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Purpose:This studyevaluatedgenerativemethods topotentiallymitigate artificial intel-
ligence (AI) bias when diagnosing diabetic retinopathy (DR) resulting from training data
imbalance or domain generalization, which occurs when deep learning systems (DLSs)
face concepts at test/inference time they were not initially trained on.

Methods: The public domain Kaggle EyePACS dataset (88,692 fundi and 44,346 individ-
uals, originally diverse for ethnicity) was modified by adding clinician-annotated labels
and constructing an artificial scenario of data imbalance and domain generalization by
disallowing training (but not testing) exemplars for images of retinas with DR warrant-
ing referral (DR-referable) from darker-skin individuals, who presumably have greater
concentration of melanin within uveal melanocytes, on average, contributing to retinal
image pigmentation. A traditional/baseline diagnostic DLS was compared against new
DLSs that would use training data augmented via generative models for debiasing.

Results: Accuracy (95% confidence intervals [CIs]) of the baseline diagnostics DLS for
fundus images of lighter-skin individuals was 73.0% (66.9% to 79.2%) versus darker-skin
of 60.5% (53.5% to 67.3%), demonstrating bias/disparity (delta = 12.5%; Welch t-test
t = 2.670, P = 0.008) in AI performance across protected subpopulations. Using novel
generative methods for addressing missing subpopulation training data (DR-referable
darker-skin) achieved instead accuracy, for lighter-skin, of 72.0% (65.8% to 78.2%), and
for darker-skin, of 71.5% (65.2% to 77.8%), demonstrating closer parity (delta= 0.5%) in
accuracy across subpopulations (Welch t-test t = 0.111, P = 0.912).

Conclusions: Findings illustrate how data imbalance and domain generalization can
lead to disparity of accuracy across subpopulations, and show that novel generative
methods of synthetic fundus images may play a role for debiasing AI.

Translational Relevance: New AI methods have possible applications to address
potential AI bias in DR diagnostics from fundus pigmentation, and potentially other
ophthalmic DLSs too.

Introduction

Motivation

Current deep learning systems (DLSs) applied
to retinal diagnostics, for diseases such as diabetic
retinopathy (DR) or age-related macular degenera-
tion (AMD), have performance approaching that of
clinicians.1–3 This success is motivating the deploy-
ment of artificial intelligence (AI)-based pre-screeners
in clinical environments to address ophthalmolo-

gists’ workload, and is also being used for tele-
ophthalmology. However, to promote further AI
insertion in retinal clinical workflows, the important
problem of AI bias needs to be considered. DLSs may
be affected by possible bias with regard to patients’
protected attributes (e.g. race, sex, or age). AI bias
may occur when training datasets are unbalanced (e.g.
insufficient or no data for certain subpopulations),4
such as, for example, having a paucity of training
images of DR for individuals of a given ethnicity,
such as self-reporting as being of African descent,
wherein such individuals may have, on average, darker
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fundus pigmentation due to increased concentration
of melanin within uveal melanocytes.5,6 Criteria for
fairness can vary, and bias in AI can also have differ-
ent causes, manifestations, and definitions.

Defining AI Bias

Two definitions have received increased attention in
recent work7:

1) (In)equality of opportunity: Consider groups of
individuals with different protected attributes
(e.g. ethnicity/race/origin), or simply consider
subpopulations of lighter-skin versus darker-skin
individuals wherein differences in fundus pigmen-
tation, on average, might affect deep learning
algorithms. An AI system designed to help plan
management for AMD should not discrimi-
nate based on ethnicity/race/origin associated
with darker or lighter fundus pigmentation
for management recommendations if identi-
cal risk factors otherwise exist. For example,
a biased health care recommendation system,
already deployed clinically, and used for predict-
ing individuals’ need formedical services has been
reported.8

2) (In)equality of odds: Consider groups of individ-
uals that have different protected attributes (race,
sex, age), but identical actual stages of DR (say
non-proliferative DR [NPDR]), then a fair AI
diagnostic system should ascribe identical proba-
bilities that these groups have NPDR. Unequal
odds may result in unequal performance that
might be affected by fundus pigmentation, which
influences the AI diagnostic system. Recent work
in AI bias has used accuracy as a performance
metric to measure bias. The criterion of unequal
accuracy is adopted here to evaluate AI bias. The
appendix provides rigorous mathematical expres-
sions for the above definitions of bias and intro-
duces a new criterion called “delta parity.”

Causes of Bias

Common sources of AI bias include data imbal-
ance, distributional shift, and domain generalization,9
whereby the DLS is faced, at inference time, with
out-of-distribution samples or novel concepts when
compared with training samples. This study consid-
ered a theoretic use case of data imbalance and domain
generalization in a DR diagnostics DLS setting, and
studied AI fairness when utilizing datasets of retinas
with different appearance and markers (coloration
being the principal marker, but also including other

markers, as will be explained later) associated with
subpopulations of individuals of lighter-skin versus
darker-skin who presumably were associated with
lighter versus darker fundus pigmentation. Such a
scenario has implications for bias in ethnic/racial/origin
protected factors. The next section describes prior work
for addressing AI bias.

Prior Work

For AI bias caused by unbalanced data, a solution
suggested in Parikh et al.4 was to sample additional
representative data for this group. When this is not
practical, as is the case when AI is trained on retro-
spective data, and constraints exist (e.g. time, cost,
regulatory limitations, logistics, or other resources)
preventing such additional data collection, then other
remedial approaches to AI bias are needed. This study
addresses this situation and considers algorithmic
debiasing approaches. Algorithmic solutions to bias
due to imbalance may include simple approaches, such
as using reweighting of the training loss function or
more complex ones such as: using DLSs that requires
less training data (so called “low-shot method”)11,12;
using anomaly detectors13,14 that work by detecting
distributional inliers versus outliers; or using adver-
sarial approaches that try to mask information about
protected attributes of the individual.7,15 Some of
the aforementioned strategies have inherent limita-
tions. They can be impractical (e.g. adversarial train-
ing can be unstable), unsuitable in some situations (e.g.
low shot learning requires balanced samples), or have
negative effects (e.g. anomaly detectors or adversarial
debiasing solutions may decrease overall performance
substantially). Therefore, the approach used here was
to use augmentation of the training data, via gener-
ating more synthetic samples in a controlled way, to
address the need for more data from populations that
may be under-represented, or corresponding tomissing
factors. To our knowledge, this debiasing approach is
novel, as is the study of AI bias in the context of
AI retinal diagnostics. This approach is applied here
to the use case of automated DR diagnostics but is
generic and potentially could be considered for other
ophthalmic, medical, or image classification uses.

Methods

Problem Studied

This study considered the use case of AI-automated
binary diagnostics for DR (i.e. nonreferable [including
levels 0 and1] versus referable [levels 2, 3, and 4] DR to
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a health care provider for further follow-up or treat-
ment [see Cuadros and Bresnick16 for definitions of
these various DR levels]). It further considered the case
of potential ethnic/racial/origin bias that could affect
AI due to unbalanced datasets and domain generaliza-
tion. To this end, a new problem dataset was created
by altering the original Kaggle EyePACS dataset.
In this altered dataset, training data were limited
to only three subgroups of individuals consisting of
specific combinations of two factors of variations. One
factor adopted here to indicate race/ethnicity/origin
was taken to be the binary factor for lighter-skin
versus darker-skin individuals (the protected attribute
A) under the assumption that this skin coloration
would be reflected in the melanin concentration within
uveal melanocytes affecting fundus pigmentation. The
other factor was “DR status” where we considered the
binary class labels either “referable for DR” versus
“healthy” (the target Y). The training data for the
baseline DLS considered in this study were limited
to three subgroups: DR-referable lighter-skin (RL),
no referable DR (healthy) lighter-skin (HL), and no
referableDRdarker-skin (HD) individuals (please note
that whereas determination of DR presence is made
at the eye/retina level, we instead use the term “refer-
ability” – as a shorthand, but also to reflect reality –
as applying to an individual). However, no training
data were made available to the baseline DLS for DR-
referable darker-skin (RD) individuals. In this domain
generalization scenario, the resulting DLS would have
seen examples – and therefore learned to recognize
markers – for factors of variations consisting of ethnic-
ity/race/origin as well as DR-status from those three
groups; but then the DLS would be faced with a
challenge at inference/test time, because it would also
be tested on the novel combination of factors corre-
sponding to DR-referable darker-skin individuals, in
addition to the three other subgroups. Two questions
are investigated henceforth: (QA) Did the original data
imbalance and domain generalization cause possible
bias, when judged using the criterion of inequality of
accuracy for the DR diagnostic DLS for darker-skin
versus lighter-skin individuals? (QB) If there was such
a bias, did our proposed synthetic data augmentation
methods using generative models help debias the DR
diagnostic AI?

Dataset and Labeling

To probe questions QA and QB, we created a
new dataset based on the original Kaggle EyePACS
data that exhibited domain generalization by excluding
referable darker-skin individuals from training but not
from testing. Note that the original Kaggle EyePACS

dataset, which consisted of 88,692 public domain fundi
of 44,346 participants and has been widely used by
many AI researchers, was designed for ethnic diversity
in mind, and does not have any inherent issues with
diversity or bias (see the Discussion section).16

To overcome the fact that labels for
race/ethnicity/origin were not made available publicly,
we added an additional annotation label for each
image – focusing on a binary case of lighter-skin
versus darker-skin – rather than specific demographic
definitions of race/ethnicity/origin. We asked a clini-
cian (and co-author K.P.) to annotate images and
classify them as one of three possible classes consisting
of (1) lighter-skin, (2) darker-skin, (3) or “intermedi-
ate/indeterminate/unknown.” Indeterminate images
were not subsequently used, so as to decrease the
uncertainty due to manual labeling, and only a binary
value was used thereafter. Criteria for manual labeling
the images by the clinician took into consideration
three factors including: (A) darker versus lighter
fundus image pigmentation, because this is influ-
enced by, on one hand, the melanin concentration
within uveal melanocytes in the choroid, leading,
on average, to darker fundus pigmentation, and on
the other hand, the presence of melanin concen-
tration in uveal melanocytes of darker/lighter-skin
individuals. Increased concentration of melanin within
melanocytes in the choroid correlate with increased
melanin concentration within melanocytes in the skin
(which ties it to our subpopulation partitioning). Two
additional criteria were used by the clinician selected
to be influenced by markers in the retinal image
that might correlate with race/ethnicity/origin. These
included: (B) retinal vessels appearance: individuals
of African descent are reported to have larger retinal
arteriolar calibers on average,17 and (C) optic disk
size: larger cup to disc ratios reported in individuals
of African descent.18 We henceforth refer to darker-
skin individuals as the groups of individuals with
retinal images appearance (henceforth abbreviated
as RA) that present with the above criteria/markers
A to C, and as lighter-skin individuals, those that
do not. Of note, there are limitations for using these
markers for the two above subpopulations as noted
in the Discussion section below. Because annotation
resources were limited, first, a subset of 1555 images
were manually annotated by the clinician for the crite-
ria above. We then trained a classification DLS, called
the Retinal Image Appearance Extrapolation DLS
(or E-RA-DLS; henceforth we also abbreviate “retinal
appearance” for the above criteria A to C as simply
RA), to extrapolate this label to all other nonannotated
images in the Kaggle EyePACS dataset. The architec-
ture of this E-RA-DLS was identical to the baseline
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DLS described next. Last, regarding DR labels: all
fundi in Kaggle EyePACS already had annotations for
DR (5 levels) which were then translated into binary
labels (for referable – levels 2, 3, 4, or not referable –
levels 0 and 1).

Preprocessing

Each image used as input to all DLSs in this study,
be they generative or discriminative, were prepro-
cessed as follows: these were cropped to the square
circumscribing the retina, zero-padded (because of the
varying field of view), and resized to 256 × 256, when
input to the generative DLSs, and 224 × 224, when
input to the discriminative DLSs. Tomake the diagnos-
tic taskmore challenging for theAI, no further process-
ing was done on the data, and bad quality, or images
nongradable with respect to DR were not removed
from the dataset.

Baseline DR Diagnostics DLS

For this problem, as baseline, a traditional DLS
for performing DR-referable classification (henceforth
called B-DR-DLS) was built. Its workings mimicked
approaches commonly used inmost retinal AI diagnos-
tic studies in that it used fine-tuning of an existing
network, here, the popular ResNet50.3,19 The B-DR-
DLS diagnostic system was trained with the three
subgroups of individuals’ fundi consisting of RL, HL,
and HD but no RD, to classify referable versus not
referable DR, as explained next.

Data Partitioning for Baseline DLS Evaluation

The Kaggle EyePACS fundi were partitioned into
training (17,056 images), validation (4,264), and testing
(400) datasets to evaluate the baseline B-DR-DLS.
The characteristic Table 1 details the partitions’ sizes.
Because this study aimed to keep class balance across
diseased and healthy retinas, so as not to impart
additional artificial bias, the combined number of
training and validation fundi consisted of a total of
10,660 images for RL, 5330 for HL, and 5330 for HD.

Testing for baseline B-DR-DLS used class balanc-
ing and included equal numbers (100 real Kaggle
EyePACS images each) for each subpopulation: RL,
HL, RD, and HD, for a total of testing 400 images.
Note that, to avoid introducing an additional source
of uncertainty, only real images that were directly
annotated by the physician for race were included in
this test set, with the net effect of limiting the size
of the test data. The identical test set was also used
for performance evaluation of competing DLSs that

attempted debiasing (detailed later) for fair compar-
isons. In addition, the distribution of DR levels 0
through 4 is shown for each partition within charac-
teristic Table 2. The training dataset of the diagnos-
tic DLSs included some images directly annotated for
ethnicity/race/origin by our clinician, and included also
images for which that label was extrapolated via E-RA-
DLS (as was explained earlier).

Metrics

The various diagnostic DLSs were evaluated using
accuracy as a main performance metric, because equal
accuracy was the fairness criteria used, but also by
computing sensitivity and specificity, as well as receiver
operating characteristic (ROC) curves, and the area
under the ROC curves (AUC).

Debiasing DLSs by Using Synthetic Data
Augmentation via Generative Model and
Latent Space Manipulation

The goal of this study was to compare the baseline
DLS, trained on a dataset affected by unbalanced data
and domain generalization, to newDLSs trained on the
same dataset, that was then rebalanced via the inclu-
sion of synthetic images for the missing subpopulation
RD. Henceforth, these new diagnostic DLSs, which
were then tested for their debiased characteristics, are
referred to as D-DR-DLSs.

Our high-level method for debiasing used controlled
synthetic data generation and augmentation and was
as follows: a generative model was used to generate
new synthetic images of RD starting with a genera-
tive system as in Burlina et al.10 However, our new
generative model was also redesigned to allow fine
manipulation, in latent space, of specific factors of
variations of the generated images. Specifically, this
system used a gradient descent approach that started
with synthetic (but realistic) images of retinas that
had image markers for “referable-DR” and trans-
formed these, in latent space, into synthetic images
that accentuated image markers more likely associ-
ated with darker-skin individuals’ RD retinas. This
was done without changing image markers for other
factors of variations, in order to preserve realism, and
most importantly, preserve the referable-DR image
markers. This approach is henceforth referred to as
“debiasing via altering retinal appearance” for charac-
teristics more likely associated with darker-skin versus
lighter-skin individuals. See examples of such manip-
ulations in Figure 1. A second method was consid-
ered, using a latent space manipulation (gradient
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Table 2. Characteristic Table Showing the Number of Samples Used for Each Population Broken Down by the
Original 5-Class Severity of Diabetic Retinopathy, Which Includes: DR0-4 for Both Lighter-Skin and Darker-Skin
Individuals

Lighter-Skin (LS) Darker-Skin (DS)

DR0 DR1 DR2 DR3 DR4 DR0 DR1 DR2 DR3 DR4

Train (baseline) 4880 450 8312 1346 1002 4828 502 0 0 0
Test 90 10 68 18 14 80 20 67 16 17

Note that numbers for the debiased dataset are not given because there is no original 5-class grade for synthetic images.

descent), which instead started with synthetic images
of retinas with markers of characteristics more likely
associated with darker-skin individuals, and trans-
formed these images to accentuate the “referable-
DR” image markers, without altering other factors of
variation, to preserve the markers for characteristics
more likely associated with darker-skin individuals and
maintain realism. This approach is henceforth referred
to as “debiasing via altering DR-status.” The train-
ing dataset of the baseline DLS B-DR-DLS was then
augmented with these new synthetic training images
of DR-referable darker-skin individuals/retinas of RD
to obtain an improved training set, which contained
balanced amounts of data for retinal images corre-
sponding to the four subgroups of individuals HL,
HD, RL, and importantly, RD. More details of the
processing pipeline are described next and the reader
is also referred to the flow chart describing all DLSs
and datasets generation and curation steps in Figure 2.

Additional Details for Debiasing Algorithmic
Pipeline

The approach used for debiasing via altering
retinal appearance for darker-skin versus lighter-skin
individuals in synthetic images is explained next. The
second debiasing approach is implemented in a similar
fashion, but instead works by altering of the image
markers linked to DR. To generate more synthetic
retina for DR-referable darker-skin individuals (RD), a
generative model leveraging StyleGAN20 as in Burlina
et al.10 was used as a foundation. Although that
approach was able to generate realistic images most of
the time, it was, however, not sufficient for the goals of
this study. Indeed, general-purpose generative methods
are sometimes prone to creating images with artifacts,
such as unrealistic vascular structures, when latent
space traversal is performed arbitrarily (e.g. along a
rectilinear trajectory) or another process that does not
precisely control the change in image markers corre-
sponding to other factors of variation. In addition,
using StyleGAN for style transfer to generate more

images of the kind that is missing (RD) is not possi-
ble because style transfer does not allow for precise
control of image markers and instead does uncon-
trolled mixing. Deep learning methods that discover,
control, and disentangle factors of variations in images
via generative models are desirable for this and other
applications, and are currently an active area of inves-
tigation, but no method to date has definitely “solved”
this challenge,21,23.

To address this problem in DR diagnostics, the
approach here works by altering retinal appearance
in synthetic images, by accentuating markers tied to
darker/lighter-skin individuals, while keeping markers
for other factors of variation unchanged (vasculature
as well as the retinal disease lesions; see Fig. 1). The
original method in Burlina et al.14 is used to start with
synthetic images with markers of DR, and perform
latent space manipulation on those images, via gradi-
ent descent, to generate new images that included
the desired markers for subpopulations of darker-skin
individuals.

To accomplish this, first, a StyleGAN model was
trained as in Burlina et al.14 using the same train-
ing dataset used by the baseline DLS. Pairs of (latent
space vector w, and image I), were then generated by
using the trained StyleGAN model, in inference mode
(about 120,000 [w, I] tuples). Thereafter, a new retinal
appearance DLS (RA-DLS), working in image space,
was trained to classify between retinal images with
markers of darker-skin versus lighter-skin individu-
als, using the extrapolated RA labels described earlier.
This RA-DLS differed from the E-RA-DLS, in that
the RA-DLS is trained on more images, made up of
equal numbers of fundi from darker-skin and lighter-
skin individuals. Note that StyleGAN includes two
latent spaces, one with an input vector Z of size 512,
which is mapped via a fully connected network to a
new latent style tensor w of size 512 and replicated
16 times for each scale for a final size of 16 × 512. The
later latent space representation w was used for manip-
ulation of factors of variations. Subsequently, a DLS
for classification of retinal appearance, and operating
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Figure 1. The figures show right versus left pairs of synthetically created images that demonstrate alterations done automatically via our
generative methods, that take a synthetic retinal image as input (shown on the left), to generate a new retinal image that is of an individual
with diabetic retinopathywarranting referral to health care provider and of a darker-skin individual as defined in theMethods section. These
generativemethods areused in this study togenerate images that areoriginallymissing fromthe training set (i.e., of referableDR fromdarker-
skin individuals), creating a condition of unbalance and bias. Pairs of images in (a1) to (a3) illustrate how the proposed generative methods
are used to generate new retinal images that take an input retinal image on the left, of a darker-skin individual, and accentuate the attribute
“DR-referable” in the image on the right, when compared to the left image, and leave the amount of coloration reflective of the melanin
concentration within the uveal melanocytes and all other markers unchanged. The first pair (a1) starts from a retina that is not referable but
of a darker-skin individual (left image has DR level 0 or 1; i.e. no ormild DR) and converts it into one that is referable (right image is DR level 2;
i.e.moderateDR)whileminimally changingother attributes of the retina (the right image is also fromadarker-skin individual andvasculature
aspect is unchanged). Likewise, the left imagepair in (a2) is of a retina fromadarker-skin individual, that is not referable (left image is DR level
0 or 1) and ourmethod then accentuates the referable attribute (right image is DR level 2) tomake it referable. The same explanation applies
to (a3). Pairs of images in (b1) to (b3) instead demonstrate our complementary approach: taking as input retinal images that are already
referable (left images in the pair) and altering them to accentuate the attribute “darker-skin individuals,”while preserving the DR lesions as
well as the vasculature, in order to generate output images that are referable and fromdarker-skin individuals (right images in the pairs). The
image in (b1) in particular is already from a retina, which is referable andwith higher concentration ofmelaninwithin the uvealmelanocytes
and the method visibly accentuates melanin concentration in the right image, and both input (left image) and output (right image) have
moderate DR (DR level 2). The image in (b2) is an example where the left image is of a lighter-skin individual and already referable and our
method modifies it by generating a related image of a darker-skin individual; but the method preserves the DR level, as both right and left
images have visibly unchanged level 2 DR, with potential retinal hemorrhages seen. The image in (b3) is a similar example, accentuating the
left retinal image, which is of a lighter-skin individual and referable DR, and turning it into the right retinal image of a darker-skin individual,
without altering the DR level (again here both right and left images have apparently DR level 2 with retinal hemorrhages).
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Figure 2. This figure details the flow chart for the debiasing algorithmic and experimental pipeline.

in latent space w, called the L-RA-DLS, was created
as follows: a subset of the original 120,000 synthetic
images, that were classified as healthy using the baseline
B-DR-DLS, was sub-selected. We then inferred RA
labels for this subset using RA-DLS, and those labels
were used to train the L-RA-DLS. Finally, from the
120,000 synthetic images, a subset of 10,660 images
that were classified as DR-referable by B-DR-DLS
were sub-selected as starter images, and underwent the
following latent space manipulation to generate new
synthetic (RD) data. The corresponding latent space
representations of these images, w, were taken, and
were subject a gradient descent method to accentuate
the SoftMax value of the L-RA-DLS, thereby accentu-
ating desired imagemarkers for individuals with darker
skin. The gradient descent moved along a trajectory
in latent space that was able to maximally transform
images to gain the desired markers, while still keeping
the vasculature, as well as the disease lesions markers,
unchanged. This is in contrast with a rectilinear or
arbitrary trajectory that would have produced simul-
taneous changes in all image markers (corresponding
to ethnicity, DR status, vasculature, and other factors
of variations).

To formalize this gradient descent, if (w, X) denotes
an input-output pair of latent vector w, and image
X generated from the StyleGAN, where the pair was
selected forX having amarker forDR, using the B-DR-
DLS classifier, then the optimization process accentu-

ated the retinal markers associated with darker-skin
individuals, via gradient decent on w, as in:

wk+1 = wk − η · ∇wJ (y (w) , y = 1) (1)

where y = 1 indicates the desired probability (equal
to one) for the presence of markers in retinal images
X of darker-skin individuals, y(w) is the probability
(SoftMax) output by the L-RA-DLS classifier for the
input w, and J(.,.) is a loss function, taken here to be
the squared difference.

Debiased DLS Creation and Evaluation

Subsequently, a new DR diagnostics DLS was
trained, but it now also included the newly gener-
ated RD synthetic images in the training dataset.
The number of training and validation images used
now reflected parity for both race as well as DR
disease status. These are also described in the charac-
teristic Table 1. This new DLS is referred as being
“optimized for retina appearance.” A similar process
was used to create a second debiased DLS that instead
accentuated DR markers in retinal images that already
possessed markers of individuals of darker-skin, to
create more of the missing RD data, leading to a DLS
deemed “optimized for DR status.”

The evaluation of these debiased DLSs was done
in an identical fashion, and with the same test data,
described for the baseline DLS. In addition, the
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Table 3. Comparing the Performance of the Baseline DLS (Left Column) and Debiased DLSs (Middle and Right
Columns) forMetrics Including Accuracy, Specificity, Sensitivity, and for Darker-Skin Individuals Versus Lighter-Skin
Individuals

Baseline DLS

Debiased DLS (Retina
Appearance
Optimized)

Debiased DLS
(DR-Status Optimized)

Testing dataset (400 images, see Table 2):
Accuracy (overall) 66.75 (4.62) [62.13,

71.37]
74.75 (4.26) [70.49,

79.01]
71.75 (4.41) [67.34,

76.16]
Accuracy (lighter-skin individuals) 73.0 (6.15)

[66.85,79.15]
78.5 (5.69) [72.81,

84.19]
72.0 (6.22) [65.78,

78.22]
Accuracy (darker-skin individuals) 60.5 (6.78)

[53.72,67.28]
71.0 (6.29) [64.71,

77.29]
71.5 (6.26) [65.24,

77.76]
Delta-parity (signed) value 12.5 (9.15) [3.35,

21.7]
7.5 (8.48) [–1.0, 16.0] 0.5 (8.8) [–8.3, 9.3]

Specificity (lighter-skin individuals) 61.0 (9.56) [51.44,
70.56]

83.0 (7.36) [75.64,
90.36]

66.0 (9.28) [56.72,
75.28]

Sensitivity (lighter-skin individuals) 85.0 (7.0) [78.0, 92.0] 74.0 (8.6) [65.40, 82.6] 78.0 (8.12) [69.88,
86.12]

Specificity (darker-skin individuals) 86.0 (6.8) [79.2, 92.8] 86.0 (6.8) [79.2, 92.8] 85.0 (7.0) [78.0, 92.0]
Sensitivity (darker-skin individuals) 35.0 (9.35) [25.65,

44.35]
56.0 (9.73) [46.27,

65.73]
58.0 (9.67) [48.33,

67.67]
Larger leftover set darker-skin individuals with DR (6291 images):
Sensitivity (darker-skin individuals)
(= accuracy)

38.48 (1.2) [37.28,
39.68]

52.63 (1.23) [51.4,
53.86]

49.75 (1.24) [48.51,
50.99]

Also showing are the 95% error margins in parenthesis and 95% confidence intervals in brackets. Values are in %.

improvement from baseline to debiased DLS for a
specific subpopulation of RD was also evaluated for a
set of 6291 real Kaggle EyePACS images with E-RA-
DLS extrapolated labels using sensitivity as a metric.

Results

Table 3 compares the accuracy, sensitivity, and
specificity with 95% confidence interval (CI) for the
baseline and debiased DLSs broken down by lighter-
skin or darker-skin individuals.

First, the results suggest a positive answer for
question QA. As shown in Table 3, the baseline B-
DR-DLS showed disparity and bias with regard to
the criterion of equal accuracy across subpopulations,
because it had accuracy, as defined for this study
among lighter-skin individuals, of 73.0% (66.85 to
79.15) versus darker-skin individuals of 60.5% (53.52
to 67.28), demonstrating disparity with delta = 12.5%
(3.35 to 21.7; Welch t-test t = 2.670, P = 0.008) for AI
accuracy across subpopulations. For this case, we treat
the accuracies as means and a debiased system as one
that has equal means for the lighter-skin and darker-

skin subpopulations. Thus, the Welch t-test states that,
under the assumption that the systems were to be
unbiased, the probability of observing a statistic at
least as significant as 2.670 is 0.8%.

The results also appear to suggest a positive answer
with regard to question QB. The debiased diagnostic
DLSs appeared to achieve closer parity in accuracy
across subpopulations. The debiased DLS operating
on retinal appearance, accentuating image markers
for darker-skin individuals among synthetic images
of DR-referable retina (so called “retinal appear-
ance optimized”), resulted in accuracy for lighter-skin
individuals of 78.5% (72.81 to 84.19) and for darker-
skin individuals of 71.0% (64.71 to 77.29) with Welch
t-test of t = 1.729, P = 0.0847 and delta = 7.5% (95%
CI = –1.0% to 16.0%). For this system, the Welch
t-test states that, under the assumption that this system
is debiased, the probability of observing a statistic
at least as significant as 1.729 is 8.47%. Addition-
ally, the debiasing system relying on generating new
images by accentuating image makers of DR among
synthetic images with image markers of individuals
of darker-skin (so called “DR optimized”), resulted
in even closer parity: accuracy for lighter-skin retinal
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Figure 3. The receiver operating characteristic (ROC) curves for each population of lighter-skin and darker-skin individuals for both the
baseline and debiased DLS (for both retinal appearance and DR optimized approaches). DS: dark skin, LS: light skin.

images was 72.0% (65.78% to 78.22%) and for darker-
skin of 71.5% (65.24% to 77.76%) with Welch t-test
t = 0.111, P = 0.912 and delta = 0.5% (-8.3% to
9.3%). Table 3 also reports the sensitivity and speci-
ficity for darker-skin and lighter-skin populations for
all algorithms. In particular, the table suggests that the
debiased DLS achieved improvement for darker-skin
individuals, whereby the sensitivity of 35.0% (25.65 to
44.35) and specificity of 86.0% (79.2 to 92.8) for the
baseline DLS were improved, for the “RA optimized”
debiased algorithm,- to a sensitivity of 56.0% (46.27
to 65.73) and specificity of 86.0% (79.2 to 92.8). The
second debiasing algorithm had similar improvements:
the performance was improved to a sensitivity of 58.0%
(48.33 to 67.67) and specificity of 85.0 (7.0; 78.0 to
92.0). When evaluated on the leftover dataset of real
data of darker-skin DR-referable individuals (RD),
the sensitivity was improved from 38.48% (37.28 to
39.68) to 52.63% (51.4 to 53.86), for the first debias-
ing algorithm and of 49.75% (48.51 to 50.99) for

the second, suggesting the benefit of the debiased
algorithms to improve the accuracy for the protected
individuals (i.e. the darker-skin individuals).

ROC curves and AUCs were reported for all cases
in Figure 3. These also show improvement in overall
parity for the debiased algorithms compared with the
baseline algorithm. Finally, the DLS used to extrapo-
late the retinal appearance labels to the entire dataset
had a validation accuracy (computed against the clini-
cian label, and not against ground truth because that
is not available) of 89.18% and 95% CI (85.17% to
93.19%).

Discussion

Assessing the Results

This study considered a DLS used for DR diagnos-
tics and demonstrated that data imbalance and
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domain generalization for specific factors related to
ethnicity/race/origin could impart unfair outcomes as
measured by lack of parity in performance (which
was measured via accuracy) for the baseline AI. It
was applied to retinal images from presumed differ-
ent subpopulations, that might affect AI interpre-
tation of diseased retina, from lighter-skin versus
darker-skin individuals, as labeled using markers such
as average fundus pigmentation (as a reflection of
melanin concentration within uveal melanocytes),5,6
optic disc size,18 and retinal arteriolar caliber.17 Experi-
ments suggests that the potential for bias exists in those
situations, and that bias in retinal analytics needs to be
carefully considered and tested in future retinal studies
and DLSs that are slated for clinical deployment. This
study also proposed and compared two AI debias-
ing methods, which may offer approaches for debias-
ing retinal image diagnostic DLSs and demonstrated
significant decrease in bias when measured using the
accuracy performance metric.

When looking at other metrics, including sensitivity
and specificity: the debiased DLSs were able to achieve
parity for specificity while substantially improving on
sensitivity for darker-skin individuals (equal to 35.0%
for the baseline DLS versus 56.0% for the first debiased
DLS and 58.0% for the second DLS). Parity was more
evident when looking at the more reliable metric of
ROC AUC. The ROC AUCs had differences between
lighter-skin versus darker-skin individuals of 0.18, for
the baseline DLS, compared to much smaller differ-
ences of 0.08 for the first debiasing algorithm, and 0.05
for the second debiasing algorithm. Looking at ROC
curves also revealed improvements: the debias curves
largely overlap for the lighter-skin individuals, and
there appears to be improvement in the ROC curves for
the debiasing algorithms for the darker-skin individu-
als when compared to baseline algorithm. This should
be assessed, when considering, as reported by Mehrabi
et al.7 and others, that AI bias is usually measured vis-
a-vis one specific criterion (here accuracy), and that
parity often cannot be achieved with regard to several
criteria simultaneously. Parity of accuracy is the most
widely used metric in the bias literature, this is why
that criterion was considered here. Enforcing parity
for other metrics via direct incorporation into a loss
function is a possible approach that is left as future
work. One might also consider fairness using softer
definitions of parity, as introduced in the Appendix,
via the definition of delta parity. Delta was found to
be 12.5% for the baseline algorithm whereas it was,
respectively, 7.5% for the first, and only 0.5% for the
second debiasing algorithm. The notion of delta parity
opens the door to novel mathematical definitions of
parity that would extend classical definitions and reflect

domain-specific as well as other human-set require-
ments that should be investigated in the future.

Datasets Used and Interpretation of the
Study

It is recommended to interpret this study as being
one that regards AI bias stemming from data imbal-
ance in retinal images from groups of individuals with
lighter-skin versus darker-skin, wherein the melanin
concentration within melanocytes in the skin corre-
sponds, on average, to the melanin concentration
withinmelanocytes in the choroid that then contributes
to the coloration of the retina image. However, instead
of depending on just one feature of fundus pigmen-
tation as lighter or darker pigmentation, this inves-
tigation also considered two additional features that
might be associated with lighter-skin versus darker-
skin individuals, wherein groups who self-report being
of African descent also, on average, have large cup
to disc ratios18 and larger arteriolar calibers.17 In
addition, it is noted that the term “race” is used in
this paper following JAMA guidelines (AMA Manual
of Style; Section 11.12.3: Race/Ethnicity. Correct and
Preferred Usage Inclusive Language). In reference to
terminology specifically, it is used here it in the broader
context of “race/ethnicity/origin.” This term also is
used as a shorthand to indicate the attributes of a
person that had the image markers and criteria A to
C as characteristics in their retinal images. In addition,
regarding the data used, although this study used an
experiment where a theoretical scenario of domain
generalization was created by altering the original
Kaggle EyePACS dataset, it is important to note that
the original Kaggle EyePACS is itself not biased or
unbalanced and that efforts were made by EyePACS
to include all races, not just retinas from individu-
als self-identified as of African or European descent,
but also included individuals self-identified as Asian,
Indian subcontinent, and of American indigenous
descent. Diversity of EyePACS is one of its impor-
tant attributes and is the reason this dataset has been
used by numerous AI and retinal disease groups for
experiments.

After these experiments were completed, in personal
communication with a principal that helped lead the
design of the Kaggle EyePACS dataset who evalu-
ated this study posted on a pre-print server, our study
team was made aware of statistics that clearly demon-
strate that care was taken that this dataset be reflec-
tive of diversity for races and ethnicities, including
self-reported African American, Asian, whites, and
other, including multiracial individuals. Based on that
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communication, it is noted that the dataset contains
approximately 5.4% of African American individuals
and about 1.3% of referable African American individ-
uals. Therefore, the proportion of subjects labeled as
African American corresponds to a higher proportion
of referable individuals compared with the population
as a whole (about 24% in the dataset).

Limitations and Other Remarks

The type of distributional imbalance considered
here would seem to be different from having assumed
a few individuals present rather than none at all for
a given subpopulation (referable-darker-skin). That
scenario should be more akin to a few-shot scenario,
which may be considered in the future, and related to
a study such as Burlina et al.12 In addition, judging
from Figure 1 (b1 to b3), the generative model, when
tasked with accentuating markers for darker skin
individuals, appeared to have focused mostly on accen-
tuating pigmentation and less so on increased arteri-
oles or venules size, or larger scleral canal opening,
which would result in an increased cup to disc ratio in
the absence of any loss of optic nerve tissue. However,
this did not seem to have prevented improvements in
terms of debiasing. Furthermore, this study did not
have access to the original race or ethnicity labels. The
labeling was done by a single clinician (K.P.). It took
into account several cues of criteria A to C described
earlier. In addition, regarding criterion A, the retinal
image pigmentation is influenced by appearance of
the choroidal background influenced by the melanin
concentration within the uveal melanocytes, although
variations in acquisition conditions, including flash,
pupil size, axial length, and presence of staphyloma-
tous abnormalities, could affect this appearance as well.
Labeling based on these criteria had additional limiting
factors. These included only 1555 images were directly
manually labeled, and then the labels were extrapolated
(inferred, predicted in machine learning [ML] nomen-
clature) to the rest of dataset using the E-RA-DLS.
This approach was motivated by constraints in annota-
tion resources. In addition, another limitation was that
the E-RA-DLS was only tested against our manual
annotations, and furthermore it was also used only in
binary mode (excluding indeterminate labels). As such,
it is likely suboptimal, but still was sufficient to demon-
strate debiasing power of the proposed algorithms
for this proof of concept study. To avoid introducing
additional uncertainty, using ground truth labels rather
than extrapolated labels (which were not public at the
time of this study) is another potential future endeavor,
if ground truth labels for race are made available. In

addition, even when the ground truth for race labels
become available, additional challenges still exist due to
the nature of “self-declaration” by individuals for their
ethnic and race ancestry.

Note also that one could have hypothesized that bias
could have originated from deeper lack of distribu-
tional shift reflected in the distribution of the granu-
lar levels of DR 0 to 4 across partitions. However, in
examining Table 2, one finds there is similar distribu-
tion of granular DR levels for lighter-skin individuals
and also with regard to darker-skin individuals for the
nonreferable levels (the referable levels are not repre-
sented in training by our design of experiments).

Regarding the relatively small test size, this work
aimed to be diligent in the sense of only reporting on
test data that were directly manually labeled by a clini-
cianwith regard to race (and not datawith extrapolated
retinal appearance labels). Recall that only 1555 images
were labeled manually. This fact and the constraints for
balancing across race and disease labels reduced the
testing dataset substantially. This study uses 400 out of
1555 or roughly 25% of the data for testing.

The first type of debiased DLS has improved
accuracy also for lighter-skin individuals (whereas for
the second debiasing algorithm, accuracy goes down,
which conforms to intuition). Regarding how this
improvement could be explained for the first method,
it is possible that data augmentation played a role
and that adding referable DR from individuals of
darker-skin as training exemplars led to more diver-
sity of features that also might help with performance
in individuals of lighter-skin. In addition, other past
studies using EyePACS (e.g. Gulshan et al.1) show
higher accuracy compared to our DLSs. There are
various reasons for this, including differing experimen-
tal settings (such as partitioning and other factors),
possible DR ground truth label noise (extra annota-
tions by new clinicians in other studies may have been
used, whereas here, only Kaggle EyePACS labels are
directly used). Other key differences are that we report
balanced accuracies across referable and nonreferable
classes as well as race (this inevitably leads to lower
accuracy figures compared with unbalanced accuracy
considering there is a strong preponderance of healthy
DR level 0 retinas in EyePACS) and we also do not
expunge low quality images from the dataset.

Last, although our method appears successful at
debiasing and may help in other situations of poten-
tial AI bias for retinal diagnostics, it is easy to envision
cases where it may not be readily applicable. There are
bias situations that may not be well addressed by this
approach, and may need other solutions. This may be
the case, for example, where additional real data may
be needed to include the biological variability that may
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exist with each disease depending on a protected factor,
andwhichmay not be captured bymoving on the latent
space of generative models. For example, there may
be different presentations of diseases in individuals of
Asian versus European versus African descent, such as
polypoidal choroidal vasculopathy,22 or image acquisi-
tion conditions may have variations depending on the
protected population, different refractive errors affect-
ing optic nerve appearances in the setting of pathologic
myopia, or different media opacity across various ages
that may compromise our method.

Future Work

Future avenues for generating specific missing data
and achieving better parity could use disentangle-
ment in generative models: methods using disentangled
representations21,23 point to the possibility of using
disentanglement for debiasing. More could be done
to assess this in the future. Furthermore, although
this study considered lighter-skin versus darker-skin
individuals as a proxy for ethnicity/race/origin and its
associated potential AI bias for retinal diagnostics,
other forms of bias exist, including age, sex, or socio-
economics that may impact AI. For example, when
considering age-related macular degeneration and an
epidemiologic study like Age-Related Eye Disease
Study (AREDS), where few participants were older
than 85 years, it would be of interest to investigate if AI
exhibits disparity of accuracy for diagnoses in people
over age 85 years, when only a few people over the age
of 85 years were included in the AI training set. Such
investigations might be pursued in future studies.

Finally, many DLSs have shown the ability for
retinal diagnostics with human level performance, in
some cases, theseDLSs also have used a preponderance
of nonreferable retina, or preponderance of individuals
of a given self-reported race. These data can match the
demographic makeup of a specific region or country
and can be shown to work well (i.e. with regard to
metrics such as accuracy or AUC) when the trained
and tested on like kind data distributions. However,
this success still may mask, when broken down per
protected factors, such as race or age, that DLSs did
not achieve equal accuracy objectives, or when faced
with distributional shift, that these methods’ perfor-
mance degraded. In sum, and to our knowledge, the
problem of bias, and more broadly of generalization
and distributional shift should be given more atten-
tion in retinal AI studies. The hope is that the method
presented here and other methods in references 7 and
15 can motivate future investigations to address those
issues.

Conclusion

When considering retinal diagnostics of DR, this
study demonstrated that situations of data imbal-
ance and domain generalization can affect the perfor-
mance of AI diagnostics algorithms applied to a
task, such as DR referable versus not referable classi-
fication, and result in AI bias for individuals of
presumed diverse racial/ethnicity/origins partitioned
along darker-skin versus lighter-skin populations,
assuming the presumed skin pigmentation relates, on
average, to the concentration of melanin within uveal
melanocytes and subsequently on retinal coloration.

Our results suggest the potential benefit of certain
generative methods that alter specific image markers
to allow the augmentation of the diagnostic DLS and
obtain parity with respect to accuracy to address this
potential AI bias in retinal diagnostics.

Acknowledgments

The authors thank Jorge Quadros (EyePACS/
Stanford University) for useful discussions about the
Kaggle EyePACS dataset.

Funding: Funding was provided by The Johns
Hopkins University - Applied Physics Laboratory
(JHU APL) and Institute for Assured Autonomy
(JHU-IAA) as well as internal grants as well as
unrestricted philanthropic grants to the JohnsHopkins
University School of Medicine.

Disclaimers: The views in this paper reflect only the
authors’ opinion and not that of the funding entities.

Financial Disclosures: Bressler, Burlina, and Joshi
have several patents related to AI applied to retinal
image analysis.

Disclosure: P. Burlina, None; N. Joshi, None; W.
Paul,None;K.D. Pacheco,None;N.M.Bressler,None

References

1. Gulshan V, Peng L, CoramM, et al. Development
and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus
photographs. JAMA. 2016;316(22):2402–2410.

2. Ting DS, Liu Y, Burlina P, Xu X, Bressler NM,
Wong TY. AI for medical imaging goes deep. Nat.
Med. 2018;24(5):539–540.



Addressing AI Bias in Retinal Disease Diagnostics TVST | February 2021 | Vol. 10 | No. 2 | Article 13 | 14

3. Burlina P, Pacheco KD, Joshi N, Freund DE,
Bressler NM. Comparing humans and deep learn-
ing performance for grading AMD: a study in
using universal deep features and transfer learning
for automated AMD analysis. Comput Biol Med.
2017;82:80–86.

4. Parikh RB, Teeple S, Navathe AS, Addressing
bias in artificial intelligence in health care. JAMA.
2019;22(24):2377–2378.

5. Wakamatsu K, Hu DN, McCormick SA, Ito S.
Characterization of melanin in human iridal and
choroidal melanocytes from eyes with various col-
ored irides. Pigment Cell Res. 2008;21:97–105.

6. Yiu G, Vuong VS, Oltjen S, et al. Effect of uveal
melanocytes on choroidal morphology in rhesus
macaques and humans on enhanced-depth imag-
ing optical coherence tomography. Invest Ophthal-
mol Vis Sci. 2016;57(13):5764–5771.

7. Mehrabi N, Morstatter F, Saxena N, et al. A sur-
vey on bias and fairness in machine learning. arXiv
preprint arXiv:1908.09635, 2019.

8. Obermeyer Z, Powers B, Vogeli C, Mullainathan
S. Dissecting racial bias in an algorithm used
to manage the health of populations. Science.
2019;366(6464):447–453.

9. Lemberger P, Panico I. A primer on domain adap-
tation. arXiv:2001.09994, 2020.

10. Burlina PM, Joshi N, Pacheco KD, Liu TA,
Bressler NM. Assessment of deep generative mod-
els for high-resolution synthetic retinal image
generation of age-related macular degeneration.
JAMA Ophthalmol. 2019;137(3):258–264.

11. Wang Y, YaoQ, Kwok J, et al. Generalizing from a
few examples: a survey on few-shot learning. arXiv
preprint arXiv:1904.05046, 2019

12. Burlina P, Paul W, Mathew P, Joshi N, Pacheco
KD, Bressler NM. Low-shot deep learning
of diabetic retinopathy with potential applica-
tions to address artificial intelligence bias or
rare ophthalmic diseases. JAMA Ophthalmol.
2020;138(10):1070–1077.

13. Chalapathy R, Chawla S. Deep learning for
anomaly detection: a survey. arXiv preprint
arXiv:1901.03407, 2019.

14. Burlina P, Joshi N, Wang I. Where’s Wally now?
Deep generative and discriminative embeddings
for novelty detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. < https://openaccess.thecvf.com/
content_CVPR_2019/papers/Burlina_Wheres_Wa
lly_Now_Deep_Generative_and_Discriminative_
Embeddings_for_Novelty_CVPR_2019_paper.
pdf > 2019:11507–11516.

15. Zhang BH, Lemoine B, Mitchell M. Mitigating
unwanted biases with adversarial learning. In:Pro-
ceedings of the 2018 AAAI/ACMConference on AI,
Ethics, and Society. < https://arxiv.org/abs/1801.
07593 > 2018.

16. Cuadros J, Bresnick G. EyePACS: an adapt-
able telemedicine system for diabetic retinopathy
screening. J Diabetes Sci Technol. 2009;3(3):509–
516.

17. Wong TY, Islam FM, Klein R. Retinal vascular
caliber, cardiovascular risk factors, and inflamma-
tion: the Multi-Ethnic Study of Atherosclerosis
(MESA). Invest Ophthalmol Vis Sci. 2006;47:2341–
2350.

18. Zangwill LM, Weinreb RN, Berry CC, et al.
Confocal Scanning Laser Ophthalmoscopy Ancil-
lary Study to the Ocular Hypertension Treatment
Study. Racial differences in optic disc topogra-
phy: baseline results from the confocal scanning
laser ophthalmoscopy ancillary study to the ocu-
lar hypertension treatment study. Arch Ophthal-
mol. 2004 Jan;122(1):22–28.

19. He K, Zhang X, Ren S, Sun J. Deep residual
learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and
Pattern Recognition. < https://ieeexplore.ieee.org/
document/7780459 > 2016:770–778.

20. Karras T, Laine S, Aila T. A style-based gen-
erator architecture for generative adversarial net-
works. IEEE Trans Pattern AnalMach Intell. 2020,
https://doi.org/10.1109/TPAMI.2020.2970919.

21. Paul W, Wang I, Alajaji F, Burlina P. Unsu-
pervised semantic attribute discovery and
control in generative models. arXiv preprint
arXiv:2002.11169, 2020.

22. Cheung CMG, Lai TYY, Ruamviboonsuk P, Koh
AH, Lee W, Wong TY. Polypoidal choroidal
vasculopathy: definition, pathogenesis, diagno-
sis, and management, https://doi.org/10.1016/j.
ophtha.2017.11.019.

23. Locatello F, Abbati G, Rainforth T, Bauer S,
Schölkopf B, Bachem O. On the fairness of dis-
entangled representations. Adv Neural Inf Process
Syst. 2019:14584–14597.

Appendix: Mathematical
Formulations of Bias

Formally, the equal odds criterion in the Introduc-
tion section can be restated as follows:
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such that for lighter-skin individualsA= 0, and darker-
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skin, A = 1), and a disease status Y (Y could represent
a binary 0/1 value for the actual presence or absence of
referableDR), then theAI-estimated status for theDR-
referable status, denoted by Ŷ, must be independent of
the attribute A, and must only depend on Y, i.e.:

P
(
Ŷ = ŷ|A = 0, Y = y

) = P
(
Ŷ = ŷ|A = 1,Y = y

)

= P
(
Ŷ = ŷ|Y = y

)
(A1)

for all y.15
The restated formal definition for the criterion of

equal opportunity makes a similar statement, which is
that:

P
(
Ŷ = ŷ|A = 0, Y = y

)

= P
(
Ŷ = ŷ

∣
∣A = 1,Y = y) = P(Ŷ = ŷ

∣
∣Y = y

)

(A2)

but for a given value of y.15 Therefore, the equal odds
criterion subsumes equal opportunity.

Since strict independence and equality is not practi-
cal, we also define the δ-parity criterion via the
following:

Min|δ|where δ = P
(
Ŷ = ŷ|A = 0, Y = y

)

−P
(
Ŷ = ŷ|A = 1, Y = y

)
(A3)

for all y.15 In that case, the debiasing process could
be cast as one of minimizing the above objective. The
problem could be to alternatively compare algorithms
for debiasing based on their resulting signed δ value, a
metric used herein. In this study we instead use delta as
a metric for bias.


