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Predictive decision making driven by multiple
time-linked reward representations in the anterior
cingulate cortex
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In many natural environments the value of a choice gradually gets better or worse as

circumstances change. Discerning such trends makes predicting future choice values

possible. We show that humans track such trends by comparing estimates of recent and past

reward rates, which they are able to hold simultaneously in the dorsal anterior cingulate

cortex (dACC). Comparison of recent and past reward rates with positive and negative

decision weights is reflected by opposing dACC signals indexing these quantities. The relative

strengths of time-linked reward representations in dACC predict whether subjects persist in

their current behaviour or switch to an alternative. Computationally, trend-guided choice can

be modelled by using a reinforcement-learning mechanism that computes a longer-term

estimate (or expectation) of prediction errors. Using such a model, we find a relative

predominance of expected prediction errors in dACC, instantaneous prediction errors in the

ventral striatum and choice signals in the ventromedial prefrontal cortex.
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M
any decisions are based on past experience because we
expect the values of choices to be stable or to change
only gradually. To choose effectively, we must either

track these values or, ideally, anticipate the future value of a
choice. While much is known about how choice values are
learned from past experience, it is relatively unknown how people
predict in advance not only that a value will change but also how
it will change. This problem lies at the heart of many judgment
tasks, such as stock market trading or behavioural adaptation to
the continuously changing reward rates animals and humans
experience in foraging patches1,2. A simple way, however, to
predict future choice values is to estimate the change in rewards.
This can be performed by comparing recent and past reward rates.

Evidence comparison is central to decision making3 and value
comparison is central to reward-guided decision making.
Ventromedial prefrontal cortex (vmPFC) signals reflect the
comparison of choice values when making decisions4. VmPFC
blood oxygen-level-dependent (BOLD) activity scales with the
value difference between available options, and the chosen
and unchosen options have dissociable positive and negative
effects4–7, which can be understood as reflecting a value
competition process8–11. Previous studies focused on decisions
between two clearly defined and concrete options usually
associated with specific stimuli. While this is clearly an
important decision-making mode, behaviour often also reflects
alternation between continuous engagement in the same
behaviour (for example, when an animal repeatedly forages in
one patch or a person maintains engagement with the same task)
with behavioural change (when the animal moves to an
alternative patch or the person switches task)1,2,12,13. In such
situations it is critical to know prospectively how profitable the
next repetition of an action will be. For some time there has been
evidence that evaluation of a choice reflects comparison against
previous choice values. For instance, rats’ approach speed to a
given reference amount of food pellets depends on their previous
reward experience. Having experienced more rewards previously,
rats are slower to approach the reference amount of food pellets;
contrarily, having experienced fewer rewards beforehand, they are
quicker to approach the same amount of food. These phenomena
are known as positive and negative successive contrast effects,
respectively14,15. Similarly, deciding whether to further commit
to, or to quit, engagement in an action, the critical comparison is
not between two stimulus values but between elements of the past
reward history.

Brain mechanisms comparing recent and past reward rates
require fine-grained information about the past history of
rewards. Dorsal anterior cingulate cortex (dACC) is necessary
for retaining the history of encountered rewards16,17, and
neurophysiological studies have demonstrated dissociable
influences of past and recent rewards on the activity of dACC
neurons18,19. In addition, activity in the dopaminergic system and
striatum also reflects reward history20–22. Reward history signals
here have been understood in the context of reinforcement-
learning models23 that involve computation of a reward
prediction error (PE) relative to previous outcomes24. However,
typically, simple reinforcement learners cannot weight recent and
past rewards in an opposing manner. To do this, a learning
mechanism requires a contrast mechanism comparing recent and
past reward rates15,25,26. We used functional magnetic resonance
imaging (fMRI) in humans to investigate value comparisons of
recent and past reward rates. We find that dACC holds multiple
time-linked reward representations simultaneously, predictive of
the way past and recent rewards guide decisions to stay or to leave
an environment. Our results suggest a key role for dACC in
computation of reward trajectories and the transformation of
decision variables to choice.

Results
Experimental design. We designed a reward-learning task in
which subjects chose to further commit to, or to leave, a foraging-
like patch based on its estimated future value. The patches were
characterized by reward rate trends that could be discerned by
comparing past and recent reward rates. If the decision maker
knows the reward rates at two different time points in the past,
they have sufficient information to judge whether the reward
rate has increased or decreased between these time points.
In environments with monotonic reward rate changes such
knowledge can be exploited to extrapolate the reward trend and
predict the future value of the patch. Patches were derived from
reward rate curves similar to those in optimal foraging theory2

(Fig. 1a,b and Supplementary Fig. 1). The patches consisted of
sequences of time steps on which either reward or non-reward
events occurred (Fig. 1c,d). The reward events were spread out
such that their reward rates conformed to the underlying reward
rate curves. Subjects proceeded from time step to time step by
pressing a button. At a predetermined time step, subjects were
offered a leave–stay decision (LSD; Fig. 1e). For LSDs, subjects
had to consider the 15 further time steps they would encounter
after LSD, and decide, for this time period, whether to stay and
further explore the environment they were in or to leave and
re-engage with a pre-learned default environment with a stable
reward rate. LSDs should be based on a comparison of the
anticipated value of the current environment (the sum of rewards
that would be delivered after LSD) and the pre-learned value of
the default environment.

Opposing effects of recent and past rewards on choice. We
measured the influence of rewards occurring at different times
during a trial on the LSD using a general linear model (GLM).
Therefore, we divided the reward history into reward rate bins
reflecting reward received over five sets of three time steps each
moving backwards in time from the LSD (LSD-1-3, LSD-4-6, and
so on; Fig. 2a). In our experiment, reward rates in these different
time bins share less than 25% of their variance; therefore, we can
estimate their influences on choice behaviour. Note also that this
means that we could also test whether choices were solely based
on a patch’s initial reward rates or whether later reward rates had
an additional influence on choice (correlation between initial
and last time bin: r¼ 0.02), which turned out to be the case.
While subjects tended to stay in a patch when reward rates in
recent bins were high (LSD-1-3: t19¼ 10.12; P¼ 4� 10� 9;
LSD-4-6: t19¼ 4.98; P¼ 8� 10� 5), the more distant the reward
rate bins were the more negative the effect of high reward rates on
the decision to stay (LSD-10-12: t19¼ � 6.85; P¼ 2� 10� 6;
LSD-13-15: t19¼ � 6.99; P¼ 10� 6).

We compared subjects’ choices with choices made by an
individually fitted simple Rescorla–Wagner reinforcement-
learning (RL-simple) model23. We used the value estimate of
the model at the time of the LSD (that is, after observation of the
last reward outcome) as decision variable. We applied the former
GLM to RL-simple-simulated choices (Fig. 2a, green bars).
RL-simple captures recent positive effects of rewards (LSD-1-3:
t19¼ 6.44; P¼ 4� 10� 6; LSD-4-6: t19¼ 7.58; P¼ 4� 10� 7), but
is unable to simulate a negative influence of past reward rate
bins on choices to the same degree as seen in human subjects
(paired t-tests on last two bins: LSD-10-12: t19¼ 8.11
P¼ 1� 10� 7; LSD-13-15: t19¼ 6; P¼ 9� 10� 4). The strongly
negative effects of rewards in past time bins in our human
subjects (LSD-10-12, LSD-13-15) resemble successive contrast
effects in animals14 (inset Fig. 2a).

The temporal gradient in Fig. 2a can be summarized using two
parameters: the reward rate of the last reward event (lastRR)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12327

2 NATURE COMMUNICATIONS | 7:12327 | DOI: 10.1038/ncomms12327 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


before the LSD and the average reward rate (avgRR) throughout
the whole period before the LSD (Fig. 2b). These two regressors
capture the negative and positive effects of past and recent
rewards on human behaviour (lastRR: t19¼ 9.56; P¼ 10� 7;
avgRR: t19¼ � 6.23; P¼ 5� 10� 6). While the RL-simple model
explained the lastRR effect (t19¼ 7.78; P¼ 3� 10� 7), it falsely
predicted a positive instead of a negative effect for avgRR
(t19¼ 3.53; P¼ 0.0023; see Supplementary Fig. 2a,b for a
description of the complementarity of Fig. 2a,b). The difference
between lastRR and avgRR (lastRR� avgRR) gives a measure of
reward rate trend, accounting for both increasing (positive)
and decreasing (negative) reward rate trends (Fig. 2c and
Supplementary Fig. 2c,d). As our investigations focused on
the use of any type of monotonic reward trend in choice,
lastRR� avgRR assumes the simplest type of trend, a linear one,
rather than, for example, an exponential trend. Note, however,
that subjects based their choices not only on lastRR� avgRR, but
also on the absolute size of lastRR (Supplementary Fig. 2c).

The shortcomings of RL-simple become particularly clear
when binning the trials by their categorical reward rate trend
(increasing or decreasing) and sorting them by optimal choices
(defined by maximal payoff; Fig. 2d). When choices had to be
made against the reward rate trend (decreasing/stay-optimal
and increasing/leave-optimal), RL-simple’s choice predictions
were close to the choices observed in subjects (although for

decreasing/stay-optimal trials, we found a small but significant
difference t19¼ 2.44; P¼ 0.025). In these cases, correct choice
could be based on lastRR alone. However, when optimal decisions
depended on the reward rate trend (increasing/stay-optimal
and decreasing/leave-optimal), human behaviour was strikingly
more optimal than that predicted by RL-simple (t19¼ 9.72;
P¼ 8� 10� 9 and t19¼ � 10.31; P¼ 3� 10� 9, respectively).
These results corroborate earlier results (Supplementary Fig. 2c)
that subjects base their choices on both the instantaneous reward
rate at the time of choice and the reward rate trend.

In sum, we show that subjects’ choices were influenced by
recent and past reward rates in an opposing manner. Because a
simple-RL model integrates historical and recent rewards into a
single estimate of an option’s value, it does not represent recent
and historical rewards with opposing weights and, therefore, does
not make choices like the human subjects.

Estimating PEs enables trend-guided choice. Prediction errors
(PEs; differences between the reward outcomes that choices
actually led to and prior reward expectations) are a simple
measure of the option’s reward rate change. Because PEs have a
role in value-updating they have been linked to learning23;
however, it is also possible that PEs may be used as a decision
variable to guide decisions25. We tested whether an RL model
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Figure 1 | Experimental design and implementation. (a) Two example patches with increasing (blue) and decreasing (green) reward rates. At LSDs

(black) subjects chose between staying in the patch and switching to a default patch with a stable reward rate (red). In these examples, correct decisions

(stay on blue, leave green) can be predicted from the reward rate curves. (b) All 18 reward rate curves from which trials were derived. Solid black line

indicates LSD and vertical dashed line indicates reward rate of reference patch. For visualization purposes only, different colouring for reward rate curves

was used, and the curves were aligned so that the LSD is on the same time step. (c) Sequence of events corresponding to the blue reward rate curve before

LSD in a. Four reward events were presented at time steps 5, 9, 13 and 15. Their reward rates (blue dots), which conform to the reward rate curve

(blue line), are calculated by dividing their reward magnitudes (orange dots) by the time delay from the previous reward event or the start of the patch.

(d) Screen during events in c. Empty boxes represent non-reward events; the height of ‘gold bars’ in reward events represent their reward magnitudes. Each

event was displayed for 800 ms. Between events, a fixation cross was shown and subjects proceeded to the next event by pressing a button. Note that

lastRR for this patch would be equivalent to the height of the gold bars in the final box divided by two time steps. (e) LSD followed, without time jitter, after

the last reward event (boxes in the default environment were red; therefore, it was labelled ‘red environment’ for subjects).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12327 ARTICLE

NATURE COMMUNICATIONS | 7:12327 | DOI: 10.1038/ncomms12327 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


that computes an expectation of PEs is able to model reward
trend-guided choice.

We modified a simple-RL model based on a type of average
reward rate model that has recently been described25. The
computation of the average reward rate offers an estimate of the
reward opportunities of an environment26. Often the average
reward rate reflects the opportunities that are currently foregone
by engaging in one particular choice, a proxy for the value of
leaving a patch27. However, in many natural environments choice
values change over time, for example, the choice to forage from a
tree becomes less valuable as the tree depletes. In such a setting,
the average reward rate does not reflect the value of many
concurrently alternative options, but instead reflects the longer-
term average value of the currently exploited option. Comparison
of the option’s recent value against its longer-term average
value15 produces a simple measure of reward rate change—from
an RL perspective, the PE.

The modified model, RL-avgRR, consisted of two hierarchically
organized RL-learning mechanisms (Fig. 3a). The first one
(RL-avgRRpart1; Fig. 3a, top) was a standard RL model (as
RL-simple) and as such computed (standard) PEs on every trial.
The second learning mechanism, RL-avgRRpart2 (Fig. 3a, bottom)
used an estimate of PEs, PEexpected, which was updated on every
time step using a higher-order PE, PE* (that is, the difference of

observed PE and expected PE). Over time, PEexpected learned a
recency-weighted estimate past PEs. PEexpected at the time of the
LSD was used as a decision variable.

We compared the goodness of fit of the RL-avgRR model with
RL-simple. Moreover, we tested whether there is evidence that
subjects’ indeed used a longer-term estimate of PEs rather than
only a single, most recent PE. For this, we considered a more
sophisticated version of RL-simple that uses, in addition to
RL-simple’s last value estimate, RL-simple’s last PE to make a
choice (RL-simpleþ lastPE; Methods). To investigate the good-
ness of fit, we calculated the Bayesian information criterion,
which penalizes additional free parameters. RL-avgRR was, by far,
the best of the three models (Fig. 3b and Supplementary
Fig. 3a; lower Bayesian information criterion values indicate
better model fit). We also examined a range of alternative and
related models (Supplementary Note 1). For instance, we tested
whether different learning rates for RL-avgRRpart1 and
RL-avgRRpart2 would improve the model fit. While such a
modification might be useful in other cases it was not in our case.
RL-avgRR proved to be the best fitting simple model
(Supplementary Fig. 3b,c). In particular, the inclusion of RL-
avgRRpart1’s value estimate directly in the decision variable did
not further improve model fit, although it may be useful in other
settings (Supplementary Fig. 4).
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rate trend-guided behaviour can be explained by a positive effect of a patch’s most recent value (lastRR) in combination with a negative effect of reward

rates in the past (avgRR). RL-predicted choices (green) captured part of the positive influence of lastRR on human subjects (blue), but failed to represent

avgRR negatively. (c) Softmax functions of subjects’ actual (blue) and RL-simple predicted (green) stay rates plotted against lastRR–avgRR illustrates that,

overall, subjects’ choices were influenced by the reward rate change in contrast to RL-simple. Overlaid are binned actual and RL-predicted stay rates.

(d) Stay rates plotted by optimal choice and categorical reward rate trend. The simple-RL model’s choices (green) were close to random when the reward

rate trend was predictive of the optimal choice (stay/increasing and leave/decreasing). It performed similar to subjects (blue) when the reward rate trend

had to be ignored. (*Po0.0001; error bars are s.e.m. between subjects).
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theoretical weights shown in e and that RL-avgRR is able to represent past rewards negatively. See Fig. 2 for legends.
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Computing expected PEs implies a very specific weighting of
past outcomes and PEs. This weighting, that is, the way events at
different times in the past influence expected PEs, is consistent
with the weighting of past events expressed in subjects’ choices.
It might be best explained in comparison with simple value
estimates. For instance, given by the delta rule23, RL-simple’s
value estimate can be calculated as the recency-weighted sum of
past reward outcomes (Fig. 3c, green line). The weighting means
that the value estimate varies more as a function of recent rewards
than as a function of longer-term past rewards, but all rewards
have a positive weight of influence. This weighting profile is
inconsistent with our finding that longer-term past outcomes
have a negative influence on subjects’ tendency to stay in a patch
(grey bars in Fig. 3c, also blue bars in Fig. 2a). PEexpected, however,
weights recent rewards positively and past rewards negatively
(Fig. 3e, orange line) similar to the weights expressed in subjects’
choices; just as PEs are highest when encountering high rewards
after experiencing low rewards beforehand24. The function
expressed by the orange line is given by the learning rate and
the model’s equations alone. It is independent of other free
parameters used in the model (Supplementary Fig. 3b,c).

Expected PEs and simple value estimates can be decomposed
into the weights of influence of past outcomes (Fig. 3c,e). They
can, alternatively, also be decomposed into the weights of past
PEs (Fig. 3d,f). Also, from this perspective, the weighting function
of PEexpected is qualitatively similar to the weights expressed in
subjects’ choices. The computation of expected PEs for choice,
therefore, offers a simple explanation of the positive and negative
time-linked reward effects that characterize reward trend-guided
choice.

Applying RL-avgRR to our experimental schedule simulates
the type of behaviour we observed in subjects. We repeated the
four analyses we applied to RL-simple in Fig. 2 using RL-avgRR
instead. Just as seen in actual human behaviour, RL-avgRR
predicted a smooth transition in the negative-to-positive effects of
more distant versus more recent rewards on choices (Fig. 3g).
Analogously, this can be summarized as simultaneous positive
and negative effects of lastRR and avgRR (Fig. 3h). Consequently,
RL-avgRR predicted choices in accordance with the reward rate
trend (Fig. 3i) and also choices in cases where it was optimal to
follow the reward trend as well as the recent reward rate (Fig. 3j).
Overall, these analyses show that, in contrast to RL-simple
(Fig. 2), choice values produced by RL-avgRR are negatively
influenced by longer-term past rewards. This enabled the model
to extrapolate reward trends.

In sum, a RL-based learning mechanism that tracks not only
the longer-term history of encountered rewards, but also the
longer-term history of PEs, can be used to model reward
trend-guided choice.

dACC contrasts recent and past rewards. We began our fMRI
analysis by identifying brain regions involved in the computation
of the reward rate trend using a parametric approach that
does not rely on an RL model. We used the regressor lastRR�
avgRR, which reflects the reward rate trend. Activity in the dACC,
right ventromedial striatum and right frontal operculum (FO)
increased at the time of the LSD when the reward rate trend was
more positive, leading subjects to stay in an environment (Fig. 4a
and Supplementary Table 2). We went on to conduct regions of
interest (ROIs) analyses using a leave-one-out procedure to
identify individual ROIs (Supplementary Methods). All ROI
analyses were time-locked to the LSD.

To investigate whether reward rate trend effects in dACC were,
as hypothesized, composed of opposing signals indexing recent
and past reward rates, we obtained separate estimates of activity

related to lastRR and avgRR in the same GLM. In dACC (Fig. 4b),
beta weights indicated a positive effect of lastRR (t19¼ 2.78;
P¼ 0.012) and a negative effect of avgRR (t19¼ � 3.8; P¼ 0.001),
recalling the positive and negative effects of these variables on
behaviour (Fig. 2b). To examine the relationship between
individual differences in neural effects and behavioural effects,
we estimated slopes of signal increase as indices of evidence
accumulation9,28 in dACC. As previously, we used slopes of signal
increase because they are simply and intuitively related to
evidence accumulation processes that may occur in dACC12,28,
although it is possible that other aspects of dACC BOLD are also
related to behaviour. The dACC avgRR slope in each subject
correlated with the weight each subject placed on the same
information when making a decision (r¼ 0.61; P¼ 0.004;
Fig. 4d). A similar relationship between dACC lastRR slope and
lastRR behavioural weight confirmed the relationship (r¼ 0.55;
P¼ 0.013; Fig. 4c). Similar analyses revealed that, although lastRR
and avgRR were associated with opposing effects in FO and
ventral striatum (all t194|2.2|; all Po0.041), there were no
correlations between neural and behavioural effects (all P40.05).
Additional control analyses showed that lastRR� avgRR was not
confounded by response selection difficulty (Supplementary
Fig. 5a). Moreover, inclusion of response selection difficulty29

in a GLM did not change the lastRR� avgRR signal in dACC
(Supplementary Fig. 5b). This is consistent with previous findings
that foraging-related decision variables were encoded in dACC
beyond an unspecific effect of task difficulty in this brain
region28–30.

To validate our first analysis, we used a complementary
approach to investigate the reward effects in dACC in a
temporally more detailed manner. We binned rewards in five
time steps as in our behavioural analysis (Fig. 2a). This allowed
investigation of the parametric effects of rewards encountered at
multiple time points in the past on present BOLD activity.
We extracted the group peak signals for each time bin using a
time-course analysis (Supplementary Methods). For dACC neural
results were, again, strikingly similar to behavioural results
(Fig. 4e, compared with Fig. 2a), a gradient from positive to
negative effect sizes was observed as reward rates became more
distant in time (see Supplementary Fig. 6a,b for FO and ventral
striatum results). In the behavioural analysis the gradient in beta
weights reflects how rapidly the impact of reward rates on the
choice to stay in a patch reversed with time. In dACC, but not in
FO or the ventral striatum, the neural gradient predicted the
behavioural choice gradient (r¼ 0.52; P¼ 0.018; Fig. 4f; see
Supplementary Fig. 6 for details on the gradient calculation and
for additional control analyses).

In sum, regardless of the precise manner in which BOLD
signals were decomposed, dACC signals predicted the positive
effects of recent and the negative effects of past rewards on
choices. The opposing time-linked signals observed do not
suggest that dACC and the other regions integrate rewards to a
simple mean estimate (as RL-simple would), but instead point
towards a comparison of recent and past reward rates necessary
for the computation of reward trends.

PEs and choice in medial prefrontal cortex. We next examined
the neural mechanisms of reward trend-guided choice based on
the reinforcement-learning model that captured subjects’ choices
best: RL-avgRR. For each subject, we derived trial-by-trial
parameters from an individually fitted RL-avgRR model. First, we
used the decision variable of RL-avgRR, the expected PE at the
time of the LSD, in a whole-brain GLM time-locked to the LSD.
The expected PE allows subjects to make inferences about the
future rewards after the LSD. We again identified an activation

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12327

6 NATURE COMMUNICATIONS | 7:12327 | DOI: 10.1038/ncomms12327 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


cluster in dACC (Supplementary Fig. 7a) and also the right
inferior frontal junction31.

We went on to investigate the relationship between expected
PEs, choice and instantaneously experienced PEs in two analyses.
Both analyses were time-locked to the LSD and used the value of
the expected PE at the time step of the last reward delivery, that
is, one time step before LSD, not yet updated by the last reward
event: PEexpected(LSD� 1). For simplicity, we refer to this
parameter just as PEexpected.

In a first GLM, we aimed to dissociate neural representations of
the reward trend-related decision variables from the decisions
they drive. We used a binary choice regressor and PEexpected,

which were sufficiently decorrelated so that both could
be included in the same GLM (Supplementary Fig. 7b). We
found strong effects of PEexpected in several brain regions
(Supplementary Table 2) including dACC (Fig. 5a) but excluding
the FO or ventral striatum. By contrast, vmPFC was more active
for stay compared with leave choices (Fig. 5b) consistent with
reports that vmPFC activity reflects choice computations in a
variety of contexts5,8,32–34. We examined these effects in detail by
placing ROIs over the vmPFC and dACC peak coordinates
(posterior dACC in Fig. 5c) as well as over the closely adjacent
dACC peak we identified in the first fMRI analysis in Fig. 4
(dACC in Fig. 5c). Note that both ACC ROIs were within the
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Figure 4 | Opposing effects of recent and past reward rates in dACC predict choice. (a) A whole-brain contrast lastRR� avgRR time-locked to the LSD

revealed three areas in which a more positive reward rate trend led to more activity: dorsal anterior cingulate cortex (dACC), right frontal operculum (FO)

and right ventral striatum. (Family-wise error cluster-corrected, z42.3, Po0.05). (b) ROI analyses of the three areas (using leave-one-out procedures)

show separate neural responses to lastRR and avgRR. For all areas, extracted beta weights indicate that lastRR had a positive effect, while avgRR had a

negative effect. (c,d) In dACC, the slopes of the behavioural beta weights for both lastRR (c) and avgRR (d) were predictive of how much the respective

recent and past reward rates influenced subjects’ choices. Neither of the other areas showed either correlation. (e) In dACC, we validated the results found

in b by analysing the neural effects of reward rates presented in discrete time bins before the LSDs (analogous to the behavioural analysis in Fig. 2a). We

found a temporal gradient of reward effects on BOLD activity that was similar to the temporal gradient of reward effects on behaviour in Fig. 2. (f) Using

this alternative analysis approach, we were again able to confirm a relationship between dACC activity and behaviour; in dACC, but in neither of the other

areas, the gradient of neural responses to past rewards was predictive of the behavioural gradient (Fig. 2a) characterizing the influence of past rewards on

the decision to stay or leave (error bars are s.e.m.; *Po0.05).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12327 ARTICLE

NATURE COMMUNICATIONS | 7:12327 | DOI: 10.1038/ncomms12327 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


anterior rostral cingulate zone35 and that we used a leave-one-out
procedure to select the dACC ROI. We also used a leave-one-out
procedure to avoid temporal bias in the signal analysis
(Supplementary Methods). Results suggested that vmPFC only
carried information about the ultimate stay/leave decision and
not about the expected PEs on which the decision was based,
while posterior dACC only carried information about the expected
PEs but not the ultimate stay/decision decision. dACC, however,
exhibited significant effects of both expected PEs (t19¼ 2.26;
P¼ 0.037) and choice (t19¼ 2.37; P¼ 0.029; Fig. 5c). This
replicates our previous result (Fig. 4), suggesting the presence of
both reward and choice-related effects in dACC. To consolidate our
results, we repeated this analysis and added a task difficulty
regressor29 (as calculated above; Methods). As in our previous
control analysis (Supplementary Fig. 5b) reward signals and choice
signals in dACC remained significant (Supplementary Fig. 7c).

In a second GLM, we aimed to identify neural correlates of the
component parts of RL-avgRR. As regressors, we used the three
component variables that the model needs to track at the time
point before choice (t¼ LSD� 1): PEexpected, value and outcome.
Value and outcome refer to the model’s simple value estimate and
to the magnitude of the last reward event, respectively (see
Fig. 3a). In particular, we investigated whether brain regions
encoded a standard PE, that is, increased their activity as a
function of outcome, but decreased their activity as a function of
value (contrast outcome minus value)36. Note that, for this
analysis, RL-avgRR was fitted on all subjects to ensure that, for all
subjects, the three regressors of interest shared less than 25% of
their variance.

Again, PEexpected identified a cluster in dACC, among other
regions (Supplementary Table 2). On the basis of previous

reports37, we strongly expected the ventral striatum to encode
standard reward PEs. To test this, we used the ventral striatal ROI
from our previous analyses (Fig. 4b), which was derived using a
leave-one-out procedure, as well as the same striatal ROI
mirrored to the contralateral side (individually for each subject
to avoid bias). Indeed, we found significant PE signals (contrast
outcome minus value) bilaterally in the ventral striatum (left:
t19¼ 3.31; P¼ 0.004; right: t19¼ 3.04; P¼ 0.007; Fig. 6a). This PE
effect did not survive standard whole-brain cluster correction.
However, when lowering the cluster-forming threshold (|z|42.3,
Po0.15), the first PE signal to reach whole-brain significance was
centred on the left ventral striatum (signal peak at � 6/12/� 10
in Montreal Neurological Institute (MNI) atlas; Fig. 6b).

In sum, we found that dACC (and not FO or the ventral
striatum) most reliably encoded the expected PE across our
analyses. Moreover, the ventral striatum was most sensitive
to instantaneous standard PEs, and vmPFC showed signs of
choice-related activity in the absence of a specific representation
of the reinforcement history.

Discussion
Considerable emphasis has been placed on the way both human
and animal behaviour is guided by value expectations based
on learned associations between specific stimuli and reward
outcomes. In many natural-foraging situations, however, part
of what animals are doing may simply be deciding whether to
continue a behaviour or whether it will be more profitable
to change behaviour1,12. This is particularly important in
environments, in which no immediate cues act as instructions
to stop or switch behaviour38–40. Such cases are not only likely for
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foraging animals but also for human task-switching; we continue
to engage in a behaviour while it appears profitable, but disengage
as the rate of return diminishes, for example, in equity markets41.
In such situations a comparison of the current shorter-term
rate of reward with the longer-term average reward rate of the
environment is highly informative. The opposing, time-linked
reward representations in dACC (Figs 4 and 5) allow switching
behaviour as a function of the changing reward rates.

We found that activity in several brain areas including dACC,
FO and striatum reflects multiple time-linked reward representa-
tions. The signs of the brain signals reflected the opposing weights
of rewards in recent and distant past on choice (Fig. 4b,e) but
only in dACC were these weights predictive of the weights each
subject placed on recent and past rewards in their behaviour
(Fig. 4c,d,f). A role for dACC in deciding based on extrapolated
reward trends or expected future rewards is consistent with a
recent proposal that ACC is involved in evaluating future
strategies before they are executed42. Furthermore, neurons in
macaque dACC and interconnected areas represent memories
of reward rates with different time constants18,19,22,43. The
behavioural role of such activity patterns has not been clear.
Different reward memories could be used to adapt the learning
rate of an agent to the volatility of an environment44. However,
with an appropriate network, architecture reward tracked with
different time constants could be used to extrapolate reward
trends.

Standard RL models do not capture reward trend-guided
choice. However, they can easily be modified to do so if the RL
mechanism is able to compute an expectation of PEs, as PEs are a
simple measure of reward rate change. In the same way as past
outcomes influence subjects’ stay rates in our experiment,
expected PEs will be highest when first experiencing small
rewards and only more recent rewards are high, that is, when
reward trends are increasing (Fig. 3e). This is similar to successive
contrast effects14 in which past rewards also have a negative effect
on likelihood of continuous engagement in a choice. This
highlights that estimating PEs is one way to track reward
environments on various timescales and that reward trend-guided

choice can be sufficient to successfully manoeuvre through certain
types of reward environments. However, the relative importance
of expected PEs (particularly in comparison with a standard RL
value estimate, see also Supplementary Figs 3 and 4 for a more
detailed discussion) should diminish the less useful reward trends
are in guiding choice, for example, when environmental changes
are abrupt and unpredictable.

Although there might be other models that capture reward
trend-guided choice45, using the expected PE to solve this
problem is appealing for several reasons. It is parsimonious
because it requires only simple modifications of a standard RL
model. It is consistent with recent suggestions that PEs might not
solely have a role in value-updating. PEs have recently been
linked to subjective well being46 and mood instability47, and it has
been suggested that the PE may play a role in choice itself25.
Furthermore, the brain regions that carried expected PE signals in
our study, in particular dACC, have been linked to lower- and
higher-order PEs before. For instance, activities of neurons
identified recently by Bernacchia et al.18 (for example, their
Fig. 3d,h,l) are influenced by past reward outcomes in a very
similar manner as the expected PEs are derived from past reward
outcomes in our model (Fig. 3e). These neurons, which have been
found in several brain regions including the anterior cingulate
cortex, are characterized by a double exponential function in
which recent rewards have a sign-reversed influence on activity
compared with rewards in the distant past, mirroring the
behavioural and neural effects of past rewards we have found.
Finally, expected PEs are also consistent with recent suggestions
that dACC plays a role in predicting the PEs of lower
computational layers48.

In agreement with the first neural analyses (Fig. 4) expected
PEs were found in dACC (Fig. 5). The ventral striatum, by
contrast, signalled standard PEs21,24,49. Standard PE signals may
feed in a cortical network, arguably comprising dACC that
computes a longer-term estimate of PEs. Moreover, we found a
graded transition from representation of expected PEs to choice
moving from posterior to more anterior dACC and into vmPFC
(Fig. 5c), reminiscent of similar functional gradients in the
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prefrontal cortex50,51. The finding that dACC activity was related
to both reinforcement history-derived variables and ensuing
choices further supports the contention this area represents and
translates reward history representation into a choice-related
representation, as had also been suggested by the correlation
between dACC neural and behavioural beta weights (Fig. 4c,d,f).
In both analyses as well as in previous reports28–30, choice-related
representations were present in dACC beyond difficulty signals.
Moreover, choice-related signals in vmPFC and dACC were
aligned in this experiment; both areas are more active for stay
compared with leave choices and dACC activity increases with
evidence for staying. In previous experiments, vmPFC activity
was positively related to the value of staying versus discarding a
current choice, while dACC was positively related to exploring
versus exploiting a choice28,34,52–54. However, while the value of
the stay-option in the previous experiments was relatively well
known and stable, it had to be inferred in the current experiment
because the future value of a patch is, by design, different from its
past value. The leave-option was, on the other hand, pre-learned
and stable. In other words, the outcome uncertainty for the
stay-option is, unusually, higher than that for the leave-option.
One hypothesis that integrates the present results with previous
findings is that dACC codes value in a framework tied to
pursuing the more uncertain option; by contrast, vmPFC may
code the value of staying with the current or default
choice28,34,55,56. The two reference frames are aligned in the
current experiment but have been opposed in previous
experiments.

Methods
Subjects. Twenty-two subjects participated. One left the experiment as a result of
claustrophobia. Another was excluded from data analysis due to excessive motion
(final sample: 20 subjects; eight female; aged 21–32). All provided informed
consent. The study was approved by the Ethics Committee of Oxford University
(MSD-IDREC-C1-2013-095). Subjects received d20 as a show-up fee and a fraction
of d15 depending on task performance.

Experimental design. In each of 90 trials, subjects proceeded through a patch
consisting of reward and non-reward events (800 ms each). Between events,
a fixation cross was presented and button presses led to the next event. After time
step 15, 16 or 17, the subjects were offered the choice to stay for longer in the patch
or to leave to a default environment with a known, stable reward rate (leave-stay
decision; LSD). This meant that participants encountered LSDs at approximately
similar positions in time on each occasion that they explored a new environment;
however, the presence of some variability in LSD timing precluded precise
anticipation of the LSD time by participants. Moreover, the analyses do not focus
on activity that is simply linked to the main effect of LSD occurrence but to activity
that is parametrically related to the reward experience before the LSD and that
allowed the subjects to make inferences about the reward likely to be received after
the LSD. The design of the trials was based on 18 monotonic reward rate curves,
nine increasing and nine decreasing, from each of which five unique sequences of
reward/non-reward events were derived (Fig. 1). The key manipulation was to
assemble a set of patches such that the behavioural and neural effects of recent and
past reward rates could be dissociated. The reward rate of a reward event was its
reward magnitude divided by the number of time steps from the previous reward
event or from the start of the sequence (time delay; Fig. 1c,d). The reward mag-
nitude was indicated by the height of a golden texture (‘gold bars’) within a box
presented on the screen. The time delay between reward events ranged between
two to six time steps. On every trial, the LSD was, without time jitter, preceded by a
reward event at the last time step of the sequence to keep the recency of the last
reward event with respect to the LSD constant. Note that this meant that the last
time step was always rewarded and the second last time step was never rewarded.
Each LSD began with a 2,000 ms ‘choice phase’ indicated by a question mark on
screen (referred to as ‘LSD’ in time-course plots). Subjects then responded and
their choices were highlighted in yellow for 800 ms (Fig. 1e). The left-right loca-
tions of ‘stay’ and ‘leave’ buttons were randomized. After LSDs, the subjects con-
tinued through a sequence of 15 additional time steps. For stay choices, the
underlying previous reward curve continued linearly based on its slope at the time
of the LSD. If subjects decided to leave to the default environment, rewards were
delivered at a fixed reference reward rate (that is, the ratio of reward magnitude
and time delay was identical for all reward events of the sequence) that subjects
knew well from prior practice sessions. Although the specific event sequence dif-
fered between runs of the default environment, the sum of the rewards encountered

there (leave value) was constant. For LSDs, subjects had to decide whether the
future value of the patch, the sum of reward encountered when further committing
to it (stay value), was higher or lower than the stable leave value. On 66% of
increasing patches, the stay value was higher than the leave value, while on 66% of
decreasing patches, the leave value was higher than the stay value. Subjects received
‘bonus points’ for making the better choice in proportion to the absolute difference
between the stay and leave values and this determined the performance-dependent
monetary payoff subjects received at the end of the fMRI session. Optimal choices
were defined as the ones with the higher payoff. Subjects received feedback about
their accumulated bonus points after 1/4, 2/4 and 3/4 of the experiment. Finally,
60% of the trials were truncated after the LSD to shorten the experiment and to
minimize choice feedback.

Reward sequences. The generation of actual reward sequences from the
theoretical reward rate curves was an iterative process. Beginning at the last time
point of the curve (because the last event before a LSD or the end of a patch was
always a reward event), a reward magnitude and a reward delay were randomly
chosen under the condition that they conformed to the reward rate indicated by the
reward rate curve at that time point. The chosen reward delay determined the time
point of the reward event preceding this event. For this, again, reward magnitude
and reward delay was randomly chosen under the condition that it they conformed
to the reward rate indicated by the reward rate curve at that time point. The
threshold for ‘conforming to the reward rate curve’ was initially set to 5% of the
reward rate given by the curve; however, it was expanded in 0.00001% steps in case
no solution could be found. Note that for our analyses, it did not matter how
closely the reward rates of the reward events in the sequence satisfied the reward
rates originally intended for the curves because all parameters used in our analysis
were derived from the actual reward sequences and not from the reward rate
curves. In other words, the reward rate curves that we show and use to guide all
analyses of behaviour and neural activity are the ones that were established
empirically at the end of this iterative process.

Training session. Subjects experienced a 60–70 min training session on the day
before scanning and a 15–20 min training period directly before the scan. Both
training sessions comprised familiarization with the default environment and a
version of the experimental task with choice feedback (number of bonus points
earned or missed) after each trial (Supplementary Fig. 1).

Reinforcement-learning models. To compare subjects’ choices with a learning
algorithm that integrates reward rates with a single time constant we devised a
standard Rescorla-Wagner reinforcement learning model (RL-simple)23. More
complex models are based on RL-simple (see below).

At the beginning of a patch, a value estimate was set to the average reward rate
experienced in the task up to that point and was zero for the first trial. The value
estimate was then updated by the outcome of each time step of the patch sequence.
Therefore, the number of value updates in a patch before LSD was equivalent to the
number of time steps in the sequence. The value estimate was updated using a
learning rate a fitted for every subject:

Value tþ 1ð Þ ¼ valueðtÞþ a� outcomeðtÞ� valueðtÞð Þ ð1Þ

The size of the outcome was zero or positive, and reflected the reward
magnitude encountered at a time step. The value estimate at the time of the LSD
(t¼ LSD), that is, after the last event of the sequence, was used as the decision
variable (DV):

DV ¼ value LSDð Þ ð2Þ

The DV, representing the value of staying in a patch, was compared with the
value of the default patch to determine the model’s choice. The probability of
staying in a patch was calculated with a softmax equation:

P stayð Þ ¼ exp b�DVð Þ
exp b�DVð Þþ exp b�valueDEFð Þ ð3Þ

b is the inverse temperature of the softmax function and the constant valueDEF

represents the value of the default environment. Note that modelling valueDEF as a
free parameter means we do not use a RL mechanism to learn the value of the
reference patch. Given that the reference patch is pre-learned and only very rarely
encountered in the actual experiment (60% of trials end directly after the LSD),
we determine the value each subject assigns to the reference patch empirically
by treating valueDEF as a free parameter that is stable over the course of the
experiment. ValueDEF was used in all RL models. We derived the choice probability
from the stay probability on each trial:

P choiceð Þ ¼ P stayð Þ if stay
1� P stayð Þ if leave

�
ð4Þ

Overall, the free parameter set y comprised a, b and valueDEF. We fitted these
parameters for every subject by minimizing the negative log likelihood (nLL) over
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all trials N, given a set of parameter values:

nLL ¼ �
XN

n¼1

log PðchoiceðtÞ j yÞð Þ ð5Þ

In further analyses, we expanded RL-simple to account for the reward rate
trend-guided choices observed. For all expanded models (except illustrative models,
see below), we fitted free parameters for each subject individually. The Softmax
function used including the use of valueDEF (equation (3)) and fitting (equations
(4 and 5), except the precise parameter set y) were identical to RL-simple.

For the simplest extended model, RL-simpleþ lastPE, all features were the same
as in RL-simple, except the DV. The DV included in addition to the last value
estimate the PE of the last time step weighted by an additional free parameter
(PEweight):

DVsimpleþ lastPE¼ value LSDð Þþ PEweight�PE LSD� 1ð Þ ð6Þ
In sum, the free parameters for RL-simpleþ lastPE comprise a, PEweight, b and

ValueDEF.
Lastly, we constructed an average reward rate learner (RL-avgRR) that consists

of two hierarchically organized RL mechanisms. First, we used a standard RL
mechanism identical to the RL-simple model described above (RL-avgRRpart1). The
value estimate (value) of RL-avgRRpart1 is updated at every time step using a
learning rate a and a PE:

PE tð Þ ¼ outcome tð Þ� value tð Þ ð7Þ

Value tþ 1ð Þ ¼ value tð Þþ a�PE tð Þ ð8Þ
A second component of the new model, a parallel RL mechanism

(RL-avgRRpart2), learns outcomes attenuated by value using an PEexpected

(contrasting effectively recent and longer-term past rewards), which can also be
seen as learning PEs:

PE�ðtÞ ¼ PEðtÞ� PEexpectedðtÞ ¼ outcomeðtÞ� valueðtÞ�PEexpectedðtÞ ð9Þ

PEexpectedðtþ 1Þ ¼ PEexpectedðtÞþ a�PE�ðtÞ ð10Þ
PEexpected at the time of choice (that is, after the last time step) was used in

the DV:

DV ¼ PEexpected LSDð Þ ð11Þ
Note that for the last PE* of RL-avgRRpart2 before choice, we fitted a separate

learning rate as an additional free parameter (a-lastPE) allowing the model to
calibrate the relative weight of past relative to the most recent reward history. This
makes the model similar to the separate effect of the last PE in RL-simpleþ lastPE.
This was performed to account for particularities in our outcome sequences
(a reward outcome was never received at the second to last time step, while a
reward outcome was always received at the last time step) and to make the
RL-avgRR model comparable to RL-simpleþ lastPE. Similar to the other models, at
the beginning of each trial, both value and PEexpected were set to the average reward
rate experienced in the task up to that point. We used the same free parameter a for
the learning rate of the basic and higher-order RL mechanism in the model
(see Supplementary Note 1 and Supplementary Fig. 3 for supplementary models).
Therefore, the free parameters for RL-avgRR comprise a, a-lastPE, b and valueDEF.

Finally, we use an illustration to show the temporal integration function of
RL-avgRR and compare it with RL-simple. We derived the functions that define the
weights of past PEs and outcomes in PEexpected at the time of choice, (that is, the
DV of RL-avgRR). For a standard RL model (for instance, RL-simple), the value
estimate can be mathematically decomposed into a sequence of n weighted past
outcomes:

Value tþ 1ð Þ¼
Xn

i¼0

a� 1� að Þi�outcome t� ið Þ ð12Þ

Considering that RL-avgRR learns based on simple PEs applying this formula
results in (‘PE’ and ‘value’ refer to components of RL-avgRRpart1 in the following
equations (13–17)):

PEexpected tþ 1ð Þ¼
Xn

i¼0

a� 1� að Þi�PE t� ið Þ ð13Þ

For our illustration (Fig. 3f), we show this function over a sequence of 15 time
steps (n¼ 15) using the median learning rate of avgRR (a¼ 0.183, Supplementary
Table 1). For simplicity, we ignored the fact that the learning rate of RL-avgRRpart2

at the last time steps is decreased (median a-lastPE¼ 0.134). To define the
contribution of the outcomes rather than the PEs, the formula can be further
broken down into:

PEexpectedðtþ 1Þ ¼
Xn

i¼0

a�ð1� aÞi�ðoutcomeðt� 1Þ� valueðt� iÞÞ ð14Þ

By using equation (12) with equation (14) this results in

PEexpectedðtþ 1Þ ¼
Xn

i¼0

a�ð1� aÞi � i�a2�ð1� aÞi� 1� �
�outcomeðt� iÞ ð15Þ

In Fig. 3e,f we illustrate equation (15) and equation (13), respectively, using the
median learning rate of RL-avgRR. In Fig. 3c we illustrate equation (12) for the

median RL-simple learning rate of 0.471. In Fig. 3d the weights equal the learning
rate of RL-simple (but normalized, see below).

As a supplement to the functions in Fig. 3c–f describing the temporal
integration dynamics of RL-avgRR and RL-simple, we ran two RL models, fitted on
the whole group of subjects for illustration (grey bars in Fig. 3c–f). Both models are
identical to RL-simple and only deviate with respect to the calculation of the
decision variable. The models explain choices reduced to the weighted history of
PEs and outcomes, respectively. For the PE illustration model (Fig. 3d,f), the DV
was calculated purely on weighted PEs where the same free parameter weight was
assigned to sets of three PEs (the last three PEs before LSD are assigned the same
weight, and so on) using five free parameters w1–5.

DVPEillustration¼
X5

i¼1

X3

j¼1

wi�PE LSD�ði� 1Þ�3� jð Þ ð16Þ

Grey bars in Fig. 3d,f show the fitted parameters w1–5. The illustration of the
outcome history weights (grey bars in Fig. 3c,e) was run in the same way using
the DV:

DVPEillustration¼
X5

i¼1

X3

j¼1

wi�outcome LSD�ði� 1Þ�3� jð Þ ð17Þ

Grey bars in Fig. 3c,e show the fitted parameters w1–5. For the two illustrative
models as well as the PE and the outcome functions, all parameter weights were
normalized by their absolute sum for display purposes.

Behavioural and RL model analysis. We used two complementary para-
meterizations of reward history. Our first behavioural GLM (Fig. 2a) comprises the
reward rates in discrete time bins moving back in time relative to the LSD. For each
of five reward bins, the rewards received on three consecutive time steps were
averaged. Therefore, overall, the reward bins covered 15 time steps, which was the
minimum length of a patch. This resulted in five parametric regressors that
represented reward rates for each of five time bins before LSD:

Behavioural GLM1: LSD-13-15, LSD-10-12, LSD-7-9, LSD-4-6 and LSD-1-3
(Figs 2a and 3g), where LSD-1-3 represents the reward rate of the bin
corresponding to the last three time steps before LSD and LSD-4-6 represents
the reward rate of time steps 4–6 before LSD, and so on. For this and all other
behavioural GLMs, regressors were normalized (mean of zero, standard
deviation of 1).

Our second set of parameterizations of reward history separates past rewards in
lastRR and avgRR as well as lastRR� avgRR. LastRR is the reward rate of the last
reward event, that is, the magnitude of the last reward event divided by the number
of time steps to the second last reward event. AvgRR is the sum of reward
magnitudes of all reward events in a patch (including also the last reward event)
divided by the number of time steps until the LSD. Hence, avgRR includes lastRR.
We used the following GLMs:

Behavioural GLM2: lastRR and avgRR (Figs 2b and 3h).
Behavioural GLM3: lastRR� avgRR (Figs 2c and 3i and Supplementary

Fig. 2d).
Behavioural GLM4: lastRR, lastRR� avgRR (Supplementary Fig. 2c).
All four behavioural GLMs were applied to subjects’ actual choices and

RL-predicted choices. Essentially, we compared the stay probabilities from the RL
model (p(Stay) from equation (3)) with subjects’ actual stay rates. We did this for
RL-simple (Fig. 2) and RL-avgRR (Fig. 3g–j). To use the GLMs on RL-predicted
choices, for every subject, we simulated binary choice behaviour from the RL stay
probabilities via a binomial distribution and then applied a GLM to the simulated
choices. We repeated this binary choice simulation and application of GLM 1,000
times per GLM and subject and averaged the resulting beta weights per subject to
determine the influence of the regressors on RL-predicted choices. Error bars on
the RL’s beta weights always indicate s.e. between subjects. For Figs 2d and 3j, we
binned trials by the categorical type of reward rate trend (increasing or decreasing)
and the optimal choice (stay or leave), calculated the actual stay frequencies and
compared them with subjects’ RL-predicted stay probabilities (p(Stay) from
equation (3)) averaged per bin. Note that in 66% of increasing trials it was optimal
to stay, while in 66% of decreasing trials it was optimal to leave (optimal in the
sense of maximal payoff).

Moreover, we constructed a measure of response selection or task difficulty
using behavioural GLM4. For every subject, we combined individual beta weights
of lastRR and lastRR� avgRR with the parameter values of lastRR and
lastRR� avgRR in a logistic GLM to predict the stay probabilities on every trial.
We also included the subject-specific constant. For all subjects, we derived a
measure of task difficulty for each trial:

Task difficulty ¼ � stay probability� 0:5j j ð18Þ

Behavioural data were analysed with SPSS and MATLAB, using paired t-tests
and repeated measures analyses of variance, including Greenhouse–Geisser
correction where appropriate.

Details on MRI data acquisition and analysis are presented in the
Supplementary Methods.
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Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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