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ABSTRACT: An efficient implementation of the density-fitted equation-of-
motion coupled-cluster singles and doubles (DF-EOM-CCSD) method is
presented with an enhanced algorithm for the particle−particle ladder (PPL)
term, which is the most expensive part of EOM-CCSD computations. To
further improve the evaluation of the PPL term, a hybrid density-fitting/
Cholesky decomposition (DF/CD) algorithm is also introduced. In the hybrid
DF/CD approach, four virtual index integrals are constructed on-the-fly from
the DF factors; then, their partial Cholesky decomposition is simultaneously
performed. The computational cost of the DF-EOM-CCSD method for
excitation energies is compared with that of the resolution of the identity
EOM-CCSD (RI-EOM-CCSD) (from the Q-CHEM 5.3 package). Our results
demonstrate that DF-EOM-CCSD excitation energies are significantly
accelerated compared to RI-EOM-CCSD. There is more than a 2-fold
reduction for the C8H18 molecule in the cc-pVTZ basis set with the restricted Hartree-Fock (RHF) reference. This cost savings
results from the efficient evaluation of the PPL term. In the RHF based DF-EOM-CCSD method, the number of flops (NOF) is 1/
4O2V4, while that of RI-EOM-CCSD was reported (Epifanovsky et al. J. Chem. Phys. 2013, 139, 134105) to be 5/8O2V4 for the PPL
contraction term. Further, the NOF of VVVV-type integral transformation is 1/2V4Naux in our case, while it appears to be V4Naux for
RI-EOM-CCSD. Hence, our implementation is 2.5 and 2.0 times more efficient compared to RI-EOM-CCSD for these expensive
terms. For the unrestricted Hartree-Fock (UHF) reference, our implementation maintains its enhanced performance and provides a
1.8-fold reduction in the computational time compared to RI-EOM-CCSD for the C7H16 molecule. Our results indicate that our DF-
EOM-CCSD implementation is 1.7 and 1.4 times more efficient compared with RI-EOM-CCSD for average computational cost per
EOM-CCSD iteration. Moreover, our results show that the new hybrid DF/CD approach improves upon the DF algorithm,
especially for large molecular systems. Overall, we conclude that the new hybrid DF/CD PPL algorithm is very promising for large-
sized chemical systems.

1. INTRODUCTION

It is well-known that coupled-cluster (CC) methods provide
accurate results for molecular properties for most chemical
systems near equilibrium geometries.1−13 For example, the
coupled-cluster singles and doubles (CCSD)method14 provides
quite accurate results for most molecular systems at equilibrium
geometries. The addition of a perturbative triples excitations
correction [CCSD(T)]10,11,15 further enhances CCSD and
yields very accurate results for a broad range of molecular
systems.12,16−25 However, high computational costs of common
CC methods, such as O(N6) and O(N7) for CCSD and
CCSD(T) (where N is the number of basis functions), limits
their applications to relatively small-sized chemical systems.
Accurate computations of excitation energies (EEs) is one of

the most challenging problems in modern quantum chemistry.
Equation-of-motion CC (EOM-CC) methods provide accurate

results for excited-state properties for a broad range of chemical
systems.26−44 The accuracy of the EOM approach based on the
CCSD model (EOM-CCSD) has been reported to be 0.1−0.2
eV.28,31 However, as in the case of the ground-state CC
methods, the computational cost and disk/memory require-
ments for the EOM-CC methods scale steeply with the system
size.
Tensor decomposition techniques for electron repulsion

integrals (ERIs) have been of significant interest in modern
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computational chemistry.45−70 Density fitting (DF) is one of the
most popular ERI decomposition techniques.45−52,59−70 In the
DF approach, the ERI tensor of rank-4 is expanded in terms of
rank-3 tensors. Another common ERI factorization approach is
the partial Cholesky decomposition (CD).55−60,63,64 The DF
and CD techniques are very useful to reduce the cost of integral
transformations and the storage requirements for the ERI
tensor.
In this research, a new implementation of the density-fitted

EOM-CCSD method is presented with an enhanced algorithm
for the particle−particle ladder (PPL) term, which is the most
expensive term. The equations presented have been imple-
mented in a new computer code by the present authors and
added to the MACROQC package.71 The computational time of
our DF-EOM-CCSD implementation is compared with that of
the Q-CHEM 5.3 software.72 The DF-EOM-CCSD method is
applied to a test set for excitation energies.

2. CCSD ENERGY AND AMPLITUDE EQUATIONS
At first, we would like to note that all equations reported in this
study are in the spin−orbital formalism. The spin-free version of
our equations for the restricted closed-shell systems are
provided in the Supporting Information. The unrestricted
version of the formulas can be readily obtained from the spin−
orbital equations.
The correlation energy for the CCSD method can be

expressed as follows

Δ = ⟨ | ̂ | ⟩− ̂ ̂E H e0 e 0T
N

T
(1)

where ĤN is the normal-ordered Hamiltonian operator,4,73 |0⟩ is
the Hartree−Fock (HF) determinant, and T̂ is the sum of single-
and double-excitation operators T̂ = T̂1 + T̂2:
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where a†̂ and i ̂are the creation and annihilation operators and tia
and tij

ab are the single and double excitation amplitudes,
respectively.
ti
a and tij

ab can be obtained from the following equations:

⟨Φ | ̂ | ⟩ =− ̂ ̂e H e 0 0i
a T

N
T

(4)

⟨Φ | ̂ | ⟩ =− ̂ ̂e H e 0 0ij
ab T

N
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(5)

where Φi
a and Φij

ab are singly and doubly excited Slater
determinants, respectively. For explicit equations of our
CCSD implementation, one may refer to our previous
studies.65−67

3. THE EOM-CCSD MODEL
In the EOM-CCSD framework, the target excited-state wave
functions are written as follows:

|Ψ ⟩ = ̂ | ⟩̂Re 0R
T

(6)

⟨Ψ | = ⟨ | ̂− ̂e L0L
T

(7)

where R̂ and L̂ are linear excitation and de-excitation operators,
respectively. For EOM-CCSD, R̂ = R̂1 + R̂2:
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where ri
a and rij

ab are the single and double excitation amplitudes,
respectively, and the notation {a†̂...i}̂ denotes a string of normal-
ordered operators with respect to the Fermi vacuum.
For the ground state, we have the following Schrödinger

equation:

̂ | ⟩ = | ⟩̂ ̂He Ee0 0T T (10)

Hence, by multiplying eq 10 by e−T̂, we obtain

̅ | ⟩ = | ⟩H E0 0 (11)

where H̅ = e−T̂ĤeT̂.
Further, the normal ordered H̅ can be written as follows:

̅ = ̂ + ⟨ | ̂ | ⟩H H0 0 (12)

Hence, we define:

̂ = ̂ = ̂− ̂ ̂ ̂e H e H e( )T
N

T
N

T
c (13)

where subscript cmeans that only connected diagrams should be
included. Therefore, we may rewrite eq 11 as follows

̂ | ⟩ = Δ | ⟩E0 0 (14)

where ΔE is the ground-state CC correlation energy.
The excited-state eigenvalue equation can be written as

follows:

̂ ̂| ⟩ = Δ ̂| ⟩R E R0 0R (15)

where ΔER is the excited-state CC correlation energy. The
excitation energy can be written as

ω = − = Δ − ΔE E E ER R (16)

After performing some algebra, we obtain the EOM-CCSD
equation as follows:

ω̂ ̂| ⟩ = ̂| ⟩R R( 0 ) 0C (17)

Equation 17 is equivalent to the following matrix eigenvalue
equation for CCSD:

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzz

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz
ω=

R

R

R

R

R

R

0

0

0

S D

SS SD

DS DD

0 0 0

1

2

0

1

2 (18)

However, we solve eq 18 iteratively with the Davidson
algorithm.74−77 Hence, we need to introduce the so-called σ
vector as follows:

∑σ = RI
J

IJ J
(19)

where I, J = 0, S, D.
3.1. DF-EOM-CCSD Intermediates. The DF-CCSD

intermediates that appear in the DF-EOM-CCSD equations
are given in Appendix A.

3.1.1. DF-EOM-CCSD 3-Index Intermediates. 1- and 3-index
intermediates that were used for EOM-CCSD are defined as
follows:
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whereQ runs over auxiliary basis functions and the bpq
Q terms are

the molecular orbital (MO) basis DF factors, which are defined
in our previous studies.65−67

3.1.2. 4-Index Intermediates. 4-index intermediates are
defined as follows:
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3.1.3. 2-Index Intermediates. 2-index intermediates are
defined as follows:
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3.2. DF-EOM-CCSD σ Equations. The DF-EOM-CCSD σ0
equation can be written as
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With the DF approximation, the EOM-CCSD σi
a equation can

be written as
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With the DF approximation, the EOM-CCSD σij
ab equation

can be written as
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3.3. PPL Algorithm with the DF Approach. The most
expensive terms of the T2 and σ2 amplitude equations are the
PPL terms. Our PPL algorithm for the σ2 tensor originated from
the PPL algorithm used for the T2 amplitude equation in our
2016 study.65 Here, we employ the same algorithm to σ2
amplitudes. For example, for the closed-shell case, the PPL
term can be written as

∑σ ≤ r Wij
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abef
, (40)
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Following the previous studies of Saebø and Pulay78 and

Scuseria at al.79 and our previous DF-CCSD studies,65,66 we

employ the following algorithm for the evaluation of σ-PPL:
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where S is the symmetric component, while A is the
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where S and A have the following symmetry properties.

= = =S S S Sij
ab

ji
ab

ij
ba

ji
ba

(47)

= − = − =A A A Aij
ab

ji
ab

ij
ba

ji
ba

(48)

Hence, we can always keep i ≥ j and a ≥ b.
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The pseudo code for the σ-PPL algorithm is
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With this algorithm, the cost of PPL is 1/4O2V4 + 1/2V4Naux +
OV3Naux +OV

4 + 1/4V4. The most expensive term is 1/2V4Naux.
Finally, we note that our DF-EOM-CCSD code has a shared-
memory parallelism feature through threaded BLAS calls as well
as OPENMP parallelization of all tensor manipulations.

3.3.1. DF/CD Hybrid PPL Algorithm. In the common CD
approach for ERIs, the CD factors are generated from the AO
basis ERI tensor (μν|λσ), and the number of CD factors is
generally higher than that of DF factors. Hence, it does not seem
to speed up our DF algorithm. However, we have observed that,
for the large molecules, the CD technique can be beneficial to
take advantage of the sparsity of the ERI tensor if it is applied to
the MO basis ERIs generated from the DF integrals. More
specifically, if we perform the Cholesky decomposition of the
(ab|cd)-type integrals, we may get a reduced number of auxiliary
basis functions, which is especially true for large molecular
systems. Hence, in our DF/CD hybrid approach, we build the
(ab|cd)-type integrals from the DF factors, on-the-fly, and
perform Cholesky decomposition simultaneously.

4. RESULTS AND DISCUSSION

Results from the DF-EOM-CCSD and RI-EOM-CCSD80

methods were obtained for a set of alkanes to compare the
computational cost for the excitation energy computations. For
the alkanes set, Dunning’s correlation-consistent polarized
valence triple-ζ basis set (aug-cc-pVTZ) was used with the
frozen core approximation.81,82 For the aug-cc-pVTZ basis sets,
aug-cc-pVTZ-JKFIT50 and aug-cc-pVTZ-RI83 auxiliary basis set
pairs were employed for reference and correlation energies,
respectively. Additionally, the DF-EOM-CCSD, resolution of
the identity EOM-CCSD (RI-EOM-CCSD),80 and EOM-
CCSD(fT)84 methods were applied to a set of molecules to
compare the excitation energies.
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4.1. Efficiency of DF-EOM-CCSD. A set of alkanes is
considered to assess the efficiency of the RI-EOM-CCSD and
DF-EOM-CCSD methods. The RI-EOM-CCSD computations
were performed with the Q-CHEM 5.3 package.72 The computa-
tional time for the RI-EOM-CCSD and DF-EOM-CCSD
methods are presented graphically in Figures 1 and 2 for

restricted and unrestricted Hartree-Fock (RHF and UHF)
references, respectively. Timing computations were carried out
for a single root with a 10−7 energy and 10−7 EOM eigenvalue
convergence tolerances on a single node (1 core) Intel(R)
Xeon(R) CPU E5-2620 v4 @ 2.10 GHz computer (memory ∼
64 GB). For the RI-CCSD code of Q-CHEM 5.3, MEM_TOTAL

64000, MEM_STATIC 2000, and CC_MEMORY 51200
options are used. We start our assessment with the RHF
versions of the RI-EOM-CCSD and DF-EOM-CCSD imple-
mentations. The DF-EOM-CCSD method significantly reduces
the computational cost compared to RI-EOM-CCSD, and there
is more than a 2-fold reduction in the computational time for
DF-EOM-CCSD for the largest member (C8H18) of the alkanes
set. For the C8H18 molecule, the CCSD times are 750 and 471
min for RI-EOM-CCSD and DF-EOM-CCSD, respectively;
there is a 1.6-fold reduction in the computational time for DF-
EOM-CCSD. Further, for the C8H18 molecule, the EOM times
are 1351 min (RI-EOM-CCSD) and 537 min (DF-EOM-
CCSD); hence, there is a 2.5-fold reduction in the computa-
tional time for DF-EOM-CCSD.
The number of iterations for the CCSD part are 11 (DF-

EOM-CCSD) and 12 (RI-EOM-CCSD). The average computa-
tional time per CCSD iteration (tccsd/niter) for C8H18 is 42.8 min
(DF-EOM-CCSD) and 62.5 min (RI-EOM-CCSD). Hence,
our new DF-EOM-CCSD implementation is 1.5 times faster
than the RI-EOM-CCSD code for average computational cost
per CCSD iteration. Similarly, the number of Davidson
iterations for the EOM part is 12 (DF-EOM-CCSD) and 18
(RI-EOM-CCSD). The average computational time per a
Davidson iteration (teom/niter) for C8H18 is 44.8 min (DF-EOM-
CCSD) and 75.1 min (RI-EOM-CCSD). Hence, our new DF-
EOM-CCSD implementation is 1.7 times faster than the RI-
EOM-CCSD code for average computational cost per EOM-
CCSD iteration.
The efficiency of our DF-EOM-CCSD method compared to

that of RI-EOM-CCSD is attributed to the our more efficient
PPL algorithm. For the closed-shell case, the number of flops
(NOF) for our DF-CCSDmethod65,66 is 1/4O2V4 + 2O3V3 + 1/
4O4V2, while that of RI-CCSD80 was reported to be 5/8O2V4 +
4O3V3 + 27/8O4V2. When one compares the cost of
implementation, our DF-CCSD implementation65,66 is 2.5
times more efficient than that of RI-CCSD80 for the PPL
contraction term. Further, our implementation is 2 times more
efficient compared to that of RI-CCSD for the particle-hole
ladder (PHL)terms. Moreover, the cost of VVVV-type integral
transformation, on-the-fly of course, is 1/2V4Naux in our case,
while it appears to be V4Naux for RI-CCSD.

80 In fact, the most
expensive term is this integral transformation step for large-scale
computations with optimized auxiliary basis sets. Hence, our
algorithm appears to be 2 times more efficient for this term.
Basically, we follow the same algorithm for the PPL term of
EOM; the same is also true for RI-EOM-CCSD. Hence, the
efficiency of our DF-EOM-CCSD implementation was main-
tained.
As the second step of our timing assessment, we consider the

UHF versions of the RI-EOM-CCSD and DF-EOM-CCSD
implementations. The DF-EOM-CCSD method noticeably
reduces the computational cost compared with RI-EOM-
CCSD (Figure 2); there is a 1.8-fold reduction in the
computational time for DF-EOM-CCSD for the C7H16
molecule. For the C7H16 molecule, the CCSD time is 1168
and 920 min for RI-EOM-CCSD and DF-EOM-CCSD,
respectively; there is a 1.3-fold reduction in the computational
time for DF-EOM-CCSD. Further, for the C7H16 molecule, the
EOM time is 3221 min (RI-EOM-CCSD) and 1568 min (DF-
EOM-CCSD); hence, there is a 2.1-fold reduction in the
computational time for DF-EOM-CCSD. The number of
iterations for the UHF-CCSD part are 11 (DF-EOM-CCSD)
and 12 (RI-EOM-CCSD) for the C7H16 molecule. The average

Figure 1.Total, CCSD, and EOMwall times (inmin) for computations
of excitation energies for the CnH2n+2 (n = 1−8) set from the RI-EOM-
CCSD (from Q-CHEM

72) and DF-EOM-CCSD methods with the cc-
pVTZ basis set. The RHF reference is used for these computations. All
computations were performed for a single root with 10−7 energy and
EOM eigenvalue convergence tolerances on a single node (1 core)
Intel(R) Xeon(R) CPUE5-2620 v4@ 2.10GHz computer (memory∼
64 GB).

Figure 2. Total, CCSD, and EOMwall time (in min) for computations
of excitation energies for the CnH2n+2 (n = 1−7) set from the RI-EOM-
CCSD (from Q-CHEM

72) and DF-EOM-CCSD methods with the cc-
pVTZ basis set. The UHF reference is used for these computations. All
computations were performed for a single root with 10−7 energy and
EOM eigenvalue convergence tolerances on a single node (1 core)
Intel(R) Xeon(R) CPUE5-2620 v4@ 2.10GHz computer (memory∼
64 GB).
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computational time per UHF-CCSD iteration (tccsd/niter) for
C7H16 is 83.7 min (DF-EOM-CCSD) and 97.3 min (RI-EOM-
CCSD). Hence, our new DF-EOM-CCSD implementation is
1.2 times faster than the RI-EOM-CCSD code for the average
computational cost per UHF-CCSD iteration. Similarly, the
number of Davidson iterations for the EOM part are 12 (DF-
EOM-CCSD) and 18 (RI-EOM-CCSD). The average computa-
tional time per Davidson iteration (teom/niter) for C7H16 is 130.7
min (DF-EOM-CCSD) and 178.9 min (RI-EOM-CCSD).
Hence, our new DF-EOM-CCSD implementation is 1.4 times
faster than the RI-EOM-CCSD code for the average computa-
tional cost per EOM-CCSD iteration. Hence, our new DF-
EOM-CCSD implementation maintains its efficiency for the
UHF reference.
4.1.1. Assessment of the DF/CD Hybrid PPL Algorithm. As

the final step of our assessment for the efficiency of our new
implementations, we present benchmark timing results for
comparisons of DF and DF/CD hybrid approaches for the
evaluation of the PPL terms of the CCSD and EOM parts. The
ratios of the number of auxiliary basis functions employed in the
PPL term of EOM-CCSD for the DF and DF/CD approaches
are presented graphically in Figure 3. Since the most expensive

term of the PPL algorithm scales linearly with the number of
auxiliary basis functions, lets call it M, the reduction of M may
yield significant improvements in the evaluation of the PPL
term. For example, for the C9H20 molecule with the cc-pVTZ
primary basis set, the M values are 1329 and 1208 for our
canonical DF and hybrid DF/CD algorithms, respectively.
Hence, the ratio ofMDF/MDF/CD is 1.10, which indicates a more
than 10% reduction in the number of auxiliary basis functions.
For the alkanes set considered, CnH2n+2 (n = 1−9), we plot the
MDF/MDF/CD values with respect to the n values and obtain a
linear relation for this fit. The equation and the R2 value for the
linear fit are MDF/MDF/CD = 0.0122n + 0.9883 and R2 = 0.9939.
At first, one should note that as the n value increases the MDF/
MDF/CD ratio increases as well. The reason for this correlation is
that as molecular size increases the hybrid DF/CD algorithm
makes better use of the sparsity of the ERI tensor. Hence, the
obtained linear equation indicates that, if we proceed to larger

molecules, the hybrid DF/CD algorithm will have a larger
impact on the computational time. For example, the MDF/
MDF/CD ratio will be approximately 1.23 and 1.60 for the C20H42
and C50H102 molecules, which indicates up to 23% and 60%
acceleration in the PPL terms can be achieved.
For the alkanes set, the computational time for the DF-EOM-

CCSD and hybrid DF/CD-EOM-CCSD approaches with the
CD tolerances of 10−4, 10−3, and 10−2 are presented graphically
in Figure 4. For the largest member of the test set, C9H20, the

computational times are 2205.9 min (DF-EOM-CCSD), 2186.6
min (DF/CD-EOM-CCSD with tolCD = 10−4), 1326.6 min
(DF/CD-EOM-CCSD with tolCD = 10−3), and 1232.0 min
(DF/CD-EOM-CCSDwith tolCD = 10

−2).With tolCD = 10
−4, the

cost of DF/CD-EOM-CCSD is slightly reduced compared with
that of DF-EOM-CCSD, while with tolCD = 10−3 and tolCD =
10−2, the cost of DF/CD-EOM-CCSD is reduced 39.9% and
44.1% compared with that of the canonical DF-EOM-CCSD.
Hence, our new hybrid approach provides significant improve-
ments in efficiency compared to the that of the canonical DF
algorithm. Further, our above discussion suggests that for the
larger molecules further improvements may be observed. Hence,
our new hybrid DF/CD PPL algorithm appears to be very
promising for large-sized chemical systems.
We would like to note why we did not prefer the CD

decomposition of the original 4-index ERIs. The number of CD
factors generated from the 4-index ERIs are generally much
higher than that of the DF factors achieving the same accuracy.
For example, for the C8H18 molecule with the cc-pVTZ basis set,
the number of auxiliary basis functions are 1188 (DF), 2018
(tolCD = 10−4), 1621 (tolCD = 10−3), and 1005 (tolCD = 10−2).
Hence, the number auxiliary basis functions obtained from the
partial CD decomposition of the conventional 4-index ERIs may
yield a similar number with DF only if it is used with a loose CD
tolerance of 10−2. However, with our hybrid approach, the
number of auxiliary basis functions are 1095 (tolCD = 10−4), 593
(tolCD = 10

−3), and 63 (tolCD = 10
−2). Hence, our hybrid DF/CD

Figure 3. Ratio of the number of auxiliary basis functions,M, employed
in the PPL term of DF-EOM-CCSD from the DF and hybrid DF/CD
approaches (with the CD tolerances of 10−4, 10−3, and 10−2) for
computations of excitation energies for the CnH2n+2 (n = 1−9) set. The
RHF reference is used for these computations along with the cc-pVTZ
basis set.

Figure 4. Total wall time (in min) for computations of excitation
energies for the CnH2n+2 (n = 1−9) set from the DF-EOM-CCSD and
hybrid DF/CD-EOM-CCSD (with the CD tolerances of 10−4, 10−3,
and 10−2) methods with the cc-pVTZ basis set. The RHF reference is
used for these computations. All computations were performed for a
single root with 10−7 energy and EOM eigenvalue convergence
tolerances on a single node (1 core) Intel(R) Xeon(R) CPU E5-2620
v4 @ 2.10 GHz computer (memory ∼ 64 GB).
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approach significantly reduces the number of auxiliary basis

functions.

4.2. Accuracy of DF-EOM-CCSD. In this section, we
consider a test set to assess the accuracy of the DF-EOM-CCSD
method. Chemical names of the molecules considered are given

Table 1. Excitation Energies for the First Five Excited States (in eV) of the Test Set Considered from the DF-EOM-CCSD, DF/
CD-EOM-CCSD, RI-EOM-CCSD, and EOM-CCSD(fT) Methods with the aug-cc-pVTZ Basis Set

DF-EOM-
CCSD

DF/CD-EOM-
CCSDa

DF/CD-EOM-
CCSDb

DF/CD-EOM-
CCSDc

DF/CD-EOM-
CCSDd

DF/CD-EOM-
CCSDe

RI-EOM-
CCSDf

EOM-
CCSD(fT)f

1 5.78 5.78 5.78 5.78 5.78 5.79 5.83 5.51
6.67 6.67 6.67 6.68 6.71 6.73 6.70 6.41
6.72 6.72 6.72 6.73 6.75 6.78 6.72 6.47
7.33 7.33 7.33 7.33 7.34 7.36 7.39 7.07
7.69 7.69 7.70 7.70 7.73 7.76 7.73 7.48

2 4.53 4.53 4.53 4.53 4.53 4.54 4.57 4.25
6.57 6.57 6.57 6.58 6.61 6.63 6.60 6.36
7.55 7.55 7.55 7.56 7.59 7.62 7.58 7.36
7.60 7.60 7.61 7.61 7.64 7.67 7.63 7.40
7.68 7.68 7.68 7.69 7.72 7.75 7.71 7.50

3 5.69 5.69 5.70 5.70 5.75 5.78 5.70 5.30
5.87 5.87 5.88 5.89 5.96 6.01 5.86 5.58
6.49 6.49 6.50 6.50 6.58 6.64 6.47 6.21
6.54 6.54 6.55 6.56 6.63 6.69 6.52 6.25
6.65 6.65 6.65 6.66 6.74 6.79 6.63 6.36

4 6.79 6.79 6.79 6.79 6.81 6.84 6.80 6.50
6.92 6.92 6.92 6.92 6.95 6.98 6.91 6.62
7.03 7.03 7.04 7.04 7.09 7.13 7.02 6.80
7.42 7.42 7.42 7.43 7.47 7.51 7.41 7.18
7.45 7.45 7.45 7.46 7.50 7.54 7.43 7.21

5 6.36 6.36 6.36 6.37 6.42 6.47 6.39 6.02
6.45 6.45 6.45 6.46 6.53 6.60 6.43 6.16
6.76 6.76 6.76 6.77 6.84 6.91 6.74 6.47
6.92 6.92 6.93 6.93 7.00 7.08 6.90 6.63
7.21 7.21 7.22 7.22 7.28 7.34 7.18 6.69

6 7.48 7.48 7.49 7.49 7.51 7.54 7.46 7.23
8.09 8.09 8.09 8.09 8.10 8.12 8.08 7.81
8.13 8.13 8.13 8.13 8.16 8.19 8.11 7.89
8.20 8.20 8.20 8.20 8.23 8.26 8.18 7.95
8.55 8.55 8.55 8.56 8.57 8.59 8.56 8.36

7 4.07 4.07 4.07 4.07 4.07 4.07 4.07 3.82
7.20 7.20 7.20 7.20 7.21 7.22 7.22 7.07
8.09 8.09 8.09 8.09 8.09 8.10 8.11 7.97
8.18 8.18 8.18 8.18 8.19 8.21 8.20 8.07
8.61 8.61 8.61 8.61 8.62 8.63 8.64 8.52

8 5.70 5.70 5.70 5.70 5.70 5.70 5.74 5.45
6.92 6.92 6.93 6.93 6.94 6.96 6.92 6.68
6.99 6.99 7.00 7.00 7.01 7.03 7.01 6.71
7.51 7.51 7.51 7.51 7.52 7.54 7.57 7.31
7.71 7.71 7.71 7.72 7.73 7.74 7.76 7.53

9 6.19 6.19 6.20 6.20 6.27 6.32 6.18 5.88
6.57 6.57 6.57 6.58 6.62 6.65 6.53 6.09
6.73 6.73 6.74 6.74 6.81 6.86 6.72 6.43
6.89 6.89 6.89 6.89 6.91 6.93 6.90 6.60
6.92 6.92 6.92 6.93 7.00 7.05 7.34 7.03

10 5.82 5.82 5.83 5.84 5.89 5.93 5.81 5.50
6.59 6.59 6.60 6.60 6.65 6.70 6.58 6.29
6.63 6.63 6.63 6.63 6.67 6.70 6.59 6.16
6.85 6.85 6.85 6.86 6.89 6.90 6.83 6.54
6.87 6.87 6.87 6.88 6.91 6.96 6.91 6.49

aThese computations were performed with the hybrid DF/CD algorithm employing a CD tolerance of 1 × 10−4. bThese computations were
performed with the hybrid DF/CD algorithm employing a CD tolerance of 5 × 10−4. cThese computations were performed with the hybrid DF/
CD algorithm employing a CD tolerance of 1 × 10−3. dThese computations were performed with the hybrid DF/CD algorithm employing a CD
tolerance of 5 × 10−3. eThese computations were performed with the hybrid DF/CD algorithm employing a CD tolerance of 1 × 10−2. fThese
computations were performed with the Q-CHEM 5.3 program.
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in the Supporting Information. Excitation energies (in eV) for
the test set considered from the DF-EOM-CCSD, DF/CD-
EOM-CCSD, RI-EOM-CCSD, and EOM-CCSD(fT) methods
with the aug-cc-pVTZ basis set are reported in Table 1. The
mean absolute errors (MAEs) with respect to EOM-CCSD(fT)
are depicted in Figure 5. The MAE values with respect to EOM-

CCSD(fT) are 0.71 eV (CIS), 0.26 eV (DF-EOM-CCSD), 0.26
eV (DF/CD-EOM-CCSDwith tolCD = 10

−4), 0.27 eV (DF/CD-
EOM-CCSD with tolCD = 5 × 10−4), 0.27 eV (DF/CD-EOM-
CCSD with tolCD = 10−3), 0.30 eV (DF/CD-EOM-CCSD with
tolCD = 5 × 10−3), 0.33 eV (DF/CD-EOM-CCSD with tolCD =
10−2), and 0.27 (RI-EOM-CCSD). Hence, the results of DF-
EOM-CCSD, RI-EOM-CCSD, and DF/CD-EOM-CCSD
(with tolCD = 10−4−10−3) are almost identical. Further, the
errors of DF/CD-EOM-CCSD with tolCD = 5 × 10−3 and 10−2

are only 0.03 and 0.06 eV, deviating from the DF-EOM-CCSD
approach. When these results and the computational efficiency
are considered, the DF/CD-EOM-CCSD approachmay be used
with such loose CD tolerances. The differences between DF-
EOM-CCSD and RI-EOM-CCSD results are in between 0.00
and 0.06 eV for most cases.

5. CONCLUSIONS
In this study, a new implementation of the density-fitted EOM-
CCSD (DF-EOM-CCSD) method has been presented with an
enhanced algorithm for the particle−particle ladder (PPL) term,
which is the most expensive term of the EOM-CCSD
computations. To further improve the evaluation of the PPL
term, a hybrid DF/CD algorithm has also been introduced. The
computational time of the DF-EOM-CCSD excitation energies
has been compared with that of the RI-EOM-CCSD method
(from Q-CHEM 5.3 package72).
The DF-EOM-CCSD method significantly reduces the

computational cost compared to that of the RI-EOM-CCSD
method; there is more than a 2-fold reduction for the C8H18
molecule in a cc-pVTZ basis set with the RHF reference. This
cost savings results from the accelerated evaluation of the PPL
term. In our RHF based DF-EOM-CCSD method, the number
of flops (NOFs) for the PPL contraction term is 2.5 times lower
than that of the RI-EOM-CCSD method. Further, the prefactor
of the VVVV-type transformation step used in the PPL term has

a reduced NOF value by a factor of 2. For the UHF reference,
our implementation maintains its better performance and
provides a 1.8-fold reduction in the computational cost
compared to that of the RI-EOM-CCSD method for the
C7H16 molecule. Furthermore, our results show that the
suggested hybrid DF/CD algorithm further improves the
canonical DF algorithm, and the degree of improvement
increases as the molecular size increases. The preliminary
results indicate that the new hybrid DF/CD PPL algorithm is
very promising for large-sized chemical systems.
Finally, the DF-EOM-CCSD and DF/CD-EOM-CCSD

methods are applied to a test set to compare the excitation
energies with those from the CIS, RI-EOM-CCSD, and EOM-
CCSD(fT) methods. Our results demonstrate that the DF-
EOM-CCSD and DF/CD-EOM-CCSD methods (with CD
tolerances of 10−4−10−3) provide identical results with to those
of the RI-EOM-CCSD method. Further, the DF/CD-EOM-
CCSD approach yields tolerable errors (0.03 and 0.06 eV)
compared with those of the DF-EOM-CCSD method for the
test set considered with loose CD tolerances, such as 5 × 10−3

and 10−2.

■ APPENDIX A
DF-CCSD 3-Index Intermediates. 1- and 3-index intermedi-

ates used for DF-CCSD are given as follows:65,66
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Figure 5.Mean absolute errors (in eV) in excitation energies for the test
set from the DF-EOM-CCSD, DF/CD-EOM-CCSD, and RI-EOM-
CCSD methods with respect to EOM-CCSD(fT) (the aug-cc-pVTZ
basis set was employed).
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and brs
Q values are the molecular orbital (MO) DF factors, which

are defined in our previous studies.65−67

F and Intermediates. Density-fitted F and
intermediates are65,66

∑ ∑ ∑ ∑ τ= + + + ″F f f t t b b
1
2mi mi

e

vir

me i
e

Q

N

Q mi
Q

Q

N

e

vir

ie
Q

me
Q

aux aux

(64)

∑ ∑ ∑ ∑ τ= − + − ′F f f t t b b
1
2ae ae

m

occ

me m
a

Q

N

Q ae
Q

Q

N

m

occ

ma
Q

me
Q

aux aux

(65)

∑ ∑ ∑= + −F f t b t bme me
Q

N

Q me
Q

Q

N

n

occ

nm
Q

ne
Q

aux aux

(66)

∑= +F t F
1
2mi mi

e

vir

i
e

me
(67)

∑= −F t F
1
2ae ae

m

occ

m
a

me
(68)

where f pq is the MO basis Fock matrix. We would like to note
that in our previous studies65,66 the diagonal parts of the Fock
matrix were removed from the definitions of the Fmi and Fae
intermediates since the diagonal Fock terms were moved into
the tij

ab Dij
ab definition in the amplitude equation.

W Intermediates. W intermediates, with the DF approx-
imation, are65,66
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where P± (pq) is defined by

= ±±P pq pq( ) 1 ( ) (72)

and pq( ) acts to permute the indices p and q.
and Intermediates. The and intermediates are

defined as follows:65,66
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