recognized and rewarded.

Other studies have found that achievement alone (such as publications) is enough to explain

some disparities in grant-funding [32] although cumulative advantage still plays a role in the

number and quality of publications. Our work is distinguished within the literature by the fact

that, like Martell [3], the group identities we use to define relative advantage are constant in

time. That is, they are not determined by a quantity (income, success, etc.) that may be subject

to the Matthew effect. Both advantaged and disadvantaged populations in our model will expe-

rience “success-breeds-success” dynamics, but they will experience it differently: we draw

from the social science literature to justify the introduction of a systematic bias in the parame-

ters describing the experience of the disadvantaged population, and study the compounding

effects over time. This “group identity” version of cumulative advantage is closer in spirit to

Blau and Duncan’s early analysis [33] of occupational data to show that Black men suffered

from a cumulative disadvantage compared to White men. For a review of cumulative advan-

tage models and applications, see [27].

We introduce the components of the framework and a particular model within the frame-

work in the next two sections. Then, we present literature identifying disparities between
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demographic groups and demonstrate the effect of including such disparities in our model.

We show how model elements can be adjusted to reproduce observed data. We conclude by

positing that this modeling tool serves as a practical demonstration that could be used to

engage STEM faculty in productive conversations about accumulative advantage and disad-

vantage in the career advancement of faculty. Our work joins other recent literature bringing

an analytic modeling approach to understanding the role and effects of bias in disparate out-

comes among social groups in academia [34, 35].

RASE: A framework for modeling an academic career

In a coarse-grained view, academics use their time, knowledge, and network of collaborators

and personnel to produce new knowledge and understanding. If the community judges these

contributions to be useful, the academic is rewarded with additional resources and prestige

which the individual uses to further advance their work. We therefore propose a modeling

framework where at each time step an individual uses all their available Resources (R) to gen-

erate Achievement (A) according to a specified function. The individual is awarded Status (S)

by the community for their Achievement, where as Merton noted [28], factors other than the

Achievement itself may affect the Status awarded. Additional Resources are then allocated for

the next time step as a function of Status and the cycle repeats. At each step, individuals have

some probability that their Achievement and/or Resources are affected by an isolated Event

(E) (Fig 1). In a meritocratic world, each individual would have Status identical to their

Achievement and would be equally likely to encounter Events of statistically equivalent

impact.

In the context of an academic career, we define Resources as things that allow individuals to

perform their work, including personal characteristics (knowledge, technical skills, creativity,

focus), monetary resources (grants, start-up funding), social resources (time, professional net-

works, social support), and personnel (graduate students, postdocs). Our framework’s implicit

valuation of such incommensurable items is a necessary simplification of reality that mathe-

matical modeling entails. Some Resources, such as knowledge and skills, are always accessible

to an individual over the course of their career. Others, such as grant money or graduate stu-

dents, have a finite lifespan of a few years. Although resources of both types accrue over the

course of a career, we make a simplifying assumption that early-career Resources are perma-

nent, whereas those accumulated later have the same, finite lifetime. One way to model differ-

ences among individuals within a group is to allow their starting Resources to vary; this is what

we will do in the analysis presented here. Some specific types of resources, especially grant

funding and laboratory access, may be much more important to workers in some fields than in

others (for example, an immunologist compared to a mathematician). On the other hand, time

and the mental and physical space to focus on research are universal necessities; our broad

conception of Resources allows our framework to capture differences in the availability of such

space as experienced by different groups.

Achievements consist of anything one has put effort into and would list on a CV, including

publications, some awards, invited seminars, students mentored, promotions, and leadership

positions in scientific collaborations, societies, or universities. Some elements in an actual

career may affect both Resources and Achievements, such as a grant that is particularly presti-

gious or an award that comes with money. Other awards might be most properly classified as

Status indicators. Differences between individuals could be modeled by allowing variation in

the rate at which they convert Resources to Achievements, although we will not present results

using this choice here. As with Resources, the typical number and type of Achievements will

vary by discipline and sub-field. One of the most universal Achievements is the publication,
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but publication rates differ substantially across disciplines and sub-disciplines [36]. While

there have been attempts to use measures of publication productivity and impact, for example

the h-index [37], these attempts fail to provide measures comparable across fields. Addition-

ally, key gate-keeping aspects of academia, especially promotion and tenure, do not proceed

purely according to publication rate. For these reasons, we choose a broader definition of

Achievement here.

Status is signaled primarily through credit or accolades bestowed by others. This may

include awards, invitations to high-profile events or speaking positions, tenure, promotion

and named professorships, and honorary positions or affiliations. Since Status is subjective, it

is best defined as an inferred parameter. This is how we use it in our data comparison, where

we interpret a colloquium invitation at a high-profile institution as an indicator that an indi-

vidual has passed a certain threshold in Status. We use the fraction of the population receiving

an invitation to determine the value of the Status threshold in the model.

For the quantitative implementation of the model we detail below, we have chosen ballpark

numbers most appropriate for biology, chemistry, or physics, although even within those disci-

plines there is significant variation by sub-field. To truly calibrate the numerical values appro-

priate for the baseline model would require longitudinal studies of multi-dimensional

Achievements. Few such studies exist, and those that do are generally designed to examine a

Fig 1. The RASE cycle, where R stands for Resources, A for Achievement, S for Status, and E for Events. Resources are used to accrue Achievements.

The scientific community accords Status to your Achievements. New additional Resources are then given based on Status, and the cycle repeats. At each

time step, there is a probability to experience Events that impact Resources or Achievements.

https://doi.org/10.1371/journal.pone.0260567.g001
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specific outcome and so choose a specific, restricted population to study (for example, [38]).

However, our primary goal is to demonstrate how small differences between demographic

groups can compound to generate significant differences in career outcomes. We anticipate

that future studies will allow the model to be refined.

We chose to run the simulation where Achievement, Status, and new Resources are calcu-

lated in six month intervals. (This choice is arbitrary and does not affect the outcome.) Our ini-

tial choices of parameters and numbers are chosen so that 5 units of Resources are required to

produce 1 Achievement, which roughly corresponds to one typical-impact publication. To

apply the model to a field with a lower publication rate, one can re-interpret the units so that

each typical publication generates, say, 2 or 3 units of Achievement. In a typical simulation

without Events, the modal number of achievements in the last year of a 40- year career was

around 25. While our scale is set such that we expect one unit achievement to be one typical

impact publication, achievement is meant to measure more than just publications (e.g., it also

may reflect leadership positions, grants, and presentations).

We model differences among individuals by drawing initial Resources R(t0) from a normal

distribution with mean 4 and standard deviation 1. This choice corresponds to assuming that

most beginning students do not quite have the resources to produce a publication, although

some may. Formally, for each time step ti, Achievement is given by A(ti) = aRTotal(ti−1). The

parameter a is chosen to be a = 0.2 to give the 5 to 1 ratio between Resources and Achieve-

ment. Status is accorded via S(ti) = A(ti) (assuming a meritocracy) and new resources are

awarded via Rnew(ti) = rS(ti) where we take r = 0.4. This number was set to provide a reasonable

growth and overall scale of Resources and Achievement. We treat early career Resources as

permanent and subsequent Resources as having a finite lifespan. To be specific, we choose

Resources to accumulate as permanent until 8 years into the career, after which time they con-

tribute a fixed additional amount for 5 years. The transition at 8 years corresponds approxi-

mately to the transition to junior faculty, while the 5-year window is an approximate time

scale over which start-up and grants might persist. In other words, up until year 8, RTotal(ti) is

the sum of all resources accumulated. After year 8, RTotal(ti) is the total accumulated up to year

8, plus any resources gained in the 5 years prior to time ti.
Due to the linear functions we employ in our model to relate R, A, and S, Achievement in

the early career phase grows exponentially (as is familiar from compound interest). In later

years, as the finite-lifetime Resources come to dominate, Achievement plateaus. In a model

that is deterministic except for the initial normally distributed allocation of Resources, R(t0),

the distribution of Achievement after 40 years is also a normal distribution, and the individual

who started with the most Resources finishes with the highest Achievement. In addition, the

shape of each career trajectory is the same. Neither of these features, which clearly conflict

with reality, will remain once the stochastic Events are added.

Our basic model choices, prior to adding stochastic Events, might be modified in various

ways. As described above, our model allocates Resources at each time step in proportion to

Status, in line with the intra-individual success-breeds-success dynamics of Shea and Crystal

[39] recently modeled in [40]. One could add a Merton-style Matthew effect by allowing the

updated Status at each time step to be a function of both prior Status and new Achievement,

similar to the early work of de Solla Price [41] and Rosen [42]. In addition, one might posit

that the parameter a should be drawn from a probability distribution to account for individu-

als differing in their capacity to convert Resources into Achievements.

Such modifications would entail a trade-off between accuracy and simplicity; here, we tend

to opt for the latter, recognizing that no matter how complicated the model, it serves only to

illustrate the potential long-term effects of small differences compounded over time rather

than to capture reality with perfection.
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Stochastic events

Many important events that influence a career trajectory are not within the individual’s sole

control, but are instead related to the professional or personal environment. Individuals may

speak about the most significant of these events as “being in the right place at the right time”

or as good or bad “luck.” For example, Events that positively impact an individual’s Resources

might include being asked to join a grant proposal initiated by others, or finding low-cost, con-

venient childcare. Being assigned a particularly heavy committee load or having a family mem-

ber with a serious illness would be negative Resource Events. Achievement could be enhanced

by being asked to join an experiment or paper initiated by others, or sparking a brilliant con-

ference submission idea over dinner with colleagues. Negative impacts on Achievement come

from Events such as receiving a particularly unfriendly referee report from a prestigious jour-

nal or not being nominated for an award despite being qualified.

Though some may feel that randomness plays no part in a successful career—that success is

determined completely by pluck rather than luck, as it were—that narrative has been chal-

lenged [43–45]. There are undeniably many circumstantial factors influencing an academic

career that are difficult to model precisely. This is the purview of the statistical paradigm, in

which variation is described using probabilistic models.

To model and visualize the impact of stochastic environmental Events, we use NetLogo

[24] to place hypothetical academic “people” on a two-dimensional (wrapped) landscape con-

taining a population of Events that can instantaneously alter either Resources or Achievement

(Fig 2). The Events and people have random starting positions. Events move one unit (about

1/30th of the size of the landscape) in a random direction at each time step, while people

remain at their original location. The two-dimensional landscape allows for an easy visualiza-

tion, and the choices about motion and placement of people and Events are only relevant in

that they assure that each individual, on average, encounters one Event (affecting either

Resources or Achievement) per year.

When an individual encounters an Event affecting Resources (Achievement), its magnitude

is drawn from a normal distribution with mean 5 (1) and standard deviation 2.5 (0.5). Then,

the sign of the event, positive or negative, is chosen by a coin flip. We enforce Achievement� 0

by replacing any negative Achievement values by 0 at each time step. In some models of the

Matthew effect (e.g., de Solla Price [41]), the distribution of stochastic Events is a function of

prior success. Here, we consider Events that are always drawn from the same distribution, and

“success breeds success” compounding occurs due to our deterministic cycle of Resources-

Achievement-Status.

Fig 3 shows how Achievement accrues within this model for the RASE cycle. One impor-

tant effect of adding the randomly encountered Events is that starting Resources no longer

determine final Achievement; that is, trajectories are no longer monotonic and they may cross.

Trajectories may show bursts of activity, spurred by and perhaps ended by external events,

similar to hot streaks [46].

A second effect of the Events is that they generically concentrate final Achievement into the

hands of fewer individuals by the end of the 40-year period. Pluchino et al [47] have previously

suggested that a distribution of wealth or status following the Pareto Principle, with 20% of indi-

viduals controlling 80% of the wealth, can be attributed entirely to “lucky” events [47], and won-

dered if a similar law holds in academic careers. In our model, we find that Status is not

accumulated so extremely by just a few individuals. Analyzing all individuals after 40 years, we

find that for the parameter choices used above, the top 20% of people have about 51% (rather

than 80%) of the total status. Interestingly, we find that some simple changes, which may more

accurately reflect some aspects of reality, can increase the level of inequality. For example, if the
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Fig 2. A screenshot of NetLogo’s graphical interface illustrating career outcomes in our model. Advantaged individuals have stars on their

shirts, and the pants color of all figures updates at each time step to indicate their Status. The numerical label next to each individual is their

position in their population’s starting Resource distribution (1 had the most initial Resources). Resource (Achievement) Events experienced by

both populations are represented by brown (green) dots. A large number of extra Events affecting only the disadvantaged population are not

shown to simplify the image. Notice that no disadvantaged people (shirts without stars) have status pants above the green level, and that the

individuals that started with the highest Resource level (e.g., circled figure) need not end up with the highest status level after 40 years: the

stochastic Events significantly affect eventual success.

https://doi.org/10.1371/journal.pone.0260567.g002

PLOS ONE RASE: Modeling cumulative disadvantage due to marginalized group status in academia

PLOS ONE | https://doi.org/10.1371/journal.pone.0260567 December 16, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0260567.g002
https://doi.org/10.1371/journal.pone.0260567


Events are labeled as positive or negative before the simulation runs, then some individuals will

happen to be placed in environments with more positive (or negative) Events than the mean.

The variance in the net effect of the Events goes up, and so does inequality. Of course, we might

alternatively apply a status multiplier as suggested by early literature on the Matthew effect and

look at the distribution of Status rather than Achievement. Since Status can be inflated in a way

that Achievement, which requires actual effort by an individual, cannot be, Status is more likely

to display the more extreme inequality of a Pareto distribution with a power law close to 1.

Evidence of differential career outcomes

While the model above can be applied to any academic career, our main interest here is to use

it to understand how trajectories of different demographic groups might diverge. Though all
faculty members encounter instances of advantages and disadvantages across their careers, we

consider the consequences of having a small but systematic assignment of group-based advan-

tage and disadvantage that can spur or inhibit academic progress, respectively [1, 5]. For read-

ers unfamiliar with research on academic advantage and disadvantage, we provide a broad

Fig 3. 300 sampled career trajectories of achievements over time, A(t), are shown with a histogram of final-year values for all 20,000 simulated individuals.

The histogram reveals a large number of final-year zeros. Two highlighted trajectories show in one case that early positive results often produce career-long

advantages even in the face of random buffeting by positive and negative events; in another case, a slow start makes even a surge of fortunate events difficult to

capitalize on. The dotted red lines depict the trajectories of the yearly medians and 75th percentiles.

https://doi.org/10.1371/journal.pone.0260567.g003
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review to highlight the extensive literature on academic disparities and how they operate

through the RASE framework. We aim to paint a general picture of the evidence, though we

recognize the reviewed findings are complex and conditional. Not every member of an under-

represented group will be affected by all possible disparities, but this literature in the aggregate

provides a basis for varying Resources, awarded Status, or statistics of the Events experienced

by different populations. We use the term “underrepresented” to refer to groups numerically

underrepresented as STEM faculty and underrepresented in the pool of STEM graduates [48].

We thus refer to White men and Asian men as “majority groups” and White women and other

racial minorities as “underrepresented groups,” though underrepresented status may also con-

stitute disadvantage by sexual orientation, nationality, ability status, and socioeconomic back-

ground. Given that challenges faced by individuals in STEM are compounded by having

multiple marginalized identities (e.g., women of color; [14, 19]), our model may be applied to

any of these cases by adjusting the differences between two (or more) modeled populations.

Resources

To excel in academia, faculty must acquire resources that facilitate their achievements and

career status. Resources include personal characteristics (e.g., training, skillsets), financial sta-

tus (e.g., funding), and interpersonal and structural supports (e.g., protected time, professional

networks, graduate students, personal relationships) that could engender future success. How-

ever, the dispersion of resources across faculty groups is neither consistent nor equitable.

Funding for research lays a foundation for productivity and subsequent financial support.

In some disciplines, women receive less start-up funding than men [49], and underrepresented

groups in the Netherlands, the U.S., and Canada receive fewer and smaller grants than their

majority counterparts, while controlling for factors such as productivity and institutional pres-

tige [15–18, 21]. Among recipients of career development awards from the National Institutes

of Health, women report having less adequate grant support than men [50], suggesting that

some groups are disadvantaged both in the amount of funding and in procuring support for

translating funding resources into potential achievements. At the interpersonal level, under-

represented groups tend to be less connected to high-status contacts who promote and mentor

them through the academic pipeline [51, 52]. White male prospective students, for example,

are more likely to receive a reply from faculty when they seek to discuss research [53], and

male faculty are more likely than female faculty to receive a response from other male faculty

when seeking research materials [54]. Men’s greater access to other men may provide lucrative

opportunities; as one example, an analysis of publication history reveals that co-authoring

with high-status collaborators early in one’s career provides downstream advantages to one’s

career trajectory [12]. If men tend to be the high-status collaborators in some fields and are

more likely to be connected to other men, it stands to reason that junior women may be at a

disadvantage in this respect.

Having time to dedicate to research also fosters productivity, yet time may be differently

available to faculty. Underrepresented groups’ greater responsibilities with service [55], men-

toring and teaching [56], and accommodating student requests [57], and, in some cases, con-

tending with an inequitable gendered division of labor in the private sphere [58] constrains

time available for research. Likewise, underrepresented groups may experience strain on cog-

nitive resources. Experiences of stereotype threat, for example, can burden cognitive resources

and work performance through physiological stress responses, working memory capacity, and

self-regulation efforts [59]. People of color endure what some scholars describe as an “inclu-

sion tax,” or the additional resources required (e.g., time, emotional energy) to navigate norms

in predominantly White academic institutions [60].
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Though all faculty may experience unprecedented obstacles (e.g., death in the family; ill-

ness; the COVID-19 pandemic), some encounter more severe challenges because of their gen-

der or race. For example, some faculty contend with negative, unwanted experiences like

sexism and racism that deteriorate their psychological health (e.g., microaggressions, harass-

ment). Nearly two thirds of women conducting scientific field research reported they had

experienced harassment and assault [61]; more broadly, national reports identify academia as

a primary site for sexual harassment, which is detrimental to women’s personal and profes-

sional well-being [62]. Consequently, some have noted a “harassment tax” suggesting harass-

ment drains one’s emotional, psychological, and practical resources (e.g., through reporting

procedures) and thus taxes productivity potential [63].

We emphasize that resources represent a broad set of supplies. For example, grants may be

highly-valued resources by academics in some fields (e.g., STEM, social sciences), whereas

those in the arts and humanities may seek fellowships and travel opportunities as resources to

support their productivity. Further, across disciplines, some resources are likely appreciated by

all, such as good training, time, freedom from distractions, and support for one’s commitment

to their scholarship. Resources are thus relevant to all those who are seeking a solid foundation

for an academic career.

Achievement

Disparities in achievement emerge as an artifact of resource allocation and bias in the achieve-

ment-earning process. Some resources (e.g., large-scale funding, access to social networks)

generate achievements; further, when faculty are recognized for resources and achievements,

they may receive the opportunity to collect more achievements. However, not all opportunities

for achievements are created equal. Some research on the review process suggests that bias in

some disciplines may impede achievement. A few studies document that double-blind systems,

compared to when authors’ identities were known, yield more accepted publications and con-

ference abstracts for women and scholars who lack fame or institutional prestige [64–66]. A

similar pattern is detected in the domain of teaching, in which racism and sexism influence

evaluation [67, 68]—when women’s identities are known, they receive less favorable evalua-

tions. For example, in an experimental paradigm, students rated an online instructor who

operated the class with a male alias more positively (e.g., as more prompt and fair) than an

instructor who presented as a woman, regardless of the instructor’s actual gender and despite

synchronizing the timing of instructor feedback across conditions [69]. Finally, the accrual of

achievements may be boosted or impeded by various events. Even when encountering the

same unexpected event, such as the COVID-19 pandemic, the impact on achievement out-

comes may be different. There is preliminary evidence of disparities in pandemic-related hard-

ships on potential achievements, such that career setbacks during the pandemic are

disproportionately endured by women and racial minorities [70–72]. Indeed, the accumula-

tion of achievements is subject to extrinsic factors.

Status

In light of meritocratic values in the United States, people may be motivated to believe that sta-

tus is purely a function of achievement in STEM [73]. However, though resources and achieve-

ments can promote status, underrepresented groups’ resources and achievements may be

converted into status at a lesser rate than that of majority groups. Compared to women, men

receive greater recognition for their contributions in collaborations [74, 75] and more glowing

accolades [22, 76] and less doubtful endorsements [20] in letters of recommendation, such as

being referred to as “brilliant,” “genius,” and “trailblazing.” Publications with female authors
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are less frequently cited by male-led teams [77]. When members of underrepresented and

majority groups hold identical records of achievements (e.g., GPA, productivity, skillsets),

evaluators rate underrepresented group members and their achievements as less worthy of hir-

ing and compensating, as found in multiple CV audit studies [19, 78, 79]. Beyond the

entry point of hiring, majority groups are also more likely to hold distinguished or named fac-

ulty positions [80] and to receive scholarly awards for career success [81]. Across career mile-

stones—from laboratory managers [78] to postdoc applicants [76] to candidates for full

professor [6]—underrepresented groups with comparable achievements as majority groups

tend to be at a relative disadvantage.

We acknowledge that our review of resources, achievements, and status simplifies their

interconnected nature, and we caution readers from defining these components as discrete

categories. Indeed, faculty who have acquired status, in turn, may use that status as a resource

toward gaining achievements, which can create a cyclical and complex process of attaining

resources, achievements, and status. This process may be particularly characteristic of acade-

mia given that the established road to success depends on the resources and achievements one

accumulates across an academic lifespan.

Model applications

The RASE framework can be used to investigate “in theory” the impact of disparities on aca-

demic careers or it can be used as a tool to model empirically measured inequities. In this sec-

tion we illustrate both of these applications. First, we show how unequal representation

develops among high-status individuals, as predicted by our model when several disadvantages

documented in the literature are included: unequal initial Resources, differently awarded com-

munity Status, and microaggressions—a disparity in experienced Events. In this scenario, the

disadvantaged group receives initial Resources 5% lower, on average, than those of the advan-

taged group: The mean of the disadvantaged group is 3.8 while the mean of the advantaged

group is 4. The Status awarded to the disadvantaged group per Achievement is 95% of the Sta-

tus awarded to the advantaged group, i.e., SDisadv(ti) = 0.95ADisadv(ti). Finally, the disadvan-

taged group is subject to an extra population of negative Achievement Events designed to

represent the effect of microaggressions and low-level harassment due to race or gender. A typ-

ical disadvantaged individual will encounter 10 extra Events each year, with magnitude drawn

from a distribution of mean 0.03. In other words, the Events on average cost a disadvantaged

individual 30% of one Achievement (e.g., 30% of a typical impact publication) each year. Keep

in mind (cf. Fig 3) that 20 Achievements per year is typical in the second half of a career with-

out any disadvantage in this model.

Fig 4 shows the results for several equally-spaced Status levels: After 40 years of statistical

disadvantage at the few percent level, the representation of the disadvantaged group in the

highest two Status levels (roughly the most successful 10%) falls from parity to about 1/3. This

scenario was also used to generate Fig 2 for a small number of people, but with statistics still

representative of those shown in Fig 4.

Our framework can also be applied to model observed disparities in academia. As a specific

example we look at the analysis of Nittrouer and colleagues [82] who found that men were

more likely than women to be colloquium speakers at prestigious universities after controlling

for gender and rank of available speakers.

For academics, invitations to present at colloquia relate to each component of our model.

They are Achievements that one lists on a CV, Resources that can establish personal connec-

tions and provide opportunities to discuss new ideas, and Status enhancers due to the exposure

one’s work receives as a result. They can also cause, or be caused by, serendipitous Events that
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are difficult to predict simply based on one’s cumulative Resources, Achievements, or Status.

Here, we apply our model to explore how a variety of factors could create the gender disparity

observed by Nittrouer and colleagues [82]. For simplicity, we will focus only on data for assis-

tant professors in two of the six fields studied, biology and history. We assume that faculty

members at this stage are in year ten, assuming an academic career begins at the start of gradu-

ate school. Thus, using our 6-month time step, we consider individuals’ cumulative Status at

the end of time step 20.

The faculty members who were invited to speak at colloquia are assumed to be those who

surpassed a particular threshold of cumulative Status, that is, Status values summed from

time = 0 to time = 20 in our simulations. We calculate this threshold as the top fraction that

matches the fraction of invitees observed by [82]. For instance, the biologists comprised 1,134

assistant professors (470 female and 664 male), of whom 289 (101 female and 188 male) were

invited speakers. In this case, our threshold is the top 289/1,134, or 25.5%, of simulated cumu-

lative Status scores. A similar thresholding analysis could be used to model the tenure and pro-

motion process, or the “leaky pipeline” problem, if individuals below a certain Status level are

dropped from the population.

We will consider several ways to model disadvantage in turn, determining in each case the

magnitude of disparity required to achieve the level of inequity shown in the data. First, we

assign different means to the Gaussian distributions of initial Resources assigned at time = 0,

keeping all other model parameters at parity. We find that assigning the disadvantaged group

initial Resources from a distribution with a mean of 70% that of the advantaged group (2.8,

rather than 4, in our units) explains the data. To contextualize this number, consider that in the

Fig 4. The cumulative effect of disadvantage over a 40-year career affects the percentages of disadvantaged members at each status level, assuming

equal numbers in the advantaged and disadvantaged populations. The disadvantaged population began with 5% fewer resources on average, was awarded

5% less status per Achievement, and on average experienced 10 low-impact negative Achievement events each year. After 40 years, the representation of the

disadvantaged group among high status individuals falls to about a third. For reference, the highest two status categories together contain about 10% of the

individuals.

https://doi.org/10.1371/journal.pone.0260567.g004
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Unites States, the income of ethnic minority groups in an average metropolitan area, especially

Black Americans, is indeed 30-40% below the average income of non-Hispanic Whites [83].

Second, we accord different values to the parameter s that determines community-per-

ceived Status based on Achievements via the formula S(ti) = sA(ti). One group is assigned s = 1

(100%) to represent an ideally meritocratic system, whereas the disadvantaged group is

assigned a smaller value of s. The results of implementing this second idea are depicted in

Fig 5, which shows the distributions of 10,000 simulated career trajectories for the disadvan-

taged group as a function of s. At the top where s = 1 (100%), we observe no disadvantage at all

Fig 5. The shaded portions of the density plots depict the individuals who exceed the threshold for being invited to present a colloquium in our

biology faculty example. The threshold is the top 25.5% of a combined population consisting of 41.4%, or 470/1,334, disadvantaged individuals (see

Table 1). The topmost density corresponds to no relative disadvantage. Moving down, we see that lowering the Achievement-to-Status multiplier—

while keeping all other aspects of the simulation constant—diminishes the percentage exceeding the threshold. The dotted line depicts the cutoff for the

upper 25.5% of the disadvantaged group only.

https://doi.org/10.1371/journal.pone.0260567.g005
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in the “disadvantaged” group, which attains the same 25.5% above-threshold rate seen in the

overall population, because both groups share exactly the same sets of parameter values. As s is

gradually decreased, we reach a point near s = 0.91 (91%) at which the proportion of the disad-

vantaged group achieving the invitation criterion matches the observed proportion of female

colloquium speakers, 21.5% [82]. In our highly idealized model, therefore, we can replicate the

observed overall and female-specific rates of colloquium invitations by setting the women’s

perceived status as a function of achievement around 10% below that of men’s, assuming no
other group differences.

Finally, we might assume that the two groups are subject to different stochastic Events.

Here, we create negative Events to which only the disadvantaged group is potentially subject,

according to two different scenarios. One scenario adds small negative values to one’s Achieve-

ment score—we might envision microaggressions that predominantly affect only a particular

subgroup, for instance—drawn from a Gaussian distribution whose mean and standard devia-

tion are one tenth that of the other stochastic Achievement-specific Events in our model.

Another scenario adds large negative Events, perhaps suggesting harassment or discrimina-

tion, using a distribution whose mean and standard deviation are ten times as large. Aside

from these additional hits to Achievement, each scenario holds the two groups’ model parame-

ters the same, including the presence of other randomly-occurring Events that can be positive

or negative.

Table 1 reports the approximate simulation parameter settings that achieve the same per-

cent of above-the-threshold percentages for the disadvantaged group as observed by [82] for

the female group. These settings entail each of the four cases described above. In this applica-

tion, we have not included any scenarios in which multiple parameter values differ between

the two subgroups, nor have we considered other instances (e.g., observed discrepancies

between racial groups) in which it is possible to model one group as disadvantaged relative to

another based on the Resources, Achievements, and Status that typically drive success in

academia.

The examples in Table 1 demonstrate that a particular disparate outcome for one group rel-

ative to another can be achieved by multiple distinct sets of parameter-value settings. We view

this flexibility as a strength of our modeling framework because it encourages consideration of

the breadth of potential mechanisms that produce disparate outcomes, mindful that we can

never claim that results from any particular set of model parameters using the framework pro-

vides “proof” that the outcomes it produces could only have arisen from those settings.

Table 1. Model parameter settings in four simulation scenarios that achieve the observed percentages of women above a threshold of cumulative status observed

among assistant professors in two fields as reported by [82]. Counts and percents for men may be obtained by subtraction. The simulations involve two subpopulations

for which all settings are identical except the one being varied only for the relatively disadvantaged group. Further details about each of the four scenarios are given in the

main text.

Field Above Threshold Scenario (see below)

Total Female (a) (b) (c) (d)

Biology 289/1134 101/470 70% 91% 5.1 0.55

(25.5%) (21.5%)

History 112/626 52/308 90% 97% 2.8 0.32

(17.9%) (16.9%)

(a) Percent of mean initial resources

(b) Percent of Achievement-to-Status multiplier

(c) Mean annual additional small hits to Achievement

(d) Mean annual additional large hits to Achievement

https://doi.org/10.1371/journal.pone.0260567.t001
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Conclusions

The RASE framework with its four elements—Resources, Achievement, Status, and Events—is

a tool both to organize and to visualize the impact of accumulated disadvantage in career out-

comes. We have argued that many observed disparities in the literature can naturally be dis-

cussed and organized within this framework. We have demonstrated how a specific model

based on this framework can be used to explore the compounding effects of disadvantage due

to group status. It is also able to reproduce the observed disparities in colloquium invitations

of [82]. These combined functions allow the RASE framework and associated NetLogo visuali-

zation to provide a powerful educational tool.

Diversity, equity, and inclusion trainings are increasingly common in academic units,

despite there being mixed evidence regarding their effectiveness [84]. As a result, there is a crit-

ical need to identify and test new strategies for effectively teaching about bias in academia.

Intervention research suggests that experiential learning interventions, such as being tasked to

engage with simulations of the accumulation of advantage and disadvantage, successfully pro-

mote knowledge about gender equity and reduce sexist beliefs compared to receiving informa-

tion without the active learning component [85–87].

Facilitators of active learning sessions, specifically those who work with STEM faculty, can

manipulate the RASE tool to demonstrate long-term impacts of disparities and interpret the

resulting effects on career success. For example, we have introduced the RASE framework in

diversity and inclusion workshops in a College of Science at our large research university. As

one activity in the workshop, faculty participants are assigned to a specific framework element

(R, A, S, or E) and tasked with brainstorming real-world examples of the element. This activity

has elicited a rich and lively discussion of the accumulation of disadvantage and advantage in

career success. As an additional benefit to exposing STEM faculty to the RASE tool, people

who feel they have experienced systematic disadvantage in their careers based of their group

status may feel validated as they see themselves and their lived experiences reflected in this

framework. That is, the RASE conceptual framework explicates an individual’s account of how

Resources, Achievement, Status, and Events characterize their career trajectory, and the frame-

work lends new language to participants to make sense of their experiences.

There are many avenues for future work, both exploring how differences in the mathemati-

cal implementation—for example, of the Matthew effect—manifest in outcomes and using

additional data to calibrate and refine the model. For example, in this paper we do not explic-

itly model the placement of individuals in a network [88, 89]. But we have purposefully built

the implementation of the model within a numerical tool, NetLogo, designed to handle net-

works [24] to allow for future work to extend in that direction.

It would be informative to compare the RASE framework and model to longitudinal studies

and large datasets on scholarly inputs/outputs [90] and other datasets where there is some evi-

dence that cumulative advantage plays a role. For example, [32] found that differing publica-

tion rates and impact factors could explain differences in NIH funding between Black and

White scientists and suggested that a cumulative advantage model could be applied.

Finally, testing the short- and long-term effects of exposure to this framework would be a

promising area of future inquiry. We imagine those who interact with this framework, espe-

cially in STEM, may appreciate its technical rigor. We encourage future researchers to assess

whether this framework can facilitate more critical and careful assessments of people’s aca-

demic portfolios through an enhanced understanding of the roles that advantage and disad-

vantage play in career success.
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