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Abstract

Background: The identification of prognostic biomarkers for cancer patients is essential for cancer research. These
days, DNA methylation has been proved to be associated with cancer prognosis. However, there are few methods
which identify the prognostic markers based on DNA methylation data systematically, especially considering the
interaction among DNA methylation sites.

Methods: In this paper, we first evaluated the stabilities of microRNA, mRNA, and DNA methylation data in
prognosis of cancer. After that, a rank-based method was applied to construct a DNA methylation interaction
network. In this network, nodes with the largest degrees (10% of all the nodes) were selected as hubs. Cox
regression was applied to select the hubs as prognostic signature. In this prognostic signature, DNA methylation
levels of each DNA methylation site are correlated with the outcomes of cancer patients. After obtaining these
prognostic genes, we performed the survival analysis in the training group and the test group to verify the
reliability of these genes.

Results: We applied our method in three cancers (ovarian cancer, breast cancer and Glioblastoma Multiforme).
In all the three cancers, there are more common ones of prognostic genes selected from different samples in DNA
methylation data, compared with gene expression data and miRNA expression data, which indicates the DNA
methylation data may be more stable in cancer prognosis. Power-law distribution fitting suggests that the DNA
methylation interaction networks are scale-free. And the hubs selected from the three networks are all enriched by
cancer related pathways. The gene signatures were obtained for the three cancers respectively, and survival analysis
shows they can distinguish the outcomes of tumor patients in both the training data sets and test data sets, which
outperformed the control signatures.

Conclusions: A computational method was proposed to construct DNA methylation interaction network and this
network could be used to select prognostic signatures in cancer.
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Background
Cancer prognosis is of great research value, but also a
huge challenge for today’s medical research [1]. Cancer
patients are often over-treated because it is difficult to dis-
tinguish low-risk cancer patients from high-risk ones [2].
These days, with the development of the high throughout
data of disease samples, it is familiar to select prognostic
genes in cancer using gene expression data or other high
throughout data [3–5]. These prognostic genes can be
used to guide the treatment of cancer patients [6], and
they may be candidates of targets for cancer therapy [7].
However, most of the signatures provided by previous
work couldn’t perform well in other data sets [8], resulting
from the heterogeneity of tumor [9]. Therefore, most
of the selected genes may be passengers instead of
drivers [9].
In the meanwhile, DNA methylation data, which can

reflect the influence of external factors (such as infection
and smoking) to the patients [10, 11], is considered as a
rising star in the field of cancer research [12, 13]. DNA
methylation is a primary epigenetic modified form of
genomic DNA, which is an important means of regulat-
ing genomic function [14]. DNA methylation data can
be used to screen genes that play a key role in the devel-
opment, progression and metastasis of cancer [15–18].
In addition, there are also a few methods identifying the
prognostic genes based on DNA methylation data. For
example, Sandoval et al. proposed a DNA methylation
signature for prognosis in non-small-cell lung cancer
[19], and Lasseigne et al. identified novel diagnostic bio-
markers in renal cell carcinoma using DNA methylation
profiling [20].
As we know, cancer is a complex polygenic disease, and

the occurrence of cancer is usually caused by the role of
several genes. Network biology, which applies biological
network to describe the relationship among genes, could
be applied to study the complex diseases [21, 22].
Therefore, it is a promising solution to prioritize the
biomarkers of cancer prognosis through biological net-
works. There are also a few works applying DNA
methylation co-expression network to understand bio-
logical systems [23, 24]. However, as far as we know,
there are few works considering the DNA methylation
networks to select the prognostic signatures in cancer
systematically.
Breast cancer (BRCA) and Ovarian cancer (OV) are

the most popular cancers in women [25], and glioblast-
oma multiforme (GBM) is a fast-growing type of malig-
nant brain tumor that is the most common brain tumor
in adults [26]. Therefore, it is urgent to identify the
prognostic genes in these cancers [27–30]. Based on the
hypothesis that the co-expression relation among the
DNA methylation sites may reveal the interaction among
the according genes in some aspects, we identify the

prognostic genes of ovarian cancer, breast cancer and glio-
blastoma multiforme using DNA methylation interaction
networks respectively. Firstly, using matched gene expres-
sion data, miRNA expression data and DNA methylation
data of tumor samples from TCGA (The Cancer Genome
Atlas), we evaluated the stability of the three kinds of data
when they were used in cancer prognosis. Secondly, DNA
methylation interaction network was constructed by
considering the co-expression among all the DNA methy-
lation sites of the whole genome. Thirdly, topological ana-
lysis of the network was performed to check whether our
network had the similar topological characteristics of
biological network. Fourthly, functions of the hubs in the
network were investigated to check whether our network
could reveal the biological mechanism of cancer. Fifthly,
we used Cox regression to select the hubs whose DNA
methylation levels were significantly correlated to cancer
patients’ outcome, and these hubs were set as prognostic
genes. Finally, the prognostic signatures were evaluated by
survival analysis.

Methods
Data sets
TCGA [31] provides high-throughput sequencing data
of genomes, as well as clinical data of a variety of tumor
samples. Here, we downloaded the data sets of ovarian
cancer, breast cancer and glioblastoma multiforme,
including the clinical data (days to death, state of death),
DNA methylation data (JHU-USC HumanMethylation
450, level 3), miRNA expression profiles (Agilent 8 ×
15 K Human miRNA-specific microarray, level 3) and
gene expression profiles (UNC Agilent G4502A_07, level
3) of cancer patients. As to the DNA methylation data,
there are 605 samples in ovarian cancer, 343 samples in
breast cancer, and 295 samples in glioblastoma multi-
forme respectively. The DNA methylation data of all the
samples was applied to construct the DNA methylation
network. And only the samples with matched DNA
methylation data, mRNA expression data and miRNA
expression data were used to evaluate the stability of the
three types of data. When the data was applied in survival
analysis, the samples with mapped clinical information
and DNA methylation data were used.
In the level 3 data of DNA methylation data, each

methylation site was mapped to one gene for most
DNA methylation sites. Of course, there are also some
DNA methylation sites mapped to two genes. In this
work, we used the DNA methylation sites to construct
the network and identify the features for cancer prog-
nosis. When we investigate the functions of the nodes
with the highest degrees in the network, the DNA
methylation sites were mapped to genes. Except for
that, in all the analysis, methylation levels of the DNA
methylation sites were used.

Hu and Zhou BMC Medical Genomics 2017, 10(Suppl 4):63 Page 82 of 91

http://xueshu.baidu.com/s?wd=author%3A%28Sandoval%20J%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Lasseigne%20BN%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


Construction of DNA methylation interaction network
Since the DNA methylation levels of the DNA methyla-
tion sites do not obey the normal distribution in the
cancer samples, we applied Spearman rank correlation,
which is a nonparametric test, to calculate the correl-
ation coefficient of the DNA methylation levels between
every two DNA methylation sites. The Spearman rank
correlation is calculated as follows:

ρ ¼ 1−
6
Pn

i¼1
d2
i

n3−n
: ð1Þ

Here, n is the number of cancer samples in the cancer
data set. For each DNA methylation site, it is sorted
from large to small based on the DNA methylation value
in the n cancer samples. di is the difference of a certain
gene pair calculated by the sort value of the DNA
methylation value in the i-th cancer sample. Thus, if the
sorting of DNA methylation values of DNA methylation
sites are the same in all cancer patients (from large to
small), then the correlation coefficient is 1. Through this
calculation, we can calculate the correlation coefficient
between any pair of genes.
Based on the Spearman correlation coefficient, we

constructed our DNA methylation interaction network
using a simple rank-based method which is proposed by
Ruan [32]. As we know, value-based methods are signifi-
cantly limited because there is a homogeneous threshold
for all the genes in the network, which means some
genes are almost significantly related to almost all genes
(such as house-keeping genes), while some gene pairs
will be excluded from the network because their p-value
is higher than the threshold though they do have certain
kinds of significant connection. In fact, genes in one
functional pathway may be strongly mutually co-
expressed, while genes in another functional pathway
may be only weakly co-expressed [32]. Therefore, apply-
ing the similar strategy of the rank-based method [32],
for each site we selected only 10 most relevant sites as
its neighbors, so that all selected pairs of DNA methyla-
tion sites constituted a DNA methylation interaction
network.

The selection of prognostic genes in ovarian cancer
Based on the hypothesis that if a gene is located in the
hubs of the DNA methylation interaction network, the
gene can be good candidates for cancer prognosis, the
prognostic signatures of the three cancers were selected
as follow:
Firstly, the top 10% genes (DNA methylation sites)

with the largest degrees were selected as hub genes.
Secondly, univariable Cox regression was applied to

screen out the hubs whose DNA methylation levels were

significantly related to the outcome of patients. In this
regression model, independent variable is the DNA
methylation levels of each DNA methylation site across
all the patients, and dependent variable is the prognostic
risks (death time as well as status of death) of all the pa-
tients. Finally, the significant hubs were selected as prog-
nostic genes in the corresponding cancer.

Evaluation of the prognostic signatures
After obtaining the prognostic features of cancer patients,
we used a strategy similar to Gene expression Grade Index
(GGI) [33] to predict the death risk for every cancer
sample:

PrognosisRisk ¼
X

pi−
X

qj: ð2Þ

Here, pi is the DNA methylation level of genes with
positive Cox coefficient, and qj is the DNA methylation
level of genes with negative Cox coefficient. Then the
samples, whose risk scores were among the top 50%,
were divided into the bad-outcome group, and the other
ones were divided into the good-outcome group. In the
end, the log rank test was performed to test the differ-
ence of the patients’ overall survival between the two
classes.

Enrichment analysis
We used GSEA [34] to perform function annotation for
the hub genes. And we used hypergeometric test to inves-
tigate whether the overlap of selected genes from different
data set is significant. This test is shown as follow:

p−value ¼ 1−
Xx−1

i¼0

Ci
K � CN−i

M−K

� �

CN
M

: ð3Þ

Here, x describes the number of genes of the overlap;
K and N describe the number of selected features from
one data set and the other data set respectively, and M
is the number of the genes in the universal set.

Network visualization and analysis
Cytoscape 3.5.1 was used to visualize our DNA methyla-
tion interaction network. In addition, we used a plug-in
in Cytoscape to analyze the network [35].

Results
DNA methylation data is more stable in cancer prognosis
As we know, the biggest problem of the prognostic
genes identified based on high-throughput data is the
lack of stability. For example, 76 prognostic genes and
70 prognostic genes were both identified for prognosis
in breast tumor using mRNA expression profiles. Both
of the prognosis models performed well in their own
data sets. However, their performances in independent
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data sets were poor [36]. In addition, there is little
overlap between the two signatures [37]. So we first
systematically evaluated the stabilities of microRNA ex-
pression value, gene expression value, and DNA methy-
lation data for each of the three cancers respectively.
First of all, in the TCGA cancer data set, the same
number of samples was randomly assigned into two
groups. And then respectively in both groups, we ap-
plied Cox regression to select the genes (or miRNA)
whose expression levels were significant related to the
prognosis of tumor samples (p-value <0.05). After that,
we performed hypergeometric distribution test to assess
whether the overlap of the two sets selected from the
two groups was significant. After repeating the above
steps for 100 times, we obtained 100 p-values (hyper-
geometric distribution test) for each of the three kinds
of data, which is shown in Fig. 1.
We can see that these selected genes from DNA

methylation data are more stable in all the three cancers.
That is, the overlaps of the genes selected from different
samples based on DNA methylation data are more
significant. Furthermore, Wilcoxon rank sum test was
applied to test the differences between the p-values in
DNA methylation data and other two kinds of data. P-
values of the Wilcoxon rank sum test are 1.10E-20 and
3.54E-20 in ovarian cancer respectively. In breast cancer,
the p-value of Wilcoxon rank sum test of the stabilities
between the DNA methylation data and the mRNA ex-
pression data (miRNA expression data) is 2.06E-13
(6.34E-15). The similar result could be found in the data
set of glioblastoma multiforme, the p-value of the test of
stability between the DNA methylation data and the
mRNA expression data (miRNA expression data) is
8.42E-08 (3.96E-29). From all these results, it was con-
cluded that in the aspect of prognosis of the three can-
cers, compared with mRNA and microRNA data, DNA
methylation data may be more stable. As we know, the

main problem in cancer prognosis is that the gene signa-
ture lacks stability. Therefore, DNA methylation data
may be promising to prioritize prognostic signature.

The DNA-methylation interaction network
As the co-expression of the DNA methylation sites may
reveal the interaction of the according genes in some
aspects, we used DNA methylation data to construct the
DNA methylation interaction networks using three
cancer data sets in TCGA (Method) respectively. In this
work, we adopted a rank-based method [32] to solve this
problem.
In ovarian cancer data set, we obtained 249,810 signifi-

cant pairs among 24,981 nodes, which are shown in
Fig. 2a (Additional file 1: Table S1). In this network, an
edge between two nodes describes that DNA methyla-
tion levels of the two sites is correlated. In addition, the
nodes’ degrees fits well with the power-law distributions,
and the correlation and R-square of the fittings are 0.964
and 0.969 (Fig. 2b), which indicates the network is scale
free. As we know, the scale-free network conforms to
the biological network’s topological characteristics.
In breast cancer data set, the DNA methylation inter-

action network is shown in Additional file 2: Figure S1
and all the significant pairs are shown in Additional file 3:
Table S2. Power-law fit was also applied to investigate
the topological characteristics of the network. As a re-
sult, the correlation is 0.982 and R-square is 0.926 (Add-
itional file 2: Figure S2), which indicates the DNA
methylation interaction network in breast cancer is also
scale free.
The DNA methylation interaction network of glio-

blastoma multiforme is shown in Additional file 2: Fig-
ure S3 and all the significant pairs are shown in
Additional file 4: Table S3. Being similar with networks
of ovarian cancer and breast cancer, the degrees of the
nodes in the network of glioblastoma multiforme also
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Fig. 1 Comparision of the stabilities of DNA methylation, mRNA expression and miRNA expression data. The stabilities were evaluated by
the overlap of the prognostic genes selected from different samples. The significances of the overlaps were calculated by hypergeometric
distribution test. a The evaluation result in ovarian cancer data set. b The evaluation result in breast cancer data set. c The evaluation result
in glioblastoma multiforme
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follows the power-law distributions, with its correl-
ation of 0.998 and R-square of 0.953 (Additional file 2:
Figure S4).
As we know, the hubs in the scale-free network may

play important roles [38]. Therefore, in the DNA methy-
lation interaction network which is constructed using
cancer data set, a node with a large degree may be more
essential in the biological processes of cancer. Therefore,
it is expected that the hubs in our network may be more
likely to affect the prognosis of the cancer. In this work,
we selected approximately 10% of all the nodes in the
network as hubs for our next analysis. As a result, 2502
genes with the highest degree (no less than 35) in the
network of ovarian cancer (Additional file 5: Table S4),
2509 genes (with the degree of no less than 34) in the
network of breast cancer (Additional file 6: Table S5)
and 2584 genes (with the degree of no less than 35) in
the network of glioblastoma multiforme (Additional file 7:
Table S6) were obtained respectively.

Functional annotation of the hub genes
We used GSEA [34] to analyze which pathways the hub
genes are involving in. The enriched KEGG pathways for
hubs in the DNA methylation interaction network of
ovarian cancer are shown in Table 1.
Among the 42 significant pathways (FDR < 1.0E-4), the

most impressive one is ‘Pathways in cancer’, which is the
most significant pathway with an FDR of 5.37E-22. What’s

more, many sub-pathways of ‘Pathways in cancer’ were
enriched, such as ‘MAPK signaling pathway’, ‘Wnt
signaling pathway’, ‘p53 signaling pathway’, ‘Apoptosis’,
‘Jak-STAT signaling pathway’, ‘Cytokine-cytokine recep-
tor interaction’, ‘Focal adhesion’ and ‘VEGF signaling
pathway’. In these sub-pathways, ‘MAPK signaling path-
way’ is reported to be essential for cancer-immune
evasion in human cancer cells [39]. What’s more, ‘Wnt
signaling pathway’ is validated to be able to cause
cancer [40]. ‘p53 signaling pathway’, one of the most
famous cancer related pathways, is also known for its
potentially universal involvement in the etiology of
cancer [41]. Apart from this, there were also many
pathways in specific cancers involved, such as ‘Small
cell lung cancer’, ‘Prostate cancer’, ‘endometrial cancer’
and ‘colorectal cancer’.
The enriched pathways for hub genes in breast cancer

are shown in Additional file 8: Table S7. A total of 18
pathways are significant with FDR less than 1.0E-04. In
addition, the most significant one is ‘Pathway in cancer’
(FDR = 2.88E-11). Being similar with those in the ovar-
ian cancer, some sub-pathways of ‘Pathway in cancer’
were obtained by the enrichment analysis, such as MAPK
signaling pathway, Focal adhesion, Wnt signaling pathway
and Cytokine-cytokine receptor interaction. However,
there were also some cardiomyopathy related pathways
significant (‘Hypertrophic cardiomyopathy (HCM)’, ‘Ar-
rhythmogenic right ventricular cardiomyopathy (ARVC)’),

Fig. 2 The DNA methylation interaction network of ovarian cancer. a Overview of the DNA methylation interaction network. b The power-law
fitting of the degrees of the nodes in the network
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which was different from the enrichment pattern of the
hubs in the network of ovarian cancer. In the meanwhile,
cardiomyopathy is a common side effect of breast cancer
treatment [42, 43].
As to the hubs in the network of glioblastoma multi-

forme, 60 pathways were enriched with a FDR less than
1.0E-04 (Additional file 9: Table S8). The enrichment
pattern is similar with those of the breast cancer and
ovarian cancer. The most significant pathway is ‘Pathway
in cancer’ (FDR = 1.85E-13), and some sub-pathways of
‘Pathway in cacner’ are also significant, such as MAPK
signaling pathway, Wnt signaling pathway, Apoptosis,
p53 signaling pathway and PPAR signaling pathway.
What’s more, the hub genes were directly enriched by
‘Glioma’, with a FDR of 3.39E-07. Apart from that, some
Drug metabolism related pathways were also significant.
For example, ‘Drug metabolism - cytochrome P450’ is
significant with a FDR of 7.76E-05. As we know, it is a
very important drug metabolism pathways for anti-cancer
drug [44], and it is related to the drug response to cancer
patients [45].
In a word, our hub genes are significantly enriched by

many cancer-related pathways.

Prognostic genes selected from hubs
As we mentioned above, the hub node in the DNA
methylation interaction network may be more essential
in cancer prognosis. Therefore, the hubs which are sig-
nificantly related to the outcomes of tumor samples
may be good prognostic genes. We randomly divided
the samples of ovarian cancer into training group and
test group with the same number of samples, which is
shown in Additional file 10: Table S9. In the training
group, Cox regression was applied to calculate the cor-
relation and p-value of each hub’s DNA methylation
levels with the prognosis of tumor samples. Finally, 76
DNA methylation sites were selected by a threshold of
p-value <0.05 (Additional file 11: Table S10). Among
the 76 DNA methylation sites, cg02376703 is on the
top. That is, among the hubs, cg02376703 is the one of
which DNA methylation levels are most related to the
prognosis of ovarian-cancer patients. It was annotated
as two genes: ‘COX8C’ and ‘KIAA1409’. In the mean-
while, the alterations of COX8C is associated with
epithelial ovarian cancer risk [46] and KIAA1409 is a
tumor suppressor gene [47].
Based on the training data set of breast cancer in

TCGA (Additional file 12: Table S11), 69 DNA methy-
lation sites, whose DNA methylation levels were signifi-
cantly related to the prognosis of breast tumor samples,
were selected as the prognostic signature in breast can-
cer (Additional file 13: Table S12). Among these sites,
cg05142115 (Gene Symbol: USP10) is the most signifi-
cant one. P53 is the most famous tumor suppressor

Table 1 Functional annotation of the hub genes in ovarian
cancer

Pathways p-value FDR q-value

Pathways in cancer 2.89E-24 5.37E-22

MAPK signaling pathway 4.17E-16 3.88E-14

Wnt signaling pathway 1.23E-13 7.62E-12

p53 signaling pathway 5.23E-13 2.43E-11

Prostate cancer 3.97E-12 1.48E-10

Cell cycle 4.97E-12 1.54E-10

Endocytosis 9.75E-12 2.59E-10

Neurotrophin signaling pathway 1.81E-11 4.20E-10

Apoptosis 2.12E-11 4.38E-10

Small cell lung cancer 5.05E-11 9.40E-10

Leishmania infection 9.37E-11 1.58E-09

Cytokine-cytokine receptor interaction 3.45E-10 5.35E-09

Regulation of actin cytoskeleton 1.24E-09 1.77E-08

Purine metabolism 1.43E-09 1.90E-08

Jak-STAT signaling pathway 3.27E-09 4.06E-08

Ubiquitin mediated proteolysis 4.10E-09 4.77E-08

Toll-like receptor signaling pathway 8.42E-08 9.21E-07

Focal adhesion 1.06E-07 1.09E-06

Pyrimidine metabolism 1.98E-07 1.93E-06

Glycosphingolipid biosynthesis - lacto
and neolacto series

4.40E-07 4.09E-06

Amyotrophic lateral sclerosis (ALS) 4.85E-07 4.29E-06

Neuroactive ligand-receptor interaction 5.23E-07 4.42E-06

T cell receptor signaling pathway 1.02E-06 8.22E-06

Alzheimer’s disease 1.14E-06 8.77E-06

Chronic myeloid leukemia 1.18E-06 8.77E-06

Phosphatidylinositol signaling system 2.08E-06 1.49E-05

Tight junction 2.48E-06 1.71E-05

NOD-like receptor signaling pathway 3.73E-06 2.47E-05

Non-small cell lung cancer 3.85E-06 2.47E-05

Melanoma 4.11E-06 2.47E-05

Spliceosome 4.21E-06 2.47E-05

Leukocyte transendothelial migration 4.24E-06 2.47E-05

Axon guidance 4.78E-06 2.69E-05

Lysosome 6.29E-06 3.44E-05

Glioma 6.73E-06 3.58E-05

B cell receptor signaling pathway 8.37E-06 4.33E-05

Oocyte meiosis 9.39E-06 4.72E-05

Base excision repair 9.77E-06 4.73E-05

VEGF signaling pathway 9.92E-06 4.73E-05

Epithelial cell signaling in Helicobacter
pylori infection

1.17E-05 5.44E-05

Endometrial cancer 1.44E-05 6.53E-05

Colorectal cancer 1.94E-05 8.58E-05

The p-value and FDR q-value was provided by GSEA, which was applied
to evaluate the significance of the enrichment analysis
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gene [48] and it is reported that USP10 is regulator of
p53, providing an alternative mechanism of p53 inhib-
ition in cancers with wild-type p53 [49].
In glioblastoma multiforme, 88 hubs, whose DNA

methylation levels were significantly related to the
prognosis of tumor samples in the training data set of
glioblastoma multiforme in TCGA (Additional file 14:
Table S13), were selected as the gene signature of
glioblastoma multiforme (Additional file 15: Table S14).
The most significant one (cg19465374: PODXL) was
also investigated by literature survey. And it is reported
that high PODXL expression is related to increasing gli-
oma grade and decreased survival time in patients with
glioblastoma multiforme [50].
In summary, 76 hubs in ovarian cancer, 69 hubs in

breast cancer and 88 hubs in glioblastoma multiforme
were selected based on the corresponding DNA
methylation data and DNA methylation interaction
networks. Case studies of the most significant ones of
the prognostic genes showed they were indeed cancer
related.

Evaluation the prognosis signatures by survival analysis
As we know, the main problem of the prognosis signa-
tures based on mRNA expression profiles is poorly gen-
eralized [51]. With the purpose of evaluating our
signature, the selected genes were applied to calculate
the risk score of tumor samples in both the training
data set and test data set for the three cancers respect-
ively (Method). For comparison, we also applied Cox
regression to pick out those sites of which DNA

methylation levels are most related to the prognosis of
tumor samples as control signature.
In ovarian cancer, survival analysis of the samples in the

two groups classified by our prognostic genes in the train-
ing data set shows these genes can distinguish the progno-
sis of tumor samples, with a HR (hazard ratio) of 3.64
(95% CI 2.47–5.37). And log-rank p-value of the overall
survival between these patients in the two classes is 4.50E-
12 (Fig. 3a). Furthermore, we evaluated our method in the
test data set. HR of the overall survival of the patients in
the two groups divided by the prognostic signature is 1.92
(95%CI 1.36–2.70), and the corresponding p-value is
1.16E-04 (Fig. 3b). For comparison, we also used the con-
trol signature (Additional file 16: Table S15) to calculate
the risk scores of tumor samples in the same data sets.
The control signature can also stratify the patients of the
training data set into different-prognosis groups, with the
HR and p-value of 3.90 and 8.66E-15 (Additional file 2:
Figure S5.a). This is not strange because the control genes
are the most significant genes which are selected in the
training set. However, in the test set, prognostic risks of
the patients divided by the control signature shows no sig-
nificant difference (Additional file 2: Figure S5.b).
In the breast cancer, based on the 69 prognostic genes

(DNA methylation sites), the risk score of the patients
could be calculated (Method). In the training data set, the
HR of high-risk group and the low-risk group is 10.34,
and the p-value is 6.40E-08 (Fig. 4a). Survival analysis in
the test data set also shows there are significant difference
of the overall survival between the tumor samples of the
two classes, with the HR of 3.54 and p-value of 1.10E-3
(Fig. 4b). The control signature (Additional file 17: Table
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S16) was also applied to predict the prognosis of tumor
samples in the breast cancer. The control signature per-
forms well in both the training data set (Additional file 2:
Figure S6.a) and the test data set (Additional file 2: Figure
S6.b). However, our prognostic genes perform better in
both data sets.
As to glioblastoma multiforme, the prognostic signa-

ture was also applied to calculate the risk score of tumor

samples in TCGA GBM. Survival analysis shows that
our prognostic signature could distinguish the prognosis
of tumor patients in the training set (Fig. 5a) and test
data set (Fig. 5b). The HR (p-value) in the two data sets
are 1.76 (0.0025) and 1.55 (0.014) respectively. Based on
the control signature (Additional file 18: Table S17), the
risk scores of the patients were also calculated. The con-
trol signature could distinguish the prognosis of tumor
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samples in the training data set (Additional file 2: Figure
S7.a) because the control signature was selected in this
data set. However, in the test data set, the control signa-
ture performs badly (Additional file 2: Figure S7.b).
From all these results, we can see that the prognostic

signature selected by our methods perform well in all
the three cancers. In addition, our prognostic signa-
tures outperformed the control signatures. As our
prognostic genes were filtered by the essential nodes in
the DNA-methylation interaction networks, all these
results validated that the DNA-methylation interaction
network could facilitate the selection of prognostic
signatures.

Discussion
DNA methylation has been proved to be associated with
many biological processes in cancer. However, there are
few methods identifying the prognostic markers based on
DNA methylation data systematically, especially consider-
ing the interaction relationship among DNA methylation
sites. Based on the biological hypothesis that DNA-
methylation data could reveal the information hidden
behind cancer prognosis, and the inter-relationship of
DNA methylation sites may reveal biological interactions
between genes at a certain level, we used DNA methyla-
tion data to construct DNA methylation interaction net-
work, and used this network to identify prognostic genes.
We first demonstrated the DNA methylation data may be
more stable in cancer prognosis of ovarian cancer, breast
cancer and glioblastoma multiforme. After that, we con-
firmed that the networks were typical scale-free biological
networks, and then we used the hub nodes of the DNA
methylation interaction networks to perform functional
annotation, and the results indicate that they were closely
correlated with cancer-related functions. Using the hub
nodes, we screened 76 DNA methylation sites in ovarian
cacner, 69 DNA methylation sites in breast cancer and 88
DNA methylation sites in glioblastoma multiforme and
found that these DNA methylation sites could significantly
differentiate the prognostic risks of all the cancer patients.
Here, a computational method was proposed to recon-

struct DNA methylation interaction network. This net-
work could be used to select prognostic signatures in
cancer. In our opinion, it can also be applied in the study
of other biological problem. For example, in the study of
disease progress, cell development or any related fields as
long as there were enough samples of DNA methylation
data.
Of course, some issues of our work should be addressed.

(1) Due to the limited availability of cancer data sets of
DNA methylation data, our prognostic genes can only be
validated in TCGA. (2) As the main purpose of our work
is to prove that the DNA methylation interaction network
could facilitate the selection of prognostic genes, we only

used a naïve prognostic model. However, a more compli-
cated model may make the prognostic model more power-
ful. We will address these problems in our future work.

Conclusion
In this work, we have proposed a computational method
to construct DNA methylation interaction network. And a
pipeline was proposed to identify the prognostic signature
in cancer based on the DNA methylation interaction
network. Our method was validated in ovarian cancer,
breast cancer and glioblastoma multiforme. The experi-
ment results show our prognostic signatures can distin-
guish the outcome of cancer patients. In addition, these
prognostic genes were indeed cancer related.
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