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Abstract: As a popular food, Chinese yam (CY) powder is widely used for healthy and commercial
purposes. Detecting adulteration of CY powder has become essential. In this work, chemometric
methods combined with laser-induced breakdown spectroscopy (LIBS) were developed for iden-
tification and quantification of CY powder adulteration. Pure powders (CY, rhizome of winged
yam (RY) and cassava (CS)) and adulterated powders (CY adulterated with CS) were pressed into
pellets to obtain LIBS spectra for identification and quantification experiments, respectively. After
variable number optimization by principal component analysis and random forest (RF), the best
model random forest-support vector machine (RF-SVM) decreased 48.57% of the input variables and
improved the accuracy to 100% in identification. Following the better feature extraction method RF,
the Gaussian process regression (GPR) method performed the best in the prediction of the adulter-
ation rate, with a correlation coefficient of prediction (Rp

2) of 0.9570 and a root-mean-square error
of prediction (RMSEP) of 7.6243%. Besides, the variable importance of metal elements analyzed by
RF revealed that Na and K were significant due to the high metabolic activity and maximum metal
content of CY powder, respectively. These results demonstrated that chemometric methods combined
with LIBS can identify and quantify CY powder adulteration accurately.

Keywords: Chinese yam powder adulteration; identification and quantification; laser-induced
breakdown spectroscopy; random forest-support vector machine; Gaussian process regression

1. Introduction

Chinese yam (Dioscorea oppositifolia L., CY), the rhizome of dioscorea opposite thumb,
is a food crop in East Asia and West Africa [1], containing proteins, starches, vitamins, and
other nutrients essential to the human body. Besides, CY is a widely-used ingredient in
traditional Chinese medicine because it has many roles such as anti-tumor, anti-oxidation,
and anti-inflammation from its polysaccharides, flavonoids, polyphenols, steroidal sa-
pogenins, etc. [2]. With the popularity in people, the global production of CY was increased
dramatically from 17 million tons in 1988 to 73 million tons in 2018, and it ranks as the
fourth most important tuber crop in economic terms [1,3].

CY powder, as a kind of health-care food with more convenient intake and better ab-
sorption by breaking cell walls, has been demanded increasingly by consumers recently [4].
Faced with strong market demands, some businesses sell adulterated CY powder to gain
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large profits. The common adulteration is CY powder mixed with powders of similar
species and looking, including rhizome of winged yam (Dioscorea alata L., RY) and cassava
(Manihot esculenta Crantz, CS) [5,6], whose prices are 1/2 to 1/6 of CY powder, respec-
tively. The adulteration phenomena disrupted market security and authority, because these
adulterants changed the nutrients and officinal ingredients of CY powder, which resulted
in financial loss, inefficient function, allergic reactions, and even poisoning accidents [7].
Therefore, the adulteration detection of CY powder is an important issue for both con-
sumers and producers. Common adulteration detection methods for CY powder include
microscopic observation [8], chromatographic techniques [9], mass spectrometry [10], and
so on. These methods have disadvantages, such as complex preprocessing, long detection
time, high technical requirements and complicated equipment maintenance. Recently, some
researches have reported that near-infrared spectroscopy could be applied to the adulter-
ation detection of CY powder [7,11,12], but it still has the disadvantages of expensive cost,
high requirement for background light, and poor anti-interference ability.

Laser-induced breakdown spectroscopy (LIBS), a reliable technique for emission
spectroscopy analysis, has been applied in geological prospecting [13], industrial monitor-
ing [14,15] and tissue identification [16]. With the merits of simple sample pretreatment,
in situ detection and real-time analysis [17], LIBS is gradually becoming popular in the
detection of adulteration. Dimitrios Stefas et al. investigated the effects of artificial feeding
of bees on the honey using LIBS combined with LDA and RF, and evaluated the importance
of metal elements for classification, with accuracies more than 90%. More precise quantifi-
cation of mixed categories is needed [18]. Banu Sezer et al. identified the beef, chicken, and
pork in fermented sausage and salami products using protein-based LIBS, and the limit of
detection values by partial least square analysis model were 3.68%, 3.83%, 3.80% and 3.47%,
respectively [19]. The measured content rates of validation are within calibration, and the
rates in unknown conditions require further verification. Weihua Huang et al. used CNN to
classify the adulterated milk powder mixed with four different types of exogenous proteins
from the range of 5–20%, and its average accuracy was 97.8% [20]. The adulteration range
can be further extended for verification. While the references above have made significance
to adulteration detection by LIBS, there are few studies roundly conducted on qualitative
and quantitative adulteration using LIBS, let alone CY powder adulteration. Meanwhile,
the identification accuracy and prediction precision of adulteration studies need to be
further improved.

In this work, we distinguished CY powder from its adulteration using LIBS combined
with a random forest-support vector machine (RF-SVM) model and quantified the ratio of
adulterants in CY with a RF-Gaussian process regression (GPR) model by LIBS. CY, RY and
CS slices were ground into powder for tableting in LIBS spectral collection. Based on the
results of RF method, the spectral lines were ranked and the input number was optimized
to improve the identification accuracy and prediction precision. Some common indexes
were used to evaluate the performance for discrimination and quantitative models.

2. Materials and Methods
2.1. Experiment Setup

The schematic diagram of the LIBS system is shown in Figure 1. The hardware device
of the LIBS system mainly comprised a Q-switched Nd: YAG laser (wavelength: 532 nm;
pulse width: 8 ns; flattened Gaussian beam; Beamtech Optronics Co., Ltd., Beijing, China,
Nimma-400), a 45◦ plate beam splitter (350–1100 nm R: T = 50:50), a quartz lens (f = 150 mm),
a six-channel fiber-optic spectrograph (Avantes B.V., Apeldoom, Netherlands, AvaSpec-
ULS4096CL-EVO, spectral ranges: 196–874 nm, minimum gate width: 9 µs), a digital delay
generator (DDG, Stanford Research Systems, Sunnyvale, CA, USA, DG645), a CMOS (Thor-
labs, Newtown, New Jersey, USA, DCC1545M, resolution: 1280 × 1024 pixels), an XYZ mo-
tion platform (Beijing Jiangyun Juli Technology, Beijing, China, DZY110TA-3Z), a collector
and a computer. More device details can be found in a previous study [21]. The laser
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energy, gate width, and delay time were set to be 35 mJ, 9 µs and 1 µs, respectively. Each
spectrum was the average of 5 pluses.
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Figure 1. Schematic diagram of the LIBS setup (PC: personal computer; DDG: digital delay generator).

2.2. Sample Pretreatment

Dry slices of Chinese yam (CY), cassava (CS), and rhizome of winged yam (RY) were
authenticated and provided by Hubei University of Chinese Medicine. CY is from Wen
County, Henan Province in China, which belongs to one of the most popular varieties
tiegun yam, famous for its nutrients and active ingredients [22]. CS and RY are from
Xiangtan City, Hunan Province and Nanning City, Guangxi Province in China, respectively,
and they are common varieties in the market. These slices were placed in a 60 ◦C drying
baker around 6 h until the quality had no change, and they were ground into powder to
pass through a 100-mesh sieve. According to the market research, the price of CS is lower
than that of RY, so incorporating CS into CY can better meet the interests of illegal traders.
Pure powders (CY, CS and RY) and CY powder adulterated by CS powder in the range of
0–100% at a 5% gradient were used for identification and quantitation tests, respectively.
The details of samples are shown in Table 1. Various powders (1 g) assisted by boric acid
powder (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China; 9 g) were pressed into
pellets of 40 mm diameter by a pressure of 30 tons. For each category, 3 pellets were made
to do the repeated experiments. In total, 72 pellets were prepared for experiment.

Table 1. The details of sample preparation.

Experiment Type Sample Type Preparation Method Quantity

Qualitative Training set and test set
Pure CY 3
Pure CS 3
Pure RY 3

Quantitative
Calibration set

0%, 5%, 15%, 20%, 30%, 35%,
45%, 50%, 60%, 65%, 75%,

80%, 90%, 95%, 100%
45

Validation set 10%, 25%, 40%, 55%, 70%, 85% 18

2.3. Algorithm Description

The feature extraction methods used in this paper include principal component anal-
ysis (PCA) and random forest (RF). PCA eliminates possible multicollinearity between
variables based on variance in projection [23], obtaining the contribution rate of each com-
ponent depending on the eigenvalue ratio. RF gives estimation of variable importance
based on the Gini coefficient or out-of-bag error in the classification [24]. They can be
used for feature extraction according to the contribution rate of components or impor-
tance of variables (collectively called significance of features). The significance of the ith
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(i = 1 · · ·m, · · · n) feature is Ii, and the accumulative significance AIm of the 1th − mth
features is calculated according to Equation (1).

AIm =
m

∑
i=1

Ii/
n

∑
i=1

Ii , (i = 1, · · ·m, · · · n) (1)

K-nearestneighbor (kNN), decision tree (DT), naïve bayes (NB), and support vector
machine (SVM) classifiers are widely used for matter identification [17,25–27]. The par-
tial least-square regression (PLSR), ensemble machine learning (EML), linear regression
(LR) and Gaussian process regression (GPR) are widely used for chemical component
prediction [8,28–30].

In this work, we applied these algorithms to detect CY powder adulteration firstly.
The spectral data collected by the spectrometer were saved into csv files by LIBSsystem
software written by laboratory personnel [31]. Python 3.7.0 platform was used to read and
process data in csv files.

The details of data processing are shown in Figure 2. The steps of spectral data
processing are performed as follows.
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Figure 2. The details of data processing (CY: Chinese yam; PCA: principal component analysis;
RF: random forest; kNN: k-nearestneighbor; DT: decision tree; NB: naïve bayes; SVM: support
vector machine; PLSR: partial least-square regression; EML: ensemble machine learning; LR: linear
regression; GPR: Gaussian process regression).

1. Find the characteristic element peaks of CY LIBS spectra.
2. Divide the training set and test set of LIBS spectra for classification samples randomly

by the proportion 2:1.
3. Use PCA and RF combined with kNN to optimize the number of inputs for identifica-

tion, respectively.
4. With the optimized features, train the DT, NB and SVM classifiers, and identify CY by

different models, respectively.
5. With the better feature extraction method, optimize the number of features combined

with PLSR for quantification.
6. Train the LR, EML and GPR models, and quantify CY adulteration by different models, respectively.
7. For evaluation indexes, the recognition accuracy, the root-mean-square error (RMSE)

and the correlation coefficient were used for identification and quantitation, respectively.
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3. Results and Discussion
3.1. Spectral Analysis

With the described setup and optimized parameters, 720 and 1260 spectra were
obtained from qualitative and quantitative samples, respectively. The LIBS spectra ranging
from 220 nm to 800 nm are shown in Figure 3.
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Figure 3. The LIBS spectra of CY, CS and RY samples.

Elements including C, H, O, K, Ca, Na, Mg, Al and molecular bands C-N could be
observed. The spectra of CY, CS and RY have the same trend: their peaks were located in
the same position but have different intensities, which implied they have the same element
variety but different contents. Among these peaks in CY, the peak of the K element line has
the highest intensity, because CY has the strongest ability to enrich element K from soil [32].
The peak intensity of Na element line ranked the second in CY, but this ranking did not
match CS. There are many similar analyses for different elements, and they provide the
basis of CY powder adulteration detection.

Due to the large spectral dimension (24564 bands), it is necessary to reduce redundant
information. The characteristic lines were selected initially for facilitate identification and
quantification, and the details of 35 selected spectral lines for CY adulteration analysis are
shown in Table 2.

Table 2. Characteristic lines used for CY powder adulteration analysis.

Element Wavelength (nm) Element Wavelength (nm)

C-N 386.19, 387.14, 388.34 K 404.41, 766.49, 769.90

C 247.86 Na 285.28, 589.00, 589.60, 819.48

H 656.29 Mg 279.55, 279.80, 280.27, 517.27, 518.36

O 777.19, 777.42, 777.54 Al 396.15

Ca 422.67, 442.54, 443.50, 443.57, 445.48, 445.59, 445.66, 558.88, 610.27, 612.22, 616.22,
643.91, 646.26, 649.38

3.2. Identification of CY Adulteration

The 3D visualization of the selected features for CY, CS and RY powders was shown in
Figure 4. The CY data were almost mixed with the CS data completely, and there were some
overlapping areas between the CY, CS and RY data, which suggested that it was difficult to
identify CY using simple classification methods. It is necessary to extract features further
and find an appropriate classifier for accurate classification.
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After dividing the training and test sets, the optimal feature set of the training set
needed to be extracted. To reduce the redundant information, PCA and RF were applied to
acquire the optimal feature subset for feature extraction. For PCA, the scores of principal
components (PCs) were extracted as feature variables. For RF, the intensities of spectral
lines were selected as feature variables. After the contribution rate of each PC was assessed
by PCA, the PCs were sorted by the contribution rate. Similarly, the importance of each
spectral line was evaluated by RF, these spectral lines were sorted in order. Combined with
the kNN classifier (The k value was set to 1, and the distance was calculated by Euclidean
distance.), different numbers of features were used as input variables to identify the CY.
Hence, a series of accuracies could be obtained, and the feature number was determined by
the highest accuracy. The optimization process of feature extraction is shown in Figure 5.
As the number of features increasing, the float of the accumulative significance became
smaller and smaller, and the curves became even. The advantage of PCA is to remove
redundant information, so the accumulative significance was relatively stable and the
accuracy was high when the number of components was small. RF has the merit of
evaluating the importance of variables without data compression, so the high accuracy and
flat trend appeared relatively slowly. The accuracy of the kNN classifier combined with RF
was 99.79% by 35 raw features, that was, the accuracy was 99.79% by all features. After
reducing the dimension by PCA, with the first 5 PCs, the highest accuracy of kNN classifier
was 99.79%, and the accumulative significance of the first 5 PCs was 99.07%. For the RF
method, with 18 characteristic lines, the accuracy reached the maximum 99.79%, and the
accumulative significance was 93.14%. The highest accuracy of kNN-PCA was the same as
that of kNN-RF, and the accuracy was essential to be improved further.

To avoid the result limitation of a single classifier kNN, the optimal feature subsets
from PCA and RF were applied to DT (The algorithm is CART), NB and SVM (The kernel
was optimized to the linear kernel.) to recognize CY, respectively. The classification results
of different models are shown in Figure 6. From PCA to RF for feature extraction, the
prediction set accuracies of DT, NB and SVM ranged from 97.22%, 97.62% and 99.21% to
96.43%, 98.81% and 100%, respectively. Among them, the RF-SVM model performed best,
with the highest accuracy of 100%. This result indicated that RF was more suitable than
PCA for the detection of CY adulteration. Compared with PCA, RF retains the original
value of each feature according to the variable importance, and it is possible to retain the
nonlinear relationship between features to obtain the best result. For the three classifiers, DT
had the worst classification result, because DT summarizes a set of classification rules from
the training set by selecting samples randomly, probably leading to the repeated selection
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of some samples, resulting in a local optimal solution. NB performed slightly worse than
the SVM model. NB assumes that the input conditions are mutually independent, ignoring
the correlation between variables. While the aim of SVM is to maximize the marginal
distance between two categories, it makes the optimal solution possible.
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In the best model RF-SVM, the importance sequence of 18 variables is listed in Table 3.
Except Mg 279.80 is the ionic line, the other 17 variables are all atomic spectral lines. The roles of
metal elements are more important than non-metal elements, and the importance sequence of
metal elements was Na 589.00 nm > K 769.90 nm > Mg 518.36 nm > Ca 616.22 nm > Al 396.15 nm.
Element Na is the most important element in the classification, because it is widely involved in
plant metabolism, such as osmotic regulation, water metabolism and nutrient transport [33].
The importance of Na in CY has been proven in relevant studies, which is one of the reasons
for the high metabolic activity of CY [34]. Furthermore, element K maintains resistance to cold,
drought and disease, participating in stomatal regulation, synthesis of essential compounds
and sucrose transportation. It can be inferred that element K is related to the high contents
of resistant starches, polysaccharides and steroidal saponins in CY [1]. Elements Mg and Ca
are related to chlorophyll and cell walls, which involves the differences of starches and fiber
contents, respectively [35]. Therefore, the spectra of metal elements are vital to the identification
of CY powder adulteration.

Overall, with the best model RF-SVM, the input variables were decreased by 48.57%
and the recognition accuracy was improved from 99.75% to 100%. The results indicated
that it is feasible to identify CY powder adulteration accurately using LIBS combined with
RF-SVM model. Meanwhile, the accuracy showed the advantage of RF in estimation of



Foods 2022, 11, 1216 8 of 11

variable importance for CY powder adulteration detection. Therefore, RF could be applied
to predict the adulteration rate of CY powder further.

Table 3. The significance sequence of 18 features in the RF-SVM model.

Sequence Number Element Line (nm) Sequence Number Element Line (nm)

1 Na 589.00 * 10 Ca 443.50
2 Na 589.60 11 Ca 643.91
3 K 769.90 * 12 K 404.41
4 Mg 518.36 * 13 Ca 646.26
5 Ca 616.22 * 14 Ca 445.48
6 Al 396.15 * 15 O 777.54
7 Mg 279.80 16 O 777.19
8 Ca 612.22 17 Na 285.28
9 Ca 610.27 18 O 777.42

Note: * means the line appearing first in the same metal element.

3.3. Quantification of the Adulterants in CY Powder

Based on the accurate CY identification, it is necessary to quantify the CY powder
adulteration rate further. Meanwhile, RF will continue to be used in the quantitative
adulteration of CY powder.

For 35 raw features from the calibration set, RF combined with PLSR was used to optimize
the number of feature subsets in the regression. Similar to the optimization process in CY
powder identification, when the number of the features was 13, the Rp

2 was the largest and
the RMSEP was the smallest. These 13 features listed in Table 4 are all atomic lines. They
included four elements Na, K, Al and Ca, and the sorting result of atomic lines for these
4 metal elements was Na 589.00 nm > K 769.90 nm > Al 396.15 nm > Ca 616.22 nm. Compared
with adulteration identification, there is no spectrum of element Mg for quantitative analysis,
and the importance of Al and Ca switched order in quantification. This result suggested that
Mg might played an important role in RY to a certain extent. To explore the variation trend of
elements in CY quantitative adulteration further, the average spectral intensities of these four
elements (Na, K, Al and Ca) lines in 0–100% adulterated samples were counted and is shown
in Figure 7. For each element, the spectra intensities of 0% (pure CY) and 100% (pure CS)
adulterated samples corresponded to the highest and the lowest, respectively. After doping
CS, the spectral intensity in different gradients for the four elements did not show an obvious
linear relationship. The phenomenon might mainly result from unavoidable matrix effect [36],
that is, except for the test substance CS, the overall composition changed with the amount of
CS added. Among these elements, the spectral intensities of the K and Ca lines had a larger
fluctuation range than those of the Na and Al lines, which are related to the differences in
osmotic balance and cell hardness between CY and CS, respectively [35].

Table 4. The significance sequence of the 13 optimized features.

Sequence Number Element Line (nm) Sequence Number Element Line (nm)

1 Na 589.60 8 Ca 643.91
2 Na 589.00 # 9 K 766.50
3 Na 819.48 10 Ca 558.88
4 K 404.41 11 Ca 610.27
5 K 769.90 # 12 Ca 612.22
6 Al 396.15 # 13 Ca 422.67
7 Ca 616.22 #

Note: # means the metal element line with * in the Table 3.

After feature extraction by RF, a regression method was needed to predict the propor-
tion of adulteration accurately. LR is the basic method of quantitative relationship among
statistical variables [37]. EML combines multiple weakly supervised models to obtain
a more comprehensive supervised model (The ensemble method in this article is optimized
to bagging regression trees, including 30 trees.) [38]. The essence of GPR is probabilistic
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reasoning (The kernel is optimized to Matern kernel.). EML and GPR are rarely used in
LIBS, and they have gradually received attention recently in LIBS [25,39]. With 13 features,
EML, LR and GPR were applied to predict the adulteration rate. The results of different
models are listed in Table 5.
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Table 5. The results of different models for adulterant quantification.

Models Rc
2 RMSEC (%) Rp

2 RMSEP (%)

EML 0.9820 6.0730 0.9280 9.9885
LR 0.9451 10.4186 0.9541 8.2852

GPR 0.9892 4.6878 0.9570 7.6243

Among them, the GPR model performed the best with Rc
2 of 0.9892, RMSEC of

4.6878%, Rp
2 of 0.9570 and RMSEP of 7.6243%. Compared with EML and LR, the superiority

of GPR is that it can quantify the uncertainty of prediction in a principled way, so the
prediction result of GPR was the best. More prediction details of GPR are shown in Figure 8.
The predicted values of the calibration set and prediction set were highly linear with the
reference values, and the dispersion of each predicted gradient was relatively small.
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The results demonstrated that the RF-GPR model could predict the extent of adulter-
ants in CY across a wide range of gradients accurately. It is feasible to predict the percentage
of adulteration in CY powder using LIBS with the RF-GPR model.

4. Conclusions

This work aimed to distinguish CY powder from confused substances (CS and RY)
and quantify the adulterant (CS) in CY powder accurately using LIBS combined with the
RF-SVM model and RF-GPR model, respectively. For CY powder discrimination, PCA
and RF combined with kNN were used to extract the feature variables and optimize the
feature number, respectively. With the optimized features, the RF-SVM model had the
best recognition accuracy of 100%, and the input variables were decreased by 48.5%. For
adulterant quantification, RF-GPR model performed the best with Rc

2 of 0.9892, RMSEC
of 4.6878%, Rp

2 of 0.9570 and RMSEP of 7.6243%. Moreover, the analysis of variable
importance for metal elements revealed that Na and K played important roles in the
identification and quantification of CY powder adulteration, which were related to the high
metabolic activity and maximum metal content of CY, respectively. The results verified that
the RF-SVM and RF-GPR models are effective methods for LIBS analysis in CY powder
adulteration. Therefore, chemometric methods combined with LIBS can be a practical tool
for accurate detection of CY powder adulteration.
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