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Abstract: Cancers of the oral cavity can develop in the anatomic area extending from the lip, gum,
tongue, mouth, and to the palate. Histologically, about 85–90% of oral cavity cancers are of the type
squamous cells carcinomas (SCCs). The incidence of oral tongue SCC is higher in the tongue than any
other anatomic area of the oral cavity. Here, we investigated the therapeutic effects and molecular
mechanisms of docetaxel, which is a paclitaxel antitumor agent, on the cell growth of a human tongue
SCC-derived SAS cell line. The results showed that docetaxel (10–300 nM) induced cytotoxicity and
caspase-3 activity in SAS cells. Moreover, docetaxel (100 nM) promoted the expression of apoptosis-
related signaling molecules, including the cleavages of caspase-3, caspase-7, and poly (ADP-ribose)
polymerase (PARP). In mitochondria, docetaxel (100 nM) decreased the mitochondrial membrane
potential (MMP) and Bcl-2 mRNA and protein expression and increased cytosolic cytochrome c
protein expression and Bax mRNA and protein expression. In terms of mitogen-activated protein
kinase (MAPK) and adenosine monophosphate-activated protein kinase (AMPK) signaling, docetaxel
increased the expression of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-c-
Jun N-terminal kinase (JNK), and p-AMPKα protein expression but not p-p38 protein expression.
Moreover, the increase in caspase-3/-7 activity and Bax protein expression and decreased Bcl-2 protein
expression and MMP depolarization observed in docetaxel-treated SAS cells could be reversed by
treatment with either SP600125 (a JNK inhibitor), PD98059 (an MEK1/2 (mitogen-activated protein
kinase kinase 1/2) inhibitor), or compound c (an AMPK inhibitor). The docetaxel-induced increases
in p-JNK, p-ERK, and p-AMPKα protein expression could also be reversed by treatment with either
SP600125, PD98059, or compound c. These results indicate that docetaxel induces human tongue SCC
cell apoptosis via interdependent MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways.
Our results show that docetaxel could possibly exert a potent pharmacological effect on human oral
tongue SCC cell growth.
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1. Introduction

Cancers of the oral cavity can develop in the anatomic area extending from the lip,
gum, tongue, mouth, and to the palate [1]. Around the world, the annual incidence of
such cancers has been increasing, with over 377,713 diagnosed cases in 2020 and an annual
mortality of about 177,757 deaths [2]. Histologically, squamous cell carcinomas (SCCs)
are the most common type of oral cavity cancer, representing 85–90% of cases [1,3–5].
Moreover, in a study of Scandinavian tumor registries, the incidence of oral tongue SCC
was 0.06–0.32 per 100,000 (about 5-fold) among young men and 0.03–0.19 per 100,000 (about
6-fold) among young women compared to only a 2-fold in older age groups [6]. The risk
factors of oral SCC are associated with smoking, alcohol consumption, human papilloma
virus (HPV) infection, and ultraviolet radiation [7–10]. The lesions damage the functions of
speech, swallowing, and chewing, and induce pain, which will seriously affect patients
in their daily life [10,11]. Current methods for treating oral tongue SCC include surgery
and radiotherapy. However, the survival rate remains poor, and with a high incidence of
metastasis [10–13]. Thus, the development of new therapeutic strategies for tongue SCC is
urgent and necessary.

Docetaxel is a semisynthetic, second-generation paclitaxel antitumor agent, which was
derived from European yew tree. The pharmacological effect of docetaxel is to bind and
stabilize tubulin, thereby interfering with the microtubule network during mitosis. This
results in cell cycle arrest at the G2/M phase and subsequent induction of cell death [14–16].
Docetaxel has been investigated in therapy of many cancer diseases, for example, salivary
gland carcinoma, non-small cell lung cancer, and prostate cancer [16–18].

Previously, research in murine salivary carcinoma cells has demonstrated that doc-
etaxel induces apoptosis by altering Bcl-2 family and MAPK signals. The c-Jun N-terminal
kinase/stress-activated protein kinase (JNK/SAPK) is necessary for docetaxel-induced
cell cycle arrest [19]. Induction of JNK activation has been shown to up-regulate Bak and
Bax and promote apoptosis [19–22]. Furthermore, AMPK is a serine/threonine kinase
that consists of three subunits including catalytic α, scaffolding β, and AMP-sensing γ in
mammalian cells [23,24]. It has been reported that the decrease of cellular ATP would cause
the AMP/ATP ratio to increase. This effect results in the AMP binding to AMPK, which
caused the upstream kinases, such as LKB1 and CAMKKβ, to phosphorylate the AMPKα

subunits on the Thr172 [25–28]. Many studies have suggested that AMPK activation regu-
lates cancer cell proliferation through reprogramming of cell metabolism [24,29,30]. One
study demonstrated that the reduction in AMPK activation of breast cancer specimens
is associated with higher histological grade and axillary node metastasis [31]. Another
study also showed that a decrease in AMPKα expression can be observed in the non-small
cell lung cancer, and another showed that AMPKα activation can inhibit lung cancer cell
growth [26]. Together, these studies suggest that AMPKα serves an important role in cancer
prevention and treatment. Despite growing evidence, little is known about the role of
AMPKα in oral tongue SCC. The aim of the present study is to evaluate the roles of AMPKα

and MAPKs signals in human oral tongue SCC cell growth and to determine whether
docetaxel can reduce oral tongue SCC cell growth through the regulation of AMPKα and
MAPKs signals.

2. Results
2.1. Docetaxel Induces Cytotoxicity and Apoptosis in Human Tongue SCC SAS Cells

We first investigated whether docetaxel induces cytotoxicity and apoptosis in SAS
cells. Cells were treated with docetaxel (10–300 nM) for 24 and 48 h. As shown in Figure 1A,
docetaxel (100 and 300 nM; for 48 h) markedly induced morphological changes, such as cell
shrinkage, as observed by inverted phase-contrast microscopy. Furthermore, cell viability
was significantly decreased in a concentration- and time-dependent manner following
treatment with docetaxel (10–300 nM) (Figure 1B). The 50% lethal concentration (LC50)
in SAS cells was ~100 nM docetaxel treatment at 48 h (Figure 1B). In order to clarify
whether docetaxel induces apoptosis in SAS cells, caspase-3 activity was detected. Cells
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were pretreated with casepase-3 inhibitor (Z-DEVD-FMK) for 1 h and then with docetaxel
(10 and 100 nM) for 24 and 48 h. The caspase-3 activity was significantly increased by
docetaxel treatment, which could be significantly inhibited by Z-DEVD-FMK pretreatment
(Figure 1C). Moreover, the caspase-related signals, including cleaved casepase-3, cleaved
caspase-7, and cleaved PARP, were increased after docetaxel 100 nM treatment for 24 and
48 h (Figure 1D). These results indicate that docetaxel can induce apoptosis in SAS cells.
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Figure 1. Effects of docetaxel on cell viability and apoptosis in human tongue squamous carcinoma 
SAS cells. (A) Cells were treated with docetaxel (100 and 300 nM) for 48 h. The morphological 
changes were observed using inverted phase-contrast microscopy (magnification ×200; scale bar = 
100 μm). (B) Cells were treated with docetaxel (10–300 nM) for 24 and 48 h. The cell viability was 
determined by MTT assay. (C) Cells were pretreated with or without Z-DEVD-FMK (10 μM) for 1 
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Figure 1. Effects of docetaxel on cell viability and apoptosis in human tongue squamous carcinoma
SAS cells. (A) Cells were treated with docetaxel (100 and 300 nM) for 48 h. The morphological changes
were observed using inverted phase-contrast microscopy (magnification ×200; scale bar = 100 µm).
(B) Cells were treated with docetaxel (10–300 nM) for 24 and 48 h. The cell viability was determined
by MTT assay. (C) Cells were pretreated with or without Z-DEVD-FMK (10 µM) for 1 h, and then
treated with docetaxel (10 and 100 nM) for 24 or 48 h. The caspase-3 activity was determined us-
ing a caspase-3 activity assay kit. (D) Cells were treated with docetaxel (100 nM) for 24 and 48 h.
The cleaved caspase-3, caspase-7, and PARP protein expression levels were determined by Western
blot assay. Data in (B,C) are presented as the means ± SD of four independent experiments with
triplicate determination. Results are shown in (D) with representative images, and quantification
was performed by densitometric analysis. Each presented bar is the mean ± SD of three indepen-
dent experiments. Statistical analysis was performed with one-way ANOVA analysis followed by
Tukey’s post hoc test. * p < 0.05 compared with vehicle control. # p < 0.05 compared with docetaxel
treatment group.

2.2. Docetaxel-Induced Apoptosis Is Mediated by a Mitochondria-Dependent Pathway in Human
Tongue SCC SAS Cells

In the next experiments, we determined the possible mechanisms of docetaxel-induced
apoptosis in SAS cells. Cells were treated with docetaxel (100 nM) for 24, 36, and 48 h.
The results showed that the MMP was significantly decreased after docetaxel treatment
(Figure 2A). Cytosolic cytochrome c protein expression was significantly increased at 48 h
of docetaxel administration (Figure 2B). Furthermore, docetaxel significantly increased pro-
apoptotic Bax, Bak, Bad, and p53 (Figure 2C) and decreased anti-apoptotic Bcl-2 (Figure 2D)
gene expression levels. As shown in Figure 2E–G, treatment with docetaxel for 48 h
also significantly decreased Bcl-2 and increased Bax protein expression in SAS cells. These
showed a significant shift in the pro-apoptotic/anti-apoptotic ratio toward a state associated
with apoptosis. These results indicate that mitochondria-dependent apoptotic pathway
plays an important role in docetaxel-induced SAS cell death.
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Figure 2. Effects of docetaxel on mitochondrial transmembrane potential (MMP), cytosolic cyto-
chrome c protein expression, and mitochondrial damage-related mRNA expression in human 
tongue squamous carcinoma-derived SAS cells. (A) Cells were treated with docetaxel (100 nM) for 
24, 36, and 48 h. MMP was determined by flow cytometer with a fluorescent dye DiOC6-FITC. (B) 
Cells were treated with docetaxel (100 nM) for 24 and 48 h. Cytosolic cytochrome c protein expres-
sion was determined by Western blot analysis. Cells were treated with docetaxel (100 nM) for 24, 
36, and 48 h. The mRNA expression of (C) Bax, Bak, Bad, and p53 and (D) Bcl-2 was determined by 
RT-qRT-PCR analysis. Additionally, SAS cells were pretreated with SP600125 (a  JNK inhibitor; 20 
μM), PD98059 (an MEK1/2  inhibitor; 20 μM), and compound c (an  AMPK inhibitor; 10 μM) for 1 h 
and then treated with or without docetaxel for 48 h, and  (E,F,G) the protein expression of Bcl-2 and 
Bax was determined by Western blot analysis. Data in (A,C,D) are presented as the means ± SD of 
four independent experiments with triplicate determination. Results are shown in (B,E–G) with rep-
resentative images, and quantification was performed by densitometric analysis. Each presented 
bar is the mean ± SD of three independent experiments. Statistical analysis was performed with one-
way ANOVA analysis followed by Tukey’s post hoc test. * p < 0.05 compared with vehicle control. 
# p < 0.05 compared with docetaxel treatment group. 
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Figure 2. Effects of docetaxel on mitochondrial transmembrane potential (MMP), cytosolic cy-
tochrome c protein expression, and mitochondrial damage-related mRNA expression in human
tongue squamous carcinoma-derived SAS cells. (A) Cells were treated with docetaxel (100 nM) for 24,
36, and 48 h. MMP was determined by flow cytometer with a fluorescent dye DiOC6-FITC. (B) Cells
were treated with docetaxel (100 nM) for 24 and 48 h. Cytosolic cytochrome c protein expression
was determined by Western blot analysis. Cells were treated with docetaxel (100 nM) for 24, 36,
and 48 h. The mRNA expression of (C) Bax, Bak, Bad, and p53 and (D) Bcl-2 was determined by
RT-qRT-PCR analysis. Additionally, SAS cells were pretreated with SP600125 (a JNK inhibitor; 20 µM),
PD98059 (an MEK1/2 inhibitor; 20 µM), and compound c (an AMPK inhibitor; 10 µM) for 1 h and
then treated with or without docetaxel for 48 h, and (E,F,G) the protein expression of Bcl-2 and
Bax was determined by Western blot analysis. Data in (A,C,D) are presented as the means ± SD
of four independent experiments with triplicate determination. Results are shown in (B,E–G) with
representative images, and quantification was performed by densitometric analysis. Each presented
bar is the mean ± SD of three independent experiments. Statistical analysis was performed with
one-way ANOVA analysis followed by Tukey’s post hoc test. * p < 0.05 compared with vehicle control.
# p < 0.05 compared with docetaxel treatment group.

2.3. Docetaxel Induces Phosphorylation of MAPK-ERK/JNK and AMPKα in Human Tongue SCC
SAS Cells

We next investigated whether MAPK and AMPKα signals were involved in docetaxel-
induced SAS cell apoptosis. After cells were treated with docetaxel (100 nM) for 1 to 24 h,
the protein expression of p-ERK1/2, p-JNK1/2, and p-AMPKα, but not that of p-p38, was
significantly increased (Figure 3). In order to determine the roles of ERK, JNK, and AMPKα

in docetaxel-induced cell apoptosis, cells were pretreated with SP600125 (a JNK inhibitor;
20 µM), PD98059 (an MEK1/2 inhibitor; 20 µM), or compound c (an AMPK inhibitor;
10 µM) for 1 h, and then treated with or without docetaxel for 48 h. The results showed
that docetaxel-induced caspase-3 activity could be significantly inhibited by pretreatment
with SP600125, PD98059, or compound c (Figure 4A). These results indicate that ERK, JNK,
and AMPKα signals are involved in the docetaxel-induced SAS cell apoptosis. Moreover,
SP600125, PD98059, and compound c pretreatment significantly reversed the docetaxel-
induced MMP loss (Figure 4B), decreased Bcl-2 protein expression, and increased Bax
protein expression (Figure 2C–E). Pretreatment with SP600125, PD98059, or compound
c could significantly inhibit the docetaxel-induced protein expression of p-JNK, p-ERK,
and p-AMPKα (Figure 5A–C). Thus, these results suggest that the activations of JNK,
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ERK1/2, and AMPKα signals induced by docetaxel are interdependent, which regulates
the mitochondria-dependent apoptotic pathway downstream, resulting in tongue SCC SAS
cell death.
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Figure 3. Effect of docetaxel on the protein expression for MAPK and AMPK signals in human tongue
squamous carcinoma-derived SAS cells. Cells were treated with docetaxel (100 nM) for 1–24 h. The
protein expression of phosphorylated (p)-ERK1/2, ERK, p-JNK1/2, JNK-1, p-p38, p38, p-AMPKα,
and AMPKα was determined by Western blot analysis. Results are shown with representative images,
and quantification was performed by densitometric analysis. Each presented bar is the mean ± SD of
three independent experiments. Statistical analysis was performed with one-way ANOVA analysis
followed by Tukey’s post hoc test. * p < 0.05 compared with vehicle control.
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Figure 4. The roles of MAPKs and AMPK in docetaxel-induced apoptotic activity and mitochon-
drial damage-related signals in human tongue squamous carcinoma-derived SAS cells. Cells were
pretreated with SP600125 (a JNK inhibitor; 20 µM), PD98059 (an MEK1/2 inhibitor; 20 µM), and
compound c (an AMPK inhibitor; 10 µM) for 1 h and then treated with or without docetaxel for 48 h.
(A) The caspase-3/-7 activity was determined using a caspase-3/-7 activity assay kit. (B) The MMP
was determined by flow cytometer with a fluorescent dye DiOC6. Data in (A,B) are presented as the
means ± SD of four independent experiments with triplicate determination. Statistical analysis was
performed with one-way ANOVA analysis followed by Tukey’s post hoc test. * p < 0.05 compared
with vehicle control. # p < 0.05 compared with docetaxel treatment group.
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Figure 5. The interaction of ERK, JNK, and AMPK signals in human tongue squamous carcinoma-
derived SAS cells. Cells were pretreated with (A) SP600125 (a JNK inhibitor; 20 µM), (B) PD98059 (an
MEK1/2 inhibitor; 20 µM), and (C) compound c (an AMPK inhibitor; 10 µM) for 1 h and then treated
with or without docetaxel for 8 h. The protein expression of p-JNK1/2, p-ERK1/2, and p-AMPKα

was determined by Western blot analysis. Results are shown in (A, B, and C) of representative images,
and quantification was performed by densitometric analysis. Each presented bar is the mean ± SD of
three independent experiments. Statistical analysis was performed with one-way ANOVA analysis
followed by Tukey’s post hoc test. * p < 0.05 compared with vehicle control. # p < 0.05 compared with
docetaxel treatment group.
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3. Discussion

Squamous cell carcinomas (SCC) are the major histological types of oral cancer, and
their development is associated with malignancy and a lower survival rate in patients [32,33].
It was recently shown that the incidence of oral cancer has been decreasing in anatomic
areas of the lip, gum, mouth, and palate, but not in the tongue, leading to the suggestion
that there are possible etiological or genetic factors triggering carcinogenesis in the tongue
that are linked with certain geographic areas and differences in sex [32–35]. There are
many risk factors involved in tongue SCC disease formation, for example, tobacco, betel
nut chewing, and alcohol. The incidence rate of tongue SCC is higher in older men with
exposure to the aforementioned risk factors. A report showed the incidence of tongue SCC
increasing at the ages of 18 to 44 in young white women [36]. Moreover, the incidence of
tongue SCC varies by gender in different countries; it is higher in men in Austria, Bulgaria,
and Ireland but higher in women in England, Denmark, Sweden, and the United States [32].
Thus, many etiological factors might drive tongue SCC programming. More importantly,
the development of new therapeutic strategies for tongue SCC is urgent and necessary.

Docetaxel is a semisynthetic derivative of 10-deactyl baccatin III from the European
yew. It is currently approved in treatment of patients with SCC of the head and neck [37,38].
However, in the current literature, there is a lack of solid data to suggest the possible
molecular mechanisms of docetaxel on tongue SCCs.

Inducing tumor cell death is a therapeutic strategy used for many cancer diseases.
The apoptotic effect has been shown to induce cell shrinkage from generation of pyknotic
nucleus and chromatin condensation, leading to induction of apoptosis with cell nuclear col-
lapse and apoptotic body formation [39]. Apoptosis involves extrinsic (receptor-dependent)
and intrinsic (mitochondrial-dependent) pathways. Whether by the extrinsic or intrinsic
pathway, apoptotic signals induce mitochondrial transmembrane potential disruption and
trigger apoptotic factors such as DNA condensation, DNA degradation, and apoptosome
formation [40–42]. It has been reported that the Bcl-2 family regulates mitochondrial per-
meabilization and leads to the release of apoptogenic factors that activate caspases and
apoptosis [43]. In the Bcl-2 family, the BH3 domain of activator BH3-only proteins binds to
the BH3 domain-binding groove in Bax/Bak. Bax/Bak activation results in conformational
changes to the mitochondrial outer membrane and permeability transition pore forma-
tion [43]. Moreover, cytochrome c is synthesized in the cytoplasm and translocated through
the outer mitochondrial membrane, which leads to assembly of the apoptosome. The apop-
tosome comprises cytochrome c, Apaf-1, and dATP. Cytochrome c binds to dATP, resulting
in conversion of Apaf-1 from a closed monomeric configuration to an open heptameric
platform for assembly and activation of caspases [41,44]. In our results, docetaxel induced
cytotoxic cell death and caspase-3 activity in SAS cells. Regarding apoptotic signals, do-
cetaxel increased the cleavages of the caspase-3, caspase-7, and PARP proteins. These
results indicate that docetaxel induces the apoptosis of SAS cells. Studies have shown that
docetaxel induces apoptosis mainly through the mitochondria-dependent pathway [40–42].
Our results found that docetaxel decreased mitochondrial transmembrane potential, in-
creased cytosolic cytochrome c protein expression, increased Bax, Bak, Bad, and p53 mRNA
expression, and decreased Bcl-2 mRNA expression in SAS cells.

MAPK signals are reported to be associated with cell proliferation, cell differentiation,
apoptosis, angiogenesis, invasion, and metastasis [45]. MAPKs include ERK1/2, JNK,
p38, and ERK5 [45,46]. Activating ERK1/2 regulates pro-apoptotic signaling and induces
apoptosis. One study showed that cisplatin induces DNA damage-induced neuronal cell
apoptosis by increasing the protein expression of p-ERK1/2 and p53 [47]. Another study
also showed that perfluorohexanesulfonate (PFHxS) induces apoptosis of neuronal cells
and phosphorylation of ERK1/2, JNK, and p38 proteins [48]. It was further found that
ERK1/2 inhibition reduces apoptosis, while JNK inhibition increases apoptosis; however,
p38 inhibition does not affect apoptosis [48]. In oral squamous carcinoma cells, JNK
activation can regulate apoptosis through the mitochondria and ER stress signals [49].
These findings indicate that MAPK signaling is associated with the apoptotic pathway. In
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this study, we found that docetaxel increased the expression of p-ERK1/2 and p-JNK but
not p-p38 protein. Both SP600125 (a JNK inhibitor) and PD98059 (an MEK1/2 inhibitor)
reversed docetaxel-induced caspase-3/-7 activity and MMP depolarization, increased Bax
expression, and decreased Bcl-2 expression in SAS cells.

The activation of AMPK has been reported to inhibit non-small cell lung cancer cell
growth [26]. Previous studies have shown that higher concentrations (over 10–100 µM) of
traditional AMPK activators, such as AICAR and metformin, can induce anticancer effects
in non-small cell lung carcinoma cells [50–53]. In an oral cancer study, the upregulation of
p-AMPKα (Thr172), p-AMPKα1/α2 (Ser425/Ser491), p-AMPKβ1 (Ser108), and p-AMPKγ1
could modulate the invasion and migration of oral cancer cells [54]. In our study, we found
that docetaxel could induce tongue SCC cell death at the concentrations of 10–300 nM and
induce AMPKα activation at a 100 nM concentration. Pretreatment with an AMPK inhibitor
(compound c) effectively prevented AMPKα activation and inhibited docetaxel-induced
caspase-3/-7 activity and MMP depolarization, increased Bax expression, and decreased
Bcl-2 expression in SAS cells as well as the activation of JNK and ERK1/2 signals. Moreover,
the phosphorylation of JNK, as well as ERK1/2 and AMPKα, in docetaxel-treated SAS
cells was abrogated by pretreatment with SP600125 (a JNK inhibitor); meanwhile, the
phosphorylation of ERK1/2, as well as JNK and AMPKα, was also markedly inhibited by
pretreatment with PD98059 (an MEK1/2 inhibitor). These results imply that JNK, ERK1/2,
and AMPKα-mediated signals are interdependent and play critical roles in the downstream
regulation of the mitochondria-dependent apoptosis pathway in docetaxel-induced tongue
SCC cell death.

Limitations of the study: (1) A human tongue cancer SAS cell line was used in this
study. Other tongue cancer cell lines can be used to further confirm the docetaxel-mediated
molecular mechanisms. (2) The pharmacological inhibitors for JNK, ERK, and AMPK were
used in this study. JNK-, ERK-, and AMPK-specific targeted gene silencing can be used
to further confirm the molecular mechanisms mediated by docetaxel. (3) Future animal
model studies can further support these findings from an in vitro cancer cell model.

4. Materials and Methods
4.1. Materials

Docetaxel and other chemicals (including SP600125, PD98059, and compound c),
unless specified otherwise, were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Docetaxel was dissolved in dimethyl sulfoxide (DMSO) to prepare the stock solution. The
maximum volume of DMSO used in the experiments was <1% per well, which does not in-
duce any cytotoxicity. Laboratory plastic ware was obtained from Falcon (Becton, Dickinson
and Company, Franklin Lakes, NJ, USA). Dulbecco’s modified Eagle’s medium and Ham’s
F12 medium, fetal bovine serum (FBS), and antibiotics (penicillin-streptomycin (Cat. No.:
15140122) and gentamicin (Cat. No.: 15710064)) were purchased from Gibco/Invitrogen
(Thermo Fisher Scientific Inc., Waltham, MA, USA). Mouse or rabbit monoclonal antibodies
specific for cleaved caspase-3 (Cat. No.: #9661), cleaved caspase-7 (Cat. No.: #9491), PARP
(Cat. No.: #9542), cytochrome c (Cat. No.: #11940), Bcl-2 (Cat. No.: #15071), Bax (Cat. No.:
#89477), phosphorylated (p)-JNK (Cat. No.: #9255), p-ERK1/2 (Cat. No.: #4377), p-p38
(Cat. No.: #9216), p-AMPKα (Cat. No.: #4188), JNK-1 (Cat. No.: #3708), ERK1/2 (Cat. No.:
#9102), p38 (Cat. No.: #8690), AMPKα (Cat. No.: #2532), β-actin (Cat. No.: #8457), and
secondary antibodies (horseradish peroxidase (HRP), conjugated anti-mouse IgG (Cat. No.:
#7076), or anti-rabbit IgG (Cat. No.: #7074)) were purchased from Cell Signaling Technology
(Danvers, MA, USA).

4.2. Cell Culture

The human tongue SCC-derived SAS cell line (JCRB0260) was purchased from the
Japanese Collection of Research Bioresources Cell Bank. SAS cells were cultured in a
humidified chamber containing a 5% CO2—95% air mixture at 37 ◦C. Cells were maintained
in culture medium containing 45% Dulbecco’s modified Eagle’s medium and 45% Ham’s
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F12 medium supplemented with 10% FBS, 1% penicillin-streptomycin, and 0.5% gentamicin.
Cells were seeded into 6-, 24-, or 96-well culture plates for each experiment and allowed
to grow for 12–18 h (with recovery overnight) and then treated with or without docetaxel
(10–300 nM) for various time intervals in the absence or presence of the inhibitors of
SP600125 (20 µM), PD98059 (20 µM), or compound c (10 µM) for 1 h at 37 ◦C prior to
treatment with docetaxel.

4.3. Morphological Analysis

The changes in cell morphology were detected according to a previous study [55]. SAS
cells were cultured on a glass slide at a density of 1 × 106 cells/well at 37 ◦C. After 24 h,
a photomicrograph was obtained with a 20× objective lens using a cooled CCD camera
attached to a Zeiss Axiovert 135-TV Inverted Fluorescence Phase Microscope (Carl Zeiss
AG, Germany).

4.4. Cytotoxicity Assay

SAS cells were washed with fresh medium and cultured in 96-well plates (2× 104 cells/well)
and then treated with or without docetaxel (10–300 nM) for 24 h. After incubation, the
medium was aspirated and cells were incubated with fresh medium containing 0.2 mg/mL
3-(4,5-dimethyl thiazol-2-yl-)-2,5-diphenyl tetrazolium bromide (MTT). After 4 h, the
medium was removed, and blue formazan crystals were dissolved in 100 µL of DMSO. The
absorbance at 570 nm was measured using a Bio-Tek uQuant™ Microplate Reader (MTX
Lab Systems, Winooski, VT, USA).

4.5. Determination of Caspase-3 Activity

Caspase-3 activity was assessed using a Caspase-3 Activity Assay Kit (Cell Signaling
Technology, Inc., Danvers, MA, USA). SAS cells were seeded at 2 × 105 cells/well in a
24-well plate and treated with or without docetaxel (10 and 100 nM) in the absence or
presence of Z-DEVD-FMK (10 µM) at 37 ◦C. At the end of treatment (24 and 48 h), the cell
lysates were incubated at 37 ◦C with 10 µM Ac-DEVD-AMC, a caspase-3/CPP32 substrate,
for 1 h. The fluorescence of the cleaved substrate was measured using a spectrofluorometer
(Gemini XPS Microplate Reader, Molecular Devices, San Jose, CA, USA) at an excitation
wavelength of 380 nm and an emission wavelength of 460 nm.

4.6. Detection of Mitochondrial Membrane Potential (MMP)

MMP was analyzed using a fluorescent probe 3,3′-dihexyloxacarbocyanine iodide
(DiOC6), which was a positively charged mitochondria-specific fluorophore. Briefly, SAS
cells were seeded at 2 × 105 cells/well in a 24-well plate and incubated with or without
docetaxel (100 nM) for 24–48 h. At the end of treatment, cells were incubated with medium
containing 100 nM DiOC6 for 30 min at 37V ◦C. After incubation with the dye, cells
were harvested and washed twice with phosphate-buffered saline (PBS) and then re-
suspended in ice-cold PBS. MMP was analyzed by a flow cytometer (FACScalibur, Becton,
Dickinson and Company, USA) using CellQuest software version 5.1 (Becton, Dickinson
and Company).

4.7. Caspase -3/-7 Activity Assay

Caspase-3/-7 activity was determined using a FLICA Caspase-3/-7 assay kit (Immuno-
Chemistry Technologies, LLC, CA, USA). SAS cells were seeded at 5 × 105 cells/well in
a 24-well plate and incubated with or without docetaxel (100 nM) for 48 h in the absence
or presence of SP600125 (20 µM), PD98059 (20 µM), or compound c (10 µM) at 37 ◦C (1 h
pretreatment). At the end of treatment, cells were washed twice with PBS and stained with
fluorescent probes for 30 min in a dark environment at 37 ◦C. After incubation with the dye,
cells were carefully removed supernatants and washed twice with 1× wash buffer. The
fluorescence intensity was measured using a spectrofluorometer (Gemini XPS Microplate
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Reader, Molecular Devices, San Jose, CA, USA) at an excitation wavelength of 488 nm and
an emission wavelength of 530 nm.

4.8. Western Blot Analysis

SAS cells were seeded at 1 × 106 cells/well in a 6-well culture plate treated with or
without docetaxel in the absence or presence of SP600125 (20 µM), PD98059 (20 µM), or
compound c (10 µM) at 37 ◦C (1 h pretreatment). At the end of treatment for various
durations, protein expression levels were analyzed by Western blotting as previously
described [55,56]. In brief, equal amounts of protein (50 µg per lane) were subjected to
electrophoresis on 10% (w/v) SDS-polyacrylamide gels and transferred to polyvinylidene
difluoride (PVDF) membranes. The membranes were blocked for 1 h in PBST (PBS, 0.05%
Tween-20) containing 5% nonfat dry milk. After blocking, the membranes were incubated
with mouse or rabbit monoclonal antibodies specific for cleaved caspase-3, cleaved caspase-
7, cleaved PARP, p-JNK1/2, JNK-1, p-ERK1/2, ERK, p-p38, p38, p-AMPKα, AMPKα, and
β-actin in 0.1% PBST (1:1000) for 12–16 h at 4 ◦C. After 3 additional washes in 0.1% PBST
(15 min each), the respective HRP-conjugated secondary antibodies were applied (1:2500 in
0.1% PBST) for 1 h at 4 ◦C. The antibody-reactive bands were developed using enhanced
chemiluminescence reagents (PierceTM, Thermo Fisher Scientific Inc.) and analyzed by a
luminescent image analyzer (ImageQuant™ LAS-4000, GE Healthcare Bio-Sciences Corp.,
Piscataway, NJ, USA). For cytosol cytochrome c expression, the detection was performed
as previously described by Chang et al. [34]. In brief, at the end of treatments cells were
detached, washed twice with PBS, and then homogenized using a mortar and pestle in
the extract buffer (0.4 M mannitol, 25 mM 3-(N-morpholino)propanesulfonic acid (MOPS;
pH 7.8), 1 mM ethylene glycol bis(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA),
8 mM cysteine, and 0.1 % (w/v) bovine serum albumin). The cell debris was removed via
centrifugation at 6000× g for 2 min. The supernatant was centrifuged again at 12,000× g
for 15 min. The supernatant (cytosolic fraction) was used to detect cytochrome c expression
by Western blot analysis.

4.9. Real-Time Quantitative Reverse-Transcription Polymerase Chain Reaction
(RT-qRT-PCR) Analysis

The expression of apoptosis-related genes was evaluated by RT-qRT-PCR analysis as
previously described [55,56]. Briefly, intracellular total RNA was extracted using RNeasy
kits (Qiagen, Hilden, Germany) and reverse-transcribed into cDNA using AMV RTase, a
reverse transcriptase enzyme (Promega Corporation, Madison, WI, USA), according to the
manufacturer’s instructions. Each sample (2 µL cDNA) was then assayed with Real-Time
SYBR Green PCR reagent (Invitrogen, USA) in a 25 µL reaction volume and the following
specific human primers: Bcl-2 forward (5′-TTAGATCTATGGCGCACGCTGGGAGAAC-
3′) and reverse (5′-CGAATTCTCACTTGTGGCTCAGATAGG-3′) [57]; Bax forward (5′-
CTTTTGCTTCAGGGTTTCATCC-3′) and reverse (5′-TTGAGACACTCGCTCAGCTTCT -
3′) [58]; Bak forward (5′-GCCCAGGACACAGAGGAGGTTTTC-3′) and reverse (5′-AAACT
GGCCCAACAGAACCACACC-3′) [59]; Bad forward (5′-CGGAGGATGAGTGACGAGTT-
3′) and reverse (5′-GATGTGGAGCGAAGGTCACT-3′) [60]; p53 forward (5′-CCTCACCATC
ATCACACTGG-3′) and reverse (5′-CCTCATTCAGCTCTCGGAAC-3′) [61]; β-actin for-
ward (5′-GGCGACGAGGCCCAGA-3′) and reverse (5′-CGATTTCCCGCTCGGC-3′) [55].
The amplification was performed using an ABI StepOnePlus™ Sequence Detection System
(Applied Biosystems, Thermo Fisher Scientific, Inc.). The cycling conditions were 10 min of
polymerase activation at 95 ◦C followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 60 s.
Real-time fluorescence detection was performed during the 60 ◦C annealing/extension
step of each cycle. Melt curve analysis was performed on each primer set to ensure that
no primer dimers or nonspecific amplifications were present under the optimized cycling
conditions. After 40 cycles, data analysis was performed using StepOneTM software ver-
sion 2.1 (Applied Biosystems, Thermo Fisher Scientific, Inc.). All amplification curves
were analyzed with a normalized reporter (Rn, ratio of fluorescence emission intensity
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to fluorescence signal of passive reference dye) and a threshold of 0.2 to obtain the CT
values (threshold cycle). The reference control genes were measured with four replicates
in each PCR run, and their average CT was used for relative quantification analysis [62].
The expression data were normalized by subtracting the mean value of reference gene CT
from the CT value (∆CT). The fold change value was calculated using the 2−∆∆CT method,
where ∆∆CT represents ∆CT-condition of interest – ∆CT-control. Prior to conducting statistical
analysis, the fold change from the mean of the control group was calculated for each
individual sample.

4.10. Statistical Analysis

Data are presented as the mean± standard deviation (SD) of at least three independent
experiments. All data analyses were performed using the SPSS software version 12.0 (SPSS,
Inc., Chicago, IL, USA). For each experimental condition, significant differences were
assessed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc test;
p value < 0.05 was considered to indicate a significant difference.

5. Conclusions

The results of this study, as shown in Figure 6, demonstrate that interdependent
MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways are involved in docetaxel-
induced mitochondria-dependent human tongue SCC cell apoptosis and death. These
in vitro findings suggest that docetaxel possesses pharmacological potential for oral tongue
SCC cancer therapy. The findings of cell model studies may be further explored in future
animal model studies to elucidate the mechanism of action of docetaxel.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 16 of 19 
 

 

The results of this study, as shown in Figure 6, demonstrate that interdependent 
MAPK-JNK, MAPK-ERK1/2, and AMPKα signaling pathways are involved in docetaxel-
induced mitochondria-dependent human tongue SCC cell apoptosis and death. These in 
vitro findings suggest that docetaxel possesses pharmacological potential for oral tongue 
SCC cancer therapy. The findings of cell model studies may be further explored in future 
animal model studies to elucidate the mechanism of action of docetaxel. 

 
Figure 6. Schematic diagram of the signaling pathways involved in docetaxel-mediated molecular 
mechanism in oral tongue squamous cell carcinoma cell apoptosis. 

Author Contributions: Study conception and design: K.-M.F. and Y.-W.C.; performance of the ex-
periments, acquisition and curation of data, and writing (original draft preparation): C.-C.S., J.-W.L., 
K.-Y.C., and K.-M.F.; analysis and interpretation of data: C.-T.W., S.-H.L., K.-C.C., and J.-M.L.; vali-
dation and technical support: S.-H.L., K.-C.C., J.-M.L., and K.-I.L.; supervised completion of work, 
and writing, review and editing of the manuscript: K.-M.F. and Y.-W.C. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This study was supported by grants from the Ministry of Science and Technology, Taipei, 
Taiwan (MOST 110-2320-B-303-004-), the Changhua Christian Hospital, Changhua, Taiwan (111-
CCH-IRP-030), the Far Eastern Memorial Hospital, New Taipei City, Taiwan (grant no. FEMH-2021-
C-060), and the China Medical University, Taichung, Taiwan (grant no. CMU111-S-41). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Please contact the corresponding author for reasonable data request. 

Conflicts of Interest: The authors declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work reported. 

Abbreviations 
AMPK adenosine monophosphate-activated protein kinase 

Figure 6. Schematic diagram of the signaling pathways involved in docetaxel-mediated molecular
mechanism in oral tongue squamous cell carcinoma cell apoptosis.



Int. J. Mol. Sci. 2022, 23, 13857 15 of 17

Author Contributions: Study conception and design: K.-M.F. and Y.-W.C.; performance of the
experiments, acquisition and curation of data, and writing (original draft preparation): C.-C.S.,
J.-W.L., K.-Y.C. and K.-M.F.; analysis and interpretation of data: C.-T.W., S.-H.L., K.-C.C. and J.-M.L.;
validation and technical support: S.-H.L., K.-C.C., J.-M.L. and K.-I.L.; supervised completion of work,
and writing, review and editing of the manuscript: K.-M.F. and Y.-W.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by grants from the Ministry of Science and Technology, Taipei,
Taiwan (MOST 110-2320-B-303-004-), the Changhua Christian Hospital, Changhua, Taiwan (111-CCH-
IRP-030), the Far Eastern Memorial Hospital, New Taipei City, Taiwan (grant no. FEMH-2021-C-060),
and the China Medical University, Taichung, Taiwan (grant no. CMU111-S-41).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please contact the corresponding author for reasonable data request.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported.

Abbreviations
AMPK adenosine monophosphate-activated protein kinase
ERK extracellular signal-regulated kinase
JNK c-Jun N-terminal kinase
MAPK mitogen-activated protein kinase
MMP mitochondrial membrane potential
PARP poly (ADP-Ribose) polymerase
SCC squamous cell carcinoma

References
1. Montero, P.H.; Patel, S.G. Cancer of the oral cavity. Surg. Oncol. Clin. N. Am. 2015, 24, 491–508. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Kerawala, C.; Roques, T.; Jeannon, J.P.; Bisase, B. Oral cavity and lip cancer: United Kingdom National Multidisciplinary
Guidelines. J. Laryngol. Otol. 2016, 130, S83–S89. [CrossRef] [PubMed]

4. Dhanuthai, K.; Rojanawatsirivej, S.; Thosaporn, W.; Kintarak, S.; Subarnbhesaj, A.; Darling, M.; Kryshtalskyj, E.; Chiang, C.P.;
Shin, H.I.; Choi, S.Y.; et al. Oral cancer: A multicenter study. Med. Oral Patol. Oral Cir. Bucal. 2018, 23, e23–e29. [CrossRef]

5. Dolens, E.D.S.; Dourado, M.R.; Almangush, A.; Salo, T.A.; Gurgel Rocha, C.A.; da Silva, S.D.; Brennan, P.A.; Coletta, R.D.
The Impact of Histopathological Features on the Prognosis of Oral Squamous Cell Carcinoma: A Comprehensive Review and
Meta-Analysis. Front. Oncol. 2021, 11, 784924. [CrossRef]

6. Shiboski, C.H.; Schmidt, B.L.; Jordan, R.C. Tongue and tonsil carcinoma: Increasing trends in the U.S. population ages 20–44
years. Cancer 2005, 103, 1843–1849. [CrossRef]

7. Dissanayaka, W.L.; Pitiyage, G.; Kumarasiri, P.V.; Liyanage, R.L.; Dias, K.D.; Tilakaratne, W.M. Clinical and histopathologic
parameters in survival of oral squamous cell carcinoma. Oral. Surg. Oral Med. Oral Pathol. Oral Radiol. 2012, 113, 518–525.
[CrossRef]

8. Koontongkaew, S. The tumor microenvironment contribution to development, growth, invasion and metastasis of head and neck
squamous cell carcinomas. J. Cancer 2013, 4, 66–83. [CrossRef]

9. Dalianis, T. Human papillomavirus and oropharyngeal cancer, the epidemics, and significance of additional clinical biomarkers
for prediction of response to therapy (Review). Int. J. Oncol. 2014, 44, 1799–1805. [CrossRef]

10. Rivera, C. Essentials of oral cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 11884–11894.
11. Viet, C.T.; Schmidt, B.L. Biologic mechanisms of oral cancer pain and implications for clinical therapy. J. Dent. Res. 2012, 91,

447–453. [CrossRef] [PubMed]
12. Kowalski, L.P.; Carvalho, A.L. Natural history of untreated head and neck cancer. Eur. J. Cancer 2000, 36, 1032–1037. [CrossRef]
13. Guneri, P.; Epstein, J.B. Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncol. 2014, 50, 1131–1136.

[CrossRef] [PubMed]
14. Sone, K.; Oguri, T.; Ito, K.; Kitamura, Y.; Inoue, Y.; Takeuchi, A.; Fukuda, S.; Takakuwa, O.; Maeno, K.; Asano, T.; et al. Predictive

Role of CYFRA21-1 and CEA for Subsequent Docetaxel in Non-small Cell Lung Cancer Patients. Anticancer Res. 2017, 37,
5125–5131. [CrossRef]

http://doi.org/10.1016/j.soc.2015.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25979396
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1017/S0022215116000499
http://www.ncbi.nlm.nih.gov/pubmed/27841120
http://doi.org/10.4317/medoral.21999
http://doi.org/10.3389/fonc.2021.784924
http://doi.org/10.1002/cncr.20998
http://doi.org/10.1016/j.oooo.2011.11.001
http://doi.org/10.7150/jca.5112
http://doi.org/10.3892/ijo.2014.2355
http://doi.org/10.1177/0022034511424156
http://www.ncbi.nlm.nih.gov/pubmed/21972258
http://doi.org/10.1016/S0959-8049(00)00054-X
http://doi.org/10.1016/j.oraloncology.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25255960
http://doi.org/10.21873/anticanres.11932


Int. J. Mol. Sci. 2022, 23, 13857 16 of 17

15. Varnai, R.; Koskinen, L.M.; Mantyla, L.E.; Szabo, I.; FitzGerald, L.M.; Sipeky, C. Pharmacogenomic Biomarkers in Docetaxel
Treatment of Prostate Cancer: From Discovery to Implementation. Genes 2019, 10, 599. [CrossRef]

16. Lin, H.; Chang, J.; Li, J. Effects of Docetaxel Combined with Icotinib on Serum Tumor Markers and Quality of Life of Patients
with Advanced Non-Small Cell Lung Cancer. Iran J. Public Health 2020, 49, 1885–1893. [CrossRef]

17. Piechocki, M.P.; Lonardo, F.; Ensley, J.F.; Nguyen, T.; Kim, H.; Yoo, G.H. Anticancer activity of docetaxel in murine salivary gland
carcinoma. Clin. Cancer Res. 2002, 8, 870–877.

18. Fu, W.; Hong, Z.; You, X.; Din, J.; Chen, B.; Zhao, B.; Yuan, G.; Li, Q. Enhancement of anticancer activity of docetaxel by
combination with Fuzheng Yiliu decoction in a mouse model of castration-resistant prostate cancer. Biomed. Pharmacother. 2019,
118, 109374. [CrossRef]

19. Wang, T.H.; Wang, H.S.; Soong, Y.K. Paclitaxel-induced cell death: Where the cell cycle and apoptosis come together. Cancer 2000,
88, 2619–2628. [CrossRef]

20. Liu, Q.Y.; Stein, C.A. Taxol and estramustine-induced modulation of human prostate cancer cell apoptosis via alteration in bcl-xL
and bak expression. Clin. Cancer Res. 1997, 3, 2039–2046.

21. Jones, N.A.; Turner, J.; McIlwrath, A.J.; Brown, R.; Dive, C. Cisplatin- and paclitaxel-induced apoptosis of ovarian carcinoma
cells and the relationship between bax and bak up-regulation and the functional status of p53. Mol. Pharmacol. 1998, 53, 819–826.
[PubMed]

22. Srivastava, R.K.; Srivastava, A.R.; Korsmeyer, S.J.; Nesterova, M.; Cho-Chung, Y.S.; Longo, D.L. Involvement of microtubules in
the regulation of Bcl2 phosphorylation and apoptosis through cyclic AMP-dependent protein kinase. Mol. Cell Biol. 1998, 18,
3509–3517. [CrossRef] [PubMed]

23. Carling, D. The AMP-activated protein kinase cascade–a unifying system for energy control. Trends Biochem. Sci. 2004, 29, 18–24.
[CrossRef] [PubMed]

24. Chuang, H.C.; Chou, C.C.; Kulp, S.K.; Chen, C.S. AMPK as a potential anticancer target—friend or foe? Curr. Pharm. Des. 2014,
20, 2607–2618. [CrossRef] [PubMed]

25. Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol.
Cell Biol. 2012, 13, 251–262. [CrossRef]

26. Xia, Y.C.; Zha, J.H.; Sang, Y.H.; Yin, H.; Xu, G.Q.; Zhen, J.; Zhang, Y.; Yu, B.T. AMPK activation by ASP4132 inhibits non-small cell
lung cancer cell growth. Cell Death Dis. 2021, 12, 365. [CrossRef]

27. Shaw, R.J.; Kosmatka, M.; Bardeesy, N.; Hurley, R.L.; Witters, L.A.; DePinho, R.A.; Cantley, L.C. The tumor suppressor LKB1
kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. USA
2004, 101, 3329–3335. [CrossRef]

28. Woods, A.; Dickerson, K.; Heath, R.; Hong, S.P.; Momcilovic, M.; Johnstone, S.R.; Carlson, M.; Carling, D. Ca2+/calmodulin-
dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2,
21–33. [CrossRef]

29. Shackelford, D.B.; Shaw, R.J. The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat. Rev. Cancer
2009, 9, 563–575. [CrossRef]

30. Luo, Z.; Zang, M.; Guo, W. AMPK as a metabolic tumor suppressor: Control of metabolism and cell growth. Future Oncol. 2010, 6,
457–470. [CrossRef]

31. Hadad, S.M.; Baker, L.; Quinlan, P.R.; Robertson, K.E.; Bray, S.E.; Thomson, G.; Kellock, D.; Jordan, L.B.; Purdie, C.A.;
Hardie, D.G.; et al. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer 2009, 9, 307. [Cross-
Ref] [PubMed]

32. Ng, J.H.; Iyer, N.G.; Tan, M.H.; Edgren, G. Changing epidemiology of oral squamous cell carcinoma of the tongue: A global study.
Head Neck 2017, 39, 297–304. [CrossRef] [PubMed]

33. Nocini, R.; Lippi, G.; Mattiuzzi, C. Biological and epidemiologic updates on lip and oral cavity cancers. Ann. Cancer Epidemiol.
2020, 4, 1. [CrossRef]

34. American Lung Association. Trends in Tobacco Use. American Lung Association Research and Program Services, Epidemiology
and Statistics Unit: Washington, DC, USA, 2011. Available online: http://www.lung.org/assets/docu-ments/research/tobacco-
trend-report.pdf (accessed on 1 January 2015).

35. Vettore, A.L.; Ramnarayanan, K.; Poore, G.; Lim, K.; Ong, C.K.; Huang, K.K.; Leong, H.S.; Chong, F.T.; Lim, T.K.; Lim, W.K.; et al.
Mutational landscapes of tongue carcinoma reveal recurrent mutations in genes of therapeutic and prognostic relevance. Genome
Med. 2015, 7, 98. [CrossRef] [PubMed]

36. Patel, S.C.; Carpenter, W.R.; Tyree, S.; Couch, M.E.; Weissler, M.; Hackman, T.; Hayes, D.N.; Shores, C.; Chera, B.S. Increasing
incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J. Clin. Oncol. 2011, 29, 1488–1494.
[CrossRef]

37. Bissery, M.C.; Guenard, D.; Gueritte-Voegelein, F.; Lavelle, F. Experimental antitumor activity of taxotere (RP 56976, NSC 628503),
a taxol analogue. Cancer Res. 1991, 51, 4845–4852.

38. Couteau, C.; Chouaki, N.; Leyvraz, S.; Oulid-Aissa, D.; Lebecq, A.; Domenge, C.; Groult, V.; Bordessoule, S.; Janot, F.; De Forni,
M.; et al. A phase II study of docetaxel in patients with metastatic squamous cell carcinoma of the head and neck. Br. J. Cancer
1999, 81, 457–462. [CrossRef]

39. Fleisher, T.A. Apoptosis. Ann. Allergy Asthma Immunol. 1997, 78, 245–249, quiz 249–250. [CrossRef]

http://doi.org/10.3390/genes10080599
http://doi.org/10.18502/ijph.v49i10.4691
http://doi.org/10.1016/j.biopha.2019.109374
http://doi.org/10.1002/1097-0142(20000601)88:11&lt;2619::AID-CNCR26&gt;3.0.CO;2-J
http://www.ncbi.nlm.nih.gov/pubmed/9584207
http://doi.org/10.1128/MCB.18.6.3509
http://www.ncbi.nlm.nih.gov/pubmed/9584191
http://doi.org/10.1016/j.tibs.2003.11.005
http://www.ncbi.nlm.nih.gov/pubmed/14729328
http://doi.org/10.2174/13816128113199990485
http://www.ncbi.nlm.nih.gov/pubmed/23859619
http://doi.org/10.1038/nrm3311
http://doi.org/10.1038/s41419-021-03655-2
http://doi.org/10.1073/pnas.0308061100
http://doi.org/10.1016/j.cmet.2005.06.005
http://doi.org/10.1038/nrc2676
http://doi.org/10.2217/fon.09.174
http://doi.org/10.1186/1471-2407-9-307
http://doi.org/10.1186/1471-2407-9-307
http://www.ncbi.nlm.nih.gov/pubmed/19723334
http://doi.org/10.1002/hed.24589
http://www.ncbi.nlm.nih.gov/pubmed/27696557
http://doi.org/10.21037/ace.2020.01.01
http://www.lung.org/assets/docu-ments/research/tobacco-trend-report.pdf
http://www.lung.org/assets/docu-ments/research/tobacco-trend-report.pdf
http://doi.org/10.1186/s13073-015-0219-2
http://www.ncbi.nlm.nih.gov/pubmed/26395002
http://doi.org/10.1200/JCO.2010.31.7883
http://doi.org/10.1038/sj.bjc.6690715
http://doi.org/10.1016/S1081-1206(10)63176-6


Int. J. Mol. Sci. 2022, 23, 13857 17 of 17

40. Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome c and dATP-dependent
formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91, 479–489. [CrossRef]

41. van Gurp, M.; Festjens, N.; van Loo, G.; Saelens, X.; Vandenabeele, P. Mitochondrial intermembrane proteins in cell death.
Biochem. Biophys. Res. Commun. 2003, 304, 487–497. [CrossRef]

42. Peng, X.; Gan, J.; Wang, Q.; Shi, Z.; Xia, X. 3-Monochloro-1,2-propanediol (3-MCPD) induces apoptosis via mitochondrial
oxidative phosphorylation system impairment and the caspase cascade pathway. Toxicology 2016, 372, 1–11. [CrossRef] [PubMed]

43. Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ.
2018, 25, 65–80. [CrossRef] [PubMed]

44. Acehan, D.; Jiang, X.; Morgan, D.G.; Heuser, J.E.; Wang, X.; Akey, C.W. Three-dimensional structure of the apoptosome:
Implications for assembly, procaspase-9 binding, and activation. Mol. Cell 2002, 9, 423–432. [CrossRef]

45. Peng, Q.; Deng, Z.; Pan, H.; Gu, L.; Liu, O.; Tang, Z. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol.
Lett. 2018, 15, 1379–1388. [CrossRef] [PubMed]

46. Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014,
120, 3446–3456. [CrossRef]

47. Persons, D.L.; Yazlovitskaya, E.M.; Pelling, J.C. Effect of extracellular signal-regulated kinase on p53 accumulation in response to
cisplatin. J. Biol. Chem. 2000, 275, 35778–35785. [CrossRef] [PubMed]

48. Lee, Y.J.; Choi, S.Y.; Yang, J.H. NMDA receptor-mediated ERK 1/2 pathway is involved in PFHxS-induced apoptosis of PC12
cells. Sci. Total Environ. 2014, 491–492, 227–234. [CrossRef] [PubMed]

49. Su, C.C.; Lee, K.I.; Chen, M.K.; Kuo, C.Y.; Tang, C.H.; Liu, S.H. Cantharidin Induced Oral Squamous Cell Carcinoma Cell
Apoptosis via the JNK-Regulated Mitochondria and Endoplasmic Reticulum Stress-Related Signaling Pathways. PLoS ONE 2016,
11, e0168095. [CrossRef]

50. You, J.; Cheng, J.; Yu, B.; Duan, C.; Peng, J. Baicalin, a Chinese Herbal Medicine, Inhibits the Proliferation and Migration of
Human Non-Small Cell Lung Carcinoma (NSCLC) Cells, A549 and H1299, by Activating the SIRT1/AMPK Signaling Pathway.
Med. Sci. Monit. 2018, 24, 2126–2133. [CrossRef]

51. Wei, C.; Yao, X.; Jiang, Z.; Wang, Y.; Zhang, D.; Chen, X.; Fan, X.; Xie, C.; Cheng, J.; Fu, J.; et al. Cordycepin Inhibits Drug-resistance
Non-small Cell Lung Cancer Progression by Activating AMPK Signaling Pathway. Pharmacol. Res. 2019, 144, 79–89. [CrossRef]

52. Wu, Y.; Si, Y.; Xiang, Y.; Zhou, T.; Liu, X.; Wu, M.; Li, W.; Zhang, T.; Xiang, K.; Zhang, L.; et al. Polyphyllin I activates AMPK
to suppress the growth of non-small-cell lung cancer via induction of autophagy. Arch. Biochem. Biophys. 2020, 687, 108285.
[CrossRef] [PubMed]

53. Liao, X.Z.; Gao, Y.; Zhao, H.W.; Zhou, M.; Chen, D.L.; Tao, L.T.; Guo, W.; Sun, L.L.; Gu, C.Y.; Chen, H.R.; et al. Cordycepin
Reverses Cisplatin Resistance in Non-small Cell Lung Cancer by Activating AMPK and Inhibiting AKT Signaling Pathway. Front.
Cell Dev. Biol. 2020, 8, 609285. [CrossRef] [PubMed]

54. Tsai, S.C.; Tsai, M.H.; Chiu, C.F.; Lu, C.C.; Kuo, S.C.; Chang, N.W.; Yang, J.S. AMPK-dependent signaling modulates the
suppression of invasion and migration by fenofibrate in CAL 27 oral cancer cells through NF-κB pathway. Environ. Toxicol. 2016,
31, 866–876. [CrossRef] [PubMed]

55. Huang, C.F.; Liu, S.H.; Ho, T.J.; Lee, K.I.; Fang, K.M.; Lo, W.C.; Liu, J.M.; Wu, C.C.; Su, C.C. Quercetin induces tongue squamous
cell carcinoma cell apoptosis via the JNK activation-regulated ERK/GSK-3α/β-mediated mitochondria-dependent apoptotic
signaling pathway. Oncol. Lett. 2022, 23, 78. [CrossRef]

56. Yang, C.Y.; Liu, S.H.; Su, C.C.; Fang, K.M.; Yang, T.Y.; Liu, J.M.; Chen, Y.W.; Chang, K.C.; Chuang, H.L.; Wu, C.T.; et al.
Methylmercury Induces Mitochondria- and Endoplasmic Reticulum Stress-Dependent Pancreatic β-Cell Apoptosis via an
Oxidative Stress-Mediated JNK Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 2858. [CrossRef]

57. Nencioni, L.; De Chiara, G.; Sgarbanti, R.; Amatore, D.; Aquilano, K.; Marcocci, M.E.; Serafino, A.; Torcia, M.; Cozzolino, F.;
Ciriolo, M.R.; et al. Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: Impact on virally induced
apoptosis and viral replication. J. Biol. Chem. 2009, 284, 16004–16015. [CrossRef]

58. Kotsafti, A.; Farinati, F.; Cardin, R.; Cillo, U.; Nitti, D.; Bortolami, M. Autophagy and apoptosis-related genes in chronic liver
disease and hepatocellular carcinoma. BMC Gastroenterol. 2012, 12, 118. [CrossRef]

59. Hasan, Z.; Ashraf, M.; Tayyebi, A.; Hussain, R.M. leprae inhibits apoptosis in THP-1 cells by downregulation of Bad and Bak and
upregulation of Mcl-1 gene expression. BMC Microbiol. 2006, 6, 78. [CrossRef]

60. Zhou, Z.; Zhu, C.; Cai, Z.; Zhao, F.; He, L.; Lou, X.; Qi, X. Betulin induces cytochrome c release and apoptosis in colon cancer cells
via NOXA. Oncol. Lett. 2018, 15, 7319–7327. [CrossRef]

61. Lim, C.; Lee, P.C.W.; Shim, S.; Jang, S.W. HS-1793 inhibits cell proliferation in lung cancer by interfering with the interaction
between p53 and MDM2. Oncol. Lett. 2022, 24, 290. [CrossRef]

62. Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical
analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30, e36. [CrossRef] [PubMed]

http://doi.org/10.1016/S0092-8674(00)80434-1
http://doi.org/10.1016/S0006-291X(03)00621-1
http://doi.org/10.1016/j.tox.2016.09.017
http://www.ncbi.nlm.nih.gov/pubmed/27732882
http://doi.org/10.1038/cdd.2017.186
http://www.ncbi.nlm.nih.gov/pubmed/29149100
http://doi.org/10.1016/S1097-2765(02)00442-2
http://doi.org/10.3892/ol.2017.7491
http://www.ncbi.nlm.nih.gov/pubmed/29434828
http://doi.org/10.1002/cncr.28864
http://doi.org/10.1074/jbc.M004267200
http://www.ncbi.nlm.nih.gov/pubmed/10958792
http://doi.org/10.1016/j.scitotenv.2014.01.114
http://www.ncbi.nlm.nih.gov/pubmed/24534200
http://doi.org/10.1371/journal.pone.0168095
http://doi.org/10.12659/MSM.909627
http://doi.org/10.1016/j.phrs.2019.03.011
http://doi.org/10.1016/j.abb.2020.108285
http://www.ncbi.nlm.nih.gov/pubmed/32074500
http://doi.org/10.3389/fcell.2020.609285
http://www.ncbi.nlm.nih.gov/pubmed/33520990
http://doi.org/10.1002/tox.22097
http://www.ncbi.nlm.nih.gov/pubmed/25545733
http://doi.org/10.3892/ol.2022.13198
http://doi.org/10.3390/ijms23052858
http://doi.org/10.1074/jbc.M900146200
http://doi.org/10.1186/1471-230X-12-118
http://doi.org/10.1186/1471-2180-6-78
http://doi.org/10.3892/ol.2018.8183
http://doi.org/10.3892/ol.2022.13410
http://doi.org/10.1093/nar/30.9.e36
http://www.ncbi.nlm.nih.gov/pubmed/11972351

	Introduction 
	Results 
	Docetaxel Induces Cytotoxicity and Apoptosis in Human Tongue SCC SAS Cells 
	Docetaxel-Induced Apoptosis Is Mediated by a Mitochondria-Dependent Pathway in Human Tongue SCC SAS Cells 
	Docetaxel Induces Phosphorylation of MAPK-ERK/JNK and AMPK in Human Tongue SCC SAS Cells 

	Discussion 
	Materials and Methods 
	Materials 
	Cell Culture 
	Morphological Analysis 
	Cytotoxicity Assay 
	Determination of Caspase-3 Activity 
	Detection of Mitochondrial Membrane Potential (MMP) 
	Caspase -3/-7 Activity Assay 
	Western Blot Analysis 
	Real-Time Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qRT-PCR) Analysis 
	Statistical Analysis 

	Conclusions 
	References

