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Abstract: Aliarcobacter butzleri is an emergent enteropathogen that can be found in a range of envi-
ronments. This bacterium presents a vast repertoire of efflux pumps, such as the ones belonging to
the resistance nodulation cell division family, which may be associated with bacterial resistance, as
well as virulence. Thus, this work aimed to evaluate the contribution of three RND efflux systems,
AreABC, AreDEF and AreGHI, in the resistance and virulence of A. butzleri. Mutant strains were
constructed by inactivation of the gene that encodes the inner membrane protein of these systems.
The bacterial resistance profile of parental and mutant strains to several antimicrobials was assessed,
as was the intracellular accumulation of the ethidium bromide dye. Regarding bacterial virulence, the
role of these three efflux pumps on growth, strain fitness, motility, biofilm formation ability, survival
in adverse conditions (oxidative stress and bile salts) and human serum and in vitro adhesion and
invasion to Caco-2 cells was evaluated. We observed that the mutants from the three efflux pumps
were more susceptible to several classes of antimicrobials than the parental strain and presented an
increase in the accumulation of ethidium bromide, indicating a potential role of the efflux pumps in
the extrusion of antimicrobials. The mutant strains had no bacterial growth defects; nonetheless, they
presented a reduction in relative fitness. For the three mutants, an increase in the susceptibility to
oxidative stress was observed, while only the mutant for AreGHI efflux pump showed a relevant
role in bile stress survival. All the mutant strains showed an impairment in biofilm formation ability,
were more susceptible to human serum and were less adherent to intestinal epithelial cells. Overall,
the results support the contribution of the efflux pumps AreABC, AreDEF and AreGHI of A. butzleri
to antimicrobial resistance, as well as to bacterial virulence.

Keywords: Aliarcobacter butzleri; RND efflux pumps; virulence; resistance

1. Introduction

Aliarcobacter genus belongs to the Arcobacteraceae family, with five other genera, Ar-
cobacter, Pseudarcobacter gen. nov., Halarcobacter gen. nov., Malaciobacter gen. nov. and
Poseidonibacter gen. nov., and a candidate genus, Arcomarinus [1–3]. Aliarcobacter genus
includes 11 species, of which 8 have been validly published, A. butzleri, A. cibarius, A.
cryaerophilus, A. faecis, A. lanthieri, A. skirrowii, A. thereius and A. trophiarum [2]. Bacteria
from this genus are Gram-negative, small, curved rods and present motility by a single
polar flagellum [1]. They can be found in a wide range of hosts and environments and
isolated from different sources [4–6]. Among these species, A. butzleri, A. cryaerophilus,
A. skirrowii, A. thereius and A. lanthieri have been associated with human disease, such as
bacteremia, enteritis, diarrhea, abdominal cramps, nausea and vomiting [7–10]. In addition,
A. butzleri and A. cryaerophilus have been recognized by the International Commission on
Microbiological Specifications for Food as a serious hazard to human health [11]. When
considering A. butzleri, several virulence mechanisms have been described for this species,
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such as adherence, invasion and cytotoxic effects [5–7]. Diseases caused by A. butzleri are
usually self-limiting; nonetheless, several reports have described the use of antibiotics
for its treatment, mostly with β-lactams, fluoroquinolones and macrolides [5]. However,
A. butzleri has shown resistance to major classes of antibiotics, such as fluoroquinolones,
macrolides, β-lactams, aminoglycosides and tetracyclines, with a considerable portion of
strains being classified as multidrug-resistant [5,7]. Therefore, this bacterium has attracted
attention due to its wide distribution and antibiotic resistance, even if the underlying
mechanisms are still poorly understood. The only mechanism that has been linked to A.
butzleri antibiotic resistance is a target modification, associated with resistance to fluoro-
quinolones [12]. More recently, the role of an efflux pump in the erythromycin-resistance
phenotype was evidenced [13,14].

Efflux pumps are relevant elements for antimicrobial resistance, contributing to antibi-
otic resistance and also to bacterial virulence [15,16]. These systems comprise membrane
proteins that are involved in the efflux of antibiotics and other toxic substances from
the cell, being classified into six families: ATP-binding cassette (ABC), multidrug and
toxic compound extrusion (MATE), major facilitator superfamily (MFS), proteobacterial
antimicrobial compound efflux (PACE), resistance–nodulation–division (RND) and small
multidrug resistance (SMR) [17]. Among these families, the superfamily of RND efflux
pumps is the most relevant among multidrug resistance efflux transporters since, when
overexpressed, bacteria may exhibit significant levels of resistance [18]. In addition, these
systems may have a broad substrate specificity, due to their ability to recognize substrates of
different sizes and with diverse properties [19]. The RND family of efflux pumps are tripar-
tite protein complexes found in Gram-negative bacteria, which include an inner membrane
protein, an outer membrane protein, and a periplasmic membrane fusion protein [16,19].
Efflux pumps from this family, such as CmeABC of Campylobacter jejuni; MexAB–OprM of
Pseudomonas aeruginosa; or AcrAB of Enterobacter cloacae, Klebsiella pneumoniae, Salmonella
enterica and others, were shown to play multiple functions, being involved in resistance
to compounds with different structures, such as bile salts, various classes of antibiotics,
detergents and dyes, and also contributing to the fitness, survival and virulence of these
bacteria [16,20–24].

Genetic studies conducted by Isidro et al. (2020) have identified 19 putative efflux
systems in the genome of A. butzleri, with 8 belonging to the efflux pumps of the RND
family. Among these are the AreABC (EP16), AreDEF (EP15) and AreGHI (EP4) systems, for
which complete operons were found at the genomic level [13]. Nonetheless, until now, only
the AreABC system has been characterized, and it was shown to play a role in resistance to
several antibiotics, particularly to erythromycin [14]. Increasing the knowledge regarding
the role of efflux systems in antimicrobial resistance and virulence of the emerging pathogen
A. butzleri is, therefore, a promising line of investigation. With this work, we aimed to
elucidate the role that the AreABC, AreDEF and AreGHI RND efflux pumps play in A.
butzleri antibiotic resistance and virulence.

2. Results and Discussion
2.1. Impact of the Inactivation of Three RND Efflux Pumps on Bacterial Resistance

Bacterial resistance to various antimicrobial agents has been linked to efflux pumps
that are responsible for the extrusion of these agents [18]. RND efflux pumps stand out for
their role in resistance to multiple antimicrobials in Gram-negative bacteria, due to their
broad substrate specificity, including (1) antibiotics, such as penicillins, cephalosporins,
fluoroquinolones, macrolides, chloramphenicol and tetracyclines; (2) cationic dyes, such
as crystal violet and ethidium bromide; and (3) detergents such as Triton X-100, biocides,
heavy metals, organic solvents and host-derived molecules. The extruded compounds may
present diverse structure charges, among other characteristics; however, their lipophilicity,
or the presence of lipophilic domains, has been described as a common feature among the
substrates of these systems [15,16,19,25].
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AreABC, AreDEF and AreGHI are efflux pumps belonging to the RND family that
were found encoded in the genome of A. butzleri (namely in the strain Ab_2811) [13]. A
BLASTP analysis showed that the efflux pumps under study have homology with other
RND efflux systems, namely from C. jejuni, P. aeruginosa and E. coli. The three structural
components of these RND efflux systems are organized in a single operon containing outer
membrane protein genes (Figure 1), similarly to the systems CmeABC and CmeDEF from
C. jejuni or MexAB-OprM and MexEF-OprN from P. aeruginosa. This contrasts with other
Gram-negative species, for which the RND efflux transporters operons lack genes coding
for outer membrane proteins, which in turn may be located elsewhere in the chromosome,
such as in the case of the AcrAB-TolC system from Escherichia coli [15,26–28].

Figure 1. Genomic organization of AreABC, AreDEF and AreGHI efflux pumps. Open reading frames and their transcription
directions are indicated by boxed arrows, and locus tag from Aliarcobacter butzleri RM4018 is identified below the arrow.
Putative genes encoding the inner membrane protein of the efflux pump are marked in light blue. Amino acid identities
(percentage of similarity) between protein homologs in C. jejuni, P. aeruginosa and E. coli are indicated for each homolog
gene and were retrieved using BLASTP analysis.

Each component of these tripartite efflux pumps is necessary for the efflux, and the
absence of one of these components turns the complex nonfunctional [26]. Thus, to evaluate
the potential role of three RND-type efflux pumps in A. butzleri, a strain with a multidrug-
resistant profile was selected, and three mutants of the inner membrane protein genes, areB,
areE and areG, were generated by natural transformation. The three genes were interrupted
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with a kanamycin resistance marker, by insertional mutation, originating the following
mutants: Ab_2811∆areB, Ab_2811∆areE and Ab_2811∆areG. The insertion of the resistance
cassette was verified by polymerase chain reaction (PCR) (Figure S1), while the inactivation
of gene expression was confirmed by reverse transcription (RT) PCR (Figure S2).

The contribution of the efflux pumps was evaluated by MIC determination of several
classes of antibiotics, bile salts and biocides for the parental and the mutant strains. This
evaluation makes it possible to ascertain if the inactivation of the efflux systems AreABC,
AreDEF and AreGHI has an influence on the resistance of the strain and to infer about
potential substrates of these pumps.

All mutant strains were more susceptible than the parental strain, but different sus-
ceptibility profiles were observed for the different mutants (Table 1). The differences in
MIC values obtained for the 22 antimicrobials tested suggests that the substrates of the
AreABC efflux pump are cephalexin, cefotaxime, erythromycin, clarithromycin, strepto-
mycin, ciprofloxacin and moxifloxacin, for which considerable fold-changes were observed
(between 4- and 32-fold decrease in the MIC) for the mutant Ab_2811∆areB. Furthermore,
levofloxacin, doxycycline and acriflavine may also be potential substrates of AreABC
system, despite only a 2-fold decrease in the MIC being observed. The role of AreABC
in A. butzleri antibiotic resistance was previously described and evidenced for low to
intermediate levels of erythromycin resistance [14].

Considering the AreDEF efflux pump, the impact of areE inactivation was less evident,
with a decrease of only 4-fold for cephalexin and 2-fold for cefotaxime, erythromycin,
clarithromycin, streptomycin, doxycycline and sodium cholate.

Regarding the AreGHI mutant, the results suggest that cephalexin, cefotaxime, amoxi-
cillin, streptomycin, levofloxacin, tetracycline, doxycycline, chloramphenicol and bile salts
are substrates of this efflux pump. In addition, a 2-fold decrease in the MIC for ampi-
cillin, ciprofloxacin, sodium cholate, benzalkonium chloride and acriflavine was proved,
when compared to the parental strain, suggesting that these compounds may also stand as
possible substrates for this pump.

Overall, the three efflux pumps recognize a broad range of substrates, with all the
efflux systems demonstrating to have a role in the extrusion of cephalexin, cefotaxime,
streptomycin and doxycycline.

These results are in accordance with several studies carried out in RND efflux systems
from different bacterial species, where the inactivation of genes encoding for efflux pump
subunits results in increased susceptibility to different antimicrobials [15,16,27]. For ex-
ample, CmeABC from Campylobacter spp. was described as being involved in the efflux
transport of several classes of antibiotics, ethidium bromide and bile salts, proving that
this system recognizes a broad range of structurally different substrates [28]. In the case
of CmeDEF efflux system of C. jejuni, when the cmeF gene was interrupted, only a small
decrease in MIC for ampicillin and cefotaxime was observed [29]. Therefore, the role of the
CmeABC in C. jejuni resistance has been considered more relevant than the role of CmeDEF,
with the first significantly influencing the intrinsic and acquired resistance of Campylobacter
to various antimicrobials, such as macrolides and fluoroquinolones [28,30,31].

Accordingly, in our study, AreABC and AreGHI efflux systems demonstrated a greater
influence in the extrusion of toxic compounds out of the cell than AreDEF, recognizing a
different wide range of substrates. These results corroborate previous studies regarding the
role of AreABC in A. butzleri resistance [14] and support, for the first time, the contribution
of AreGHI as well. Besides that, AreDEF efflux pump has shown a selectivity for a few
substrates; however, it does not seem to play such a significant role in the multidrug
resistance of the A. butzleri strain Ab_2811.
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Table 1. Minimum inhibitory concentration of several classes of antibiotics, bile salts, disinfectants
and germicides for the parental and areB, areE and areG mutant strains of Aliarcobacter butzleri.

Antimicrobial
MIC (µg/mL) [Fold Reduction]

Ab_2811 Ab_2811∆areB Ab_2811∆areE Ab_2811∆areG

β-Lactams
Ampicillin 128 128 [ND] 128 [ND] 64 [2]
Cephalexin 256 8 [32] 64 [4] 0.0625 [4096]
Cefotaxime 64 2 [32] 32 [2] 0.0625 [1024]
Amoxycillin 64 64 [ND] 64 [ND] 16 [4]
Macrolides

Erythromycin 16 2 [8] 8 [2] 16 [ND]
Clarithromycin 16 1 [16] 8 [2] 16 [ND]

Aminoglycosides
Gentamycin 1 1 [ND] 1 [ND] 1 [ND]
Kanamycin * 4 >512 >512 >512
Streptomycin 8 0.5 [16] 4 [2] 2 [4]
Quinolones

Nalidixic acid >256 >256 [ND] >256 [ND] >256 [ND]
Ciprofloxacin 32 8 [4] 32 [ND] 16 [4]
Levofloxacin 64 32 [2] 64 [ND] 16 [4]
Moxifloxacin 32 8 [4] 32 [ND] 32 [ND]
Tetracyclines
Tetracyclines 8 8 [ND] 8 [ND] 0.5 [16]
Doxycycline 8 4 [2] 4 [2] 1 [8]

Phenicol
Chloramphenicol 32 32 [ND] 32 [ND] 8 [4]

Bile salts
Sodium cholate 8000 8000 [ND] 4000 [2] 4000 [2]

Sodium
deoxycholate 32,000 32,000 [ND] 32,000 [ND] 32,000 [ND]

Bile salts mix 50,000 50,000 [ND] 50,000 [ND] 6250 [8]
Disinfectants

Chlorhexidine 2 2 [ND] 2 [ND] 2 [ND]
Benzalkonium

chloride 32 32 [ND] 32 [ND] 16 [2]

Germicide
Acriflavine 32 16 [2] 32 [ND] 16 [2]

ND, no observed MIC difference. * A kanamycin resistance marker was used to inactivate areB, areE and areG
genes. Changes of at least 2-fold are indicated in bold type.

To evaluate if the increase in susceptibility observed for mutant strains was a con-
sequence of efflux loss, the intracellular accumulation of ethidium bromide (EtBr) was
assessed for parental and mutant strains (Figure 2). A time-dependent increase in fluo-
rescence was observed for all strains, with the Ab_2811∆areB mutant accumulating more
EtBr than the parental strain and the other two mutants. When accumulation of ethidium
bromide was assessed, fluorescence increased by ~5- to 9-fold after 37 min for mutant
versus parental strain. Considering that a defective efflux results in dye accumulation and
consequently an increase in fluorescence, these results support the functionality of the
three efflux pumps of A. butzleri [32]. When the efflux pump inhibitor carbonyl cyanide m-
chlorophenyl hydrazone was added to the parental strain, a ~6-fold increase was observed,
confirming the contribution of efflux systems to the ethidium bromide accumulation, as
previously described for C. jejuni [28].
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Figure 2. Accumulation of ethidium bromide after 37 min of incubation for parental Aliarcobacter
butzleri Ab_2811 strain and derived mutants, in the absence (for mutants) or presence (for parental
strain) of carbonyl cyanide m-chlorophenyl hydrazone at 50 µM. Data match to mean ± standard
error of the mean (SEM) from three independent experiments.

2.2. Influence of Efflux System Impairment in Bacterial Growth and Relative Fitness

Several studies showed that the deletion of a gene from an efflux pump can affect bac-
terial growth and influence bacterial fitness [16,33,34]. To assess the effects, growth curves
of the parental A. butzleri Ab_2811 strain and their mutants were constructed (Figure 3a).
The mutant strains exhibited similar growth curves when compared with the parental
strain. Despite the observed slight reduction in growth during the exponential phase,
the mutations did not confer significant growth deficiency. This behavior is consistent
with other studies showing that a mutation in the gene encoding the carrier protein of the
RND-type efflux pump did not impair growth [23,24,35].

Figure 3. (a) Growth curves and (b) relative fitness of Aliarcobacter butzleri parental Ab_2811 strain and derived mutants.
Data match to mean ± standard deviation (SD) from at least three independent experiments. ** p < 0.01; *** p < 0.001;
**** p < 0.0001.

A fitness assessment was conducted for parental and mutant strains to determine if the
inactivation of these genes could confer an advantage or disadvantage to the strain [36]. The
pairwise competition assay showed that all three mutant strains underwent a fitness cost
(Figure 3b), following the same trend observed by Pérez et al. (2012), where the disruption
of the efflux system led to a reduction in bacterial fitness [23]. Overall, our results indicate
that the efflux pumps under study participate in maintaining the biological competitiveness
of A. butzleri. Indeed, it has been described that a variation of the expression of efflux
pumps may induce specific changes in bacterial regulatory networks [16].
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2.3. Effect of Inactivation of the RND Efflux Pumps in the Susceptibility to Oxidative and
Bile Stress

In addition to conferring resistance to certain antibiotics, efflux pumps may have a
role in resistance to oxidative stress. Oxidative stress occurs in bacteria, and in order to
prevent the damage caused by the reactive oxygen species, a detoxification process occurs
that involves the transport of these compounds by efflux pumps. RND efflux pumps have
been associated with the extrusion of a variety of oxidative stress-inducing agents such as
hydrogen peroxide and paraquat [37].

To validate this hypothesis, we tested the resistance to hydrogen peroxide and
paraquat. Only the mutant Ab_2811∆areE exhibited an increase in the inhibition diame-
ter zone against 3% and 30% hydrogen peroxide when compared to the parental strain
(Figure 4a). In contrast, all mutant strains showed an increased susceptibility to paraquat
(Figure 4b), suggesting that these efflux pumps contribute to the bacterial tolerance to
oxidative stress induced by paraquat.

Figure 4. Oxidative stress susceptibility of Aliarcobacter butzleri parental Ab_2811 strain and derivate mutants, induced by
(a) hydrogen peroxide and (b) paraquat. Data correspond to the mean ± SD of at least three independent experiments.
* p < 0.05; ** p < 0.01; **** p < 0.0001; ***** p < 0.00001.

These results are in accordance with a previous study showing that deletion of cmeG
gene of C. jejuni resulted in increased susceptibility to hydrogen peroxide. The mechanism
contributing to resistance to oxidative stress in Campylobacter is not yet known, but it has
been hypothesized that the extrusion of toxic metabolites contributes to the detoxification
process and therefore to oxidative stress resistance [37]. Furthermore, in Salmonella enterica
serovar Typhimurium, the overexpression of the RND efflux pump MdsABC resulted in an
increase in the resistance to oxidative stress induced by paraquat, demonstrating a role of
efflux pumps in the defense mechanism against this stress [38].

Based on our results, we suggest that the AreDEF system may present a similar
function to cmeG in C. jejuni, while the three systems may alleviate stress induced by
paraquat, possibly playing a critical role in the oxidative balance necessary for normal
physiology.

Bacteria that infect the gastrointestinal tract are exposed to several barriers, such as
bile salts [39], which can disrupt cell membranes [40]. Efflux pumps may play a role in the
bacterial resistance against these compounds. As an example, C. jejuni uses the CmeABC
efflux pump as a mechanism for resistance to bile [21].

Since A. butzleri is considered a pathogen capable of infecting the gastrointestinal
tract [5] and the inactivation of areG gene led to a reduction in the MIC for bile salts,
further studies were undertaken. For that, the parental and mutant strains were exposed
to a physiological range of bile salt concentrations [41]. Overall, increasing concentra-
tions of bile salts in the medium resulted in a decrease in the strains’ growth, while for
the Ab_2811∆areG mutant, cellular death was observed for all the tested concentrations
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(Figure 5). Several studies have shown that efflux systems are relevant for bacterial survival
in the gastrointestinal tract and that this may be their ancestral function [19,27]. In C. jejuni,
it was demonstrated that the inactivation of the CmeABC efflux pump led to a decreased
resistance of the bacterium to bile salts [21,28,29,42]. The role of the efflux systems in the
bacterium’s survival in the presence of bile salts has also been described for other bacteria
associated with human intestinal tract infections, such as Vibrio cholerae and Bacteroides
fragilis [16,43]. Accordingly, our results strongly support a role of the AreGHI system in
A. butzleri survival in the gastrointestinal tract, likely influencing the capacity of A. butzleri
survival in response to this defense mechanism of the host, while promoting bacterial
adaptation to the intestinal tract.

Figure 5. Bile stress susceptibility of Aliarcobacter butzleri parental Ab_2811 strain and derivate
mutants. Data correspond to the mean ± SD of three independent experiments. **** p < 0.0001;
***** p < 0.00001; ****** p < 0.000001; The survival was determined as logarithm of NT/N0, where NT

corresponds to the colony-forming units (CFU)/mL after 6 h of incubation and N0 corresponds to
CFU/mL at time 0.

2.4. Impact of the Inactivation of RND Efflux Pumps on Motility and Biofilm Formation Ability

Motility and biofilm formation are two of the virulence mechanisms described for
A. butzleri [5,6], being frequently associated with colonization and bacterial persistence,
respectively [31,44]. A change in the expression of the efflux pumps can have an impact
on the motility, which, in turn, may be associated with the formation of biofilms, influ-
encing the virulence of the bacterium [45]. To assess whether these bacterial virulence
characteristics were affected by inactivation of one of the subunits of the efflux pumps
under study, motility and biofilm formation assays were performed for the parental and
the mutant strains (Figure 6). Regarding motility, the migration diameter of all the mutant
strains decreased; however, only the Ab_2811∆areG mutant demonstrated a significant
decrease when compared to the parental strain (Figure 6a). A decrease in motility has
already been described for other bacteria, induced by the inactivation of an RND-type
efflux pump [34,46].

The formation of biofilms was quantified by the crystal violet colorimetric assay. The
inactivation of the three efflux systems led to a significant decrease in biofilm formation
when compared to the parental strain (Figure 6b). Several studies described a similar
behavior, where a deletion or inhibition of efflux pumps was associated with a decrease
in biofilm formation [47,48]. For example, when the adeB gene of the AdeABC efflux
system from A. baumannii was deleted, the mutant had a significant defect in biofilm
formation. Moreover, mutants of Salmonella Typhimurium lacking tolC and acrB genes
had compromised biofilm formation ability [49,50]. RND efflux pumps also have the
ability to extrude quorum-sensing signals, with an impact on the process of intercellular
communication, which in turn is associated with biofilm formation [16].
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Figure 6. (a) Motility ability and (b) biofilm formation ability of Aliarcobacter butzleri parental Ab_2811 strain and derivate
mutants. Data are the mean ± SEM of at least three independent experiments. * p < 0.05; ** p < 0.01; ***** p < 0.00001.

2.5. Impact of the Inactivation of RND Efflux Pumps on Human Serum Susceptibility

To verify the serum’s bactericidal effects on parental and mutant strains, we performed
the serum killing assay. PBS was used as control of the experiment, and no killing effects
were observed for all the strains. Overall, the survival of the mutant strains in healthy
human serum was shown to be significantly different from that observed for the parental
strain (Figure 7). Indeed, after 180 min of exposure, all the mutants demonstrated a
significant increase in their susceptibility to human serum (p < 0.01). These results are in
agreement with a study performed in Stenotrophomonas maltophilia, where the deletion of
the RND efflux pump SmeYZ resulted in increased susceptibility to human serum [51].

Figure 7. Susceptibility of Aliarcobacter butzleri parental Ab_2811 strain and derivate mutants to
human serum. Death of the bacteria on PBS (solid lines) and serum (dash lines). Data correspond to
the means ± SD of three independent experiments.

2.6. In Vitro Adhesion to and Invasion into Caco-2 Cells

RND-type efflux pumps are recognized for their role in resistance as well as in vir-
ulence [52]. Since capacities for adhesion to and invasion into host cells are required for
successful colonization and infection [53], these in vitro assays were performed to evaluate
virulence for parental and efflux pumps mutant strains. Compared to the parental strain,
all mutants exhibited a significant decrease in the capacity for adhesion to Caco-2 cells
(Figure 8). However, no difference was observed regarding invasion ability between the
parental and mutant strains, probably due to the very low percentage of invasion observed
for all the strains (Figure 8).
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Figure 8. Adhesion and invasion assays for parental Aliarcobacter butzleri Ab_2811 strain and derivate
mutants. Data correspond to the mean ± SEM of three independent experiments. ** p < 0.01;
*** p < 0.001.

Our results are in accordance with a previous study carried out in Salmonella enterica,
where the lack of AcrB led to a decrease in adhesion and invasion. In that study, the
reduction in virulence observed for the mutant strains was caused by the loss of the
efflux function [24]. Supporting this, several studies have shown that RND efflux pumps
play a relevant role in the virulence of bacteria. For example, in C. jejuni, the CmeABC
system is needed for gut colonization of 1-year-old chicks [21]; in Moraxella catarrhalis,
a deletion of the AcrAB-oprM system led to a decrease in invasion of the mutant into
pharyngeal epithelial cells [54]; and in Vibrio cholerae, RND efflux systems are essential for
the colonization of the small intestine in mice [55]. Overall, all the A. butzleri efflux systems
under study showed a potential role in adhesion ability, thus contributing to bacterial
virulence and infection of host cells.

In summary, the results suggest that the A. butzleri efflux systems AreABC, AreDEF
and AreGHI have a role in the extrusion of several antimicrobial agents, such as antibiotics,
bile salts and biocides. In addition, results showed that these pumps are also relevant
elements in the defense against oxidative stress, while AreGHI has a role in the survival
of the bacterium in presence of bile salts. Finally, all the efflux systems tested showed a
role in the ability to form biofilms, the ability to survive in human serum and the ability to
adhere to intestinal cells. Thus, overall, the three efflux pumps studied have been shown to
contribute to antimicrobial resistance and also to virulence of A. butzleri. Our results are in
agreement with the well-known role of RND efflux systems in antibiotic resistance, while
their role in other relevant physiological processes, namely those associated with bacterial
virulence, has also been described for several pathogens, such as C. jejuni, S. maltophilia
and P. aeruginosa [16]. This study produced relevant data towards a better understanding
of the emerging pathogen A. butzleri, while allowing the identification of putative targets
for new therapeutic strategies to fight this infection.

3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions

The A. butzleri strain Ab_2811 was isolated from a poultry carcass neck skin [56] and
was used as the parental strain for this study. Bacterial cells were stored at −80 ◦C in brain
heart infusion (BHI) containing 20% glycerol and were routinely cultured on blood agar
base (BA, Oxoid, Basingstoke, England) supplemented with 5% (v/v) of defibrinated horse
blood or in tryptic soy agar (TSA, VWR, Leuven, Belgium) medium and incubated at 30 ◦C
for 24 h, in aerobic conditions. For growth in broth culture, the A. butzleri strains were
transferred to 10 mL of tryptic soy broth (TSB) with an initial optical density at 620 nm
(OD620 nm) of 0.02 and incubated overnight at 30 ◦C under aerobic conditions.
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3.2. Construction of Aliarcobacter butzleri Efflux Pump Mutants

The construction of the A. butzleri Ab_2811 mutants was performed using insertional
mutagenesis, where the areB, areE and areG genes, encoding for the inner membrane protein
of each of the three RND efflux systems under study, were interrupted by a kanamycin
resistance cassette (aphA-3). The aphA-3 cassette was obtained by enzymatic digestion of
pUC18-K2 plasmid with BamHI and KpnI, followed by purification. Then, amplification
of the upstream and downstream regions of each gene was performed using the primers
presented in Table S1. Primers were designed with a tail sequence that allows hybridization
with upstream and downstream regions of the kanamycin resistance marker. The overlap-
extension PCR was used to construct the transformant DNA fragment. This fragment
consisted of an aphA-3 cassette flanked by the amplified fragments of an upstream and a
downstream region of the genes under study. After purification, the transformant DNA
fragment was used for the natural transformation of A. butzleri through a biphasic method
based on a protocol previously described, with some modifications [57]. Briefly, A. butzleri
Ab_2811 was cultured in BA at 30 ◦C for 24 h in a microaerophilic atmosphere (6% O2, +/−
7.1% CO2 and 3.6% H2). Then, 5 × 109 CFU were resuspended in TSB and transferred to
a test tube containing 1.5 mL of BA and incubated under the same conditions for 6 h. At
this point, 2 µg of the transformant DNA was added and tubes were further incubated for
5 h. After incubation, the suspension was transferred to a BA plate supplemented with
50 µg/mL of kanamycin and incubated at 30 ◦C under microaerophilic atmosphere, for
5 days. The transformation was confirmed by PCR through analysis of the fragment size,
and the gene expression was evaluated by RT-PCR technique (Table S1).

3.3. Antimicrobial Susceptibility Test

The minimum inhibitory concentration (MIC) was determined by broth microdilution
method [58] for several classes of antibiotics, including β-lactams, quinolones, aminoglyco-
sides, tetracyclines, macrolides and phenicols, and for different bile salts, disinfectants and
a germicide. The MIC of compounds tested was assessed followed by spectrophotometric
confirmation at 620 nm, using the value of 0.05 as a cut-off of the optical density. This test
was performed in duplicate and in at least three independent assays.

3.4. Ethidium Bromide Accumulation Assay

The EtBr accumulation in parental and mutant A. butzleri strains was evaluated as
previously described, with minor modifications [14,28]. Cultures were grown until mid-
exponential phase, collected by centrifugation, washed with phosphate-buffered saline
(PBS) and resuspended at OD620 nm of 0.2. The suspension was transferred to a black
96-well plate with a clear bottom (Greiner Bio-One, Frickenhausen, Germany). After
incubation for 10 min at 30 ◦C, EtBr was added to each well to a final concentration of
2 µg/mL. Fluorescence was recorded with a Spectramax Gemini XS spectrofluorometer
(Molecular Devices LLC, San Jose, CA, USA) at excitation and emission wavelengths of 530
and 600 nm, respectively. For the accumulation in the presence of efflux pump inhibitor,
after 7 min of readings, carbonyl cyanide m-chlorophenyl hydrazone was added to each
well to Ab_2811 at a final concentration of 50 µM. Each assay was performed in triplicate
and in three independent assays.

3.5. Growth Curves and Competition Experiments of the Parental and Mutant Strains

The growth curves of A. butzleri parental and mutant strains were determined as
described previously [58], and competition experiments were performed using pairwise
competition assay for parental and mutant strains [58]. Briefly, a fresh culture in 10 mL
of TSB was started by adding equal volumes of a preculture of parental and mutant
strains. This culture was incubated at 30 ◦C for 24 h under aerobic condition. Samples
were taken at time 0 and 24 h of incubation and the total and mutant populations were
counted by plating successive dilutions on TSA and TSA supplemented with 50 µg/mL of
kanamycin, respectively. The relative fitness of each mutant was determined by the ratio of
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the Malthusian parameter of the mutant per the parental. Both assays were repeated at
least three independent times.

3.6. Stress Susceptibility Assays

The oxidative stress tolerance was determined by the disk diffusion assays, where TSA
was inoculated with a cellular suspension adjusted to OD620 nm of 0.2 using a cotton swab,
and sterile paper disks were spotted with 5 µL of 3%, 10% and 30% hydrogen peroxide
(H2O2) and 5 µL of 250 mM methyl viologen (paraquat). After incubation at 30 ◦C in
aerobic atmosphere for 24 h, the zone of growth inhibition diameter was measured. To
evaluate bile stress, an overnight culture of the parental and mutant strains was used to
inoculate a culture in the absence and presence of bile salts, with a range from 0 to 2%
(Sigma-Aldrich, St. Louis, MO, USA). At 0 and 6 h, the drop-plate method was used for
determination of CFU/mL. These assays were performed three independent times.

3.7. Motility Assay

The motility of parental and mutant strains was evaluated as previously described [58].
The center of a plate of TSA medium with 0.4% of agar was stabbed with 5 µL of mid-
exponential phase culture. Motility was measured at 24 and 48 h, after incubation at 30 ◦C
in aerobic atmosphere. This assay was performed at least three independent times.

3.8. Biofilm Formation Ability

The ability of A. butzleri to form biofilm was evaluated by the protocol described by
Reeser et al. (2007), with some modifications [59]. An overnight culture was diluted to an
OD620 nm of 0.2, and 100 µL of the bacterial suspension was applied in nonuplicate on a
round-bottom polystyrene 96-well microtiter plate. Wells with only medium were used
as negative control. After 48 h of incubation at 30 ◦C in aerobic atmosphere, the medium
was removed, and the plate was incubated for 1 h at 55 ◦C. Then, the biofilm was stained
with 100 µL of crystal violet at 0.1% (w/V) in deionized water and incubated for 15 min at
room temperature, followed by washing of the wells three times with distilled water and
incubation again at 55 ◦C for 15 min. After drying, the biofilm was destained with 120 µL
of a 30% methanol and 10% acetic acid solution. One hundred microliters was moved
to a new microtiter plate and the absorbance at 570 nm was determined. The assay was
performed at least three independent times.

3.9. Serum Killing Assays

Serum bactericidal assays were performed according to the protocol previously de-
scribed by O’Shaughnessy et al. (2012), with some modifications [60]. Blood was collected
from a healthy adult, and serum was separated by centrifugation at 2000 rpm for 10 min at
4 ◦C and frozen in aliquots at −80 ◦C in sterile cryogenic tubes. For the assay, the parental
and mutant strains at mid-exponential phase were washed and resuspended in PBS at a
final concentration of ~107 CFU/mL with 90% of serum. As control, serum was replaced
with PBS. The assay was performed at 30 ◦C, and viable cells were counted by successive
dilution at the time points of 0, 15, 30, 45, 90 and 180 min. This assay was done three
independent times.

3.10. Adhesion and Invasion Assays

Adhesion and invasion assays were performed in the Caco-2 human intestinal epithe-
lial cell line. The Caco-2 cells were grown in tissue culture flasks in Dulbecco’s modified
Eagle medium supplemented with 10% fetal bovine serum, 1% nonessential amino acids,
100 µg/mL streptomycin and 100 U/mL penicillin and incubated at 37 ◦C in 5% of CO2.
For assays, 24-well plates were seeded with 1 × 105 cells/ well and incubated for 48 h. To
determine adhesion, monolayers were infected at an MOI of 100 and incubated for 2 h
in the same atmospheric conditions. Cells were washed three times and lysed with 0.1%
Triton X-100. For invasion of Caco-2 cells, a gentamicin protection assay was performed.
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After 2 h of infection, extracellular bacteria were killed by incubating with 125 µg/mL
of gentamicin for 1 h. Then, cells were washed to remove residual antibiotic and lysed
with 0.1% Triton X-100. Percentage of adherent and invading bacteria was determined by
successive dilution of lysates and plating by drop-plate method. Each assay was performed
at least three independent times, in triplicate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/antibiotics10070823/s1, Table S1: Primers used in PCR in this study, Figure S1. Confirmation
of constructed mutants by PCR, Figure S2. Confirmation of gene expression by RT-PCR.
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