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Abstract

Chemotherapy resistance is a major challenge to the effective treatment of cancer. Thus, a

systematic pipeline for the efficient identification of effective combination treatments could

bring huge biomedical benefit. In order to facilitate rational design of combination therapies,

we developed a comprehensive computational model that incorporates the available biologi-

cal knowledge and relevant experimental data on the life-and-death response of individual

cancer cells to cisplatin or cisplatin combined with the TNF-related apoptosis-inducing

ligand (TRAIL). The model’s predictions, that a combination treatment of cisplatin and

TRAIL would enhance cancer cell death and exhibit a “two-wave killing” temporal pattern,

was validated by measuring the dynamics of p53 accumulation, cell fate, and cell death in

single cells. The validated model was then subjected to a systematic analysis with an

ensemble of diverse machine learning methods. Though each method is characterized by a

different algorithm, they collectively identified several molecular players that can sensitize

tumor cells to cisplatin-induced apoptosis (sensitizers). The identified sensitizers are consis-

tent with previous experimental observations. Overall, we have illustrated that machine

learning analysis of an experimentally validated mechanistic model can convert our avail-

able knowledge into the identity of biologically meaningful sensitizers. This knowledge can

then be leveraged to design treatment strategies that could improve the efficacy of

chemotherapy.

Author summary

Combination chemotherapy is frequently used in the fight against cancer as treatment

with multiple chemotherapy drugs of different molecular mechanisms reduces the chance

of resistance. The complex mechanisms involved makes it essential to develop a compre-

hensive computational model that comprehends experimental data and biological knowl-

edge to facilitate design of combination therapies. As computational models grow and

capture more and more molecular events governing the chemotherapy response, it
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becomes harder to explore the treatment space efficiently and systematically. To facilitate

the extraction of unbiased solutions from complicated models, we have conducted sys-

tematic analysis using a series of machine learning methods including Partial Least

Squares regression (PLS), Random forest (RF), Logistic Regression (LR) and Support Vec-

tor Machine (SVM). The results of these different methods were cross-validated to reduce

the chance of overfitting or bias by any single method. Overall, we propose a novel

computational pipeline, where machine learning analysis of experimentally validated

models is used to generate unbiased predictions of novel chemotherapy targets.

Introduction

Though chemotherapy is one of the most successful tools in the fight against cancer [1], treat-

ment often fails due to a diverse set of resistance mechanisms occurring in cells [2–5]. To min-

imize the probability of resistance, patients are typically treated with multiple chemotherapy

drugs with separate molecular mechanisms. The theoretical justifications are that resistance to

one drug will not confer resistance to others and the occurrence of cells harboring multiple

resistance mechanisms are rare.

Although better than any single drug, combination chemotherapy presents its own set of

challenges, since the drugs interact in complex ways and in some cases might even antagonize

one another. Moreover, individual drugs elicit responses on a wide range of timescales, there-

fore dosing schedules can have a profound effect on the response. In extreme cases, the inter-

action between drugs can be inverted; that is, one dose schedule can be synergistic while

another is antagonistic [6] Given the large number of chemotherapy drugs available, and the

almost limitless possibilities for dose schedules, identifying the optimal treatment protocols

with experiments alone would be too time and resource consuming to be feasible.

Computational models, which capture the key molecular events of the chemotherapy

response, could drastically facilitate the identification of optimal treatment protocols as they

can explore treatment space much more rapidly than experimental methods. To this end, we

employed a computational modeling strategy to understand the response of HCT116 colon

cancer cells at the single cell level to two drugs, the cross linking agent cisplatin and the TNF-

related apoptosis-inducing ligand (TRAIL). These drugs induce cell death through two very

different mechanisms. Cisplatin induces DNA damage that stabilizes the transcription factor

p53 and ultimately leads to activation of the intrinsic apoptosis pathway. In contrast, TRAIL is

a cytokine that induces the extrinsic apoptosis pathway by binding to DR4/5 receptors and

activating caspase 8 through a p53 independent mechanism [7–9]. Importantly, quantitative

single-cell data exists for the response to each treatments making them ideal modeling candi-

dates as the models can be tested to ensure they match the data [5, 10].

To accurately model the response of these two drugs, we combined our previous models on

p53 signaling [11] and the intrinsic apoptosis pathway [12] together with recent studies on

how intercellular variability contribute to cell fate in response to pro-apoptosis signals. In par-

ticular, a recent study by Márquez-Jurado et al. revealed that cell-to-cell heterogeneity in mito-

chondrial mass results in different levels of pro- and anti- apoptotic regulating proteins (e.g.

BCL family member MCL, BH3 family member Bid, and the caspase family proteins) and

fine-tunes the apoptotic responses of individual tumor cells [13]. Based on these findings, we

incorporated variability in apoptosis regulators (BCL family Bax and BH3 proteins) as well as

variability in caspases.

Modeling chaperoned machine learning
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We first validated this expanded model by testing predictions on the cellular response to a

cisplatin and TRAIL combination treatment. Our model predicts that the combination with

TRAIL considerably increases the rate of cell death induced by cisplatin treatment, which we

experimentally verified using population measurements. In addition, the model suggests the

combination cisplatin/TRAIL treatment leads to a bimodal distribution in the time of death

for individual tumor cells. We experimentally confirmed this prediction using live single-cell

time lapse microscopy. Moreover, the precisely determined timing of the 2nd wave of death

shown by microscopy allows us to refine the decay rate of TRAIL in the model. Such consis-

tency between model prediction and experimental validation suggests that the expanded

model serves as a reasonable framework to connect observed cellular fates to available knowl-

edge on the molecular control network.

We further analyzed how cell-to-cell differences in other regulators in the molecular control

network (e.g. p53, Bcl-2 and caspase family proteins) impact the cellular response (survival or

death) to cisplatin treatment. Due to the large number of components, our validated model is

too complicated to yield an analytical solution. Therefore, to gain insight into this complex

process, we subjected a heterogeneous population of models that represent individual tumor

cells to systematic analyses using an ensemble of machine learning methods. These methods

included Partial Least Squares regression (PLS), Random Forest (RF), Logistic Regression (LR)

and Support Vector Machine (SVM). The results of these different methods were cross-com-

pared to reduce the chance of overfitting as well as potential bias induced by any single

method.

Collectively, these analyses revealed that the fate of cisplatin treated cells are most sensitive

to the levels of the classical apoptosis inhibitor BCL family proteins, the pro-apoptotic protein

Bax, the positive feedback controlling p53 activation, and the degradation rate of the Bcl-2

homology domain 3 (BH3) proteins, among other regulators. These results are consistent with

available knowledge of the biological system. Indeed, the role of Bcl-2 in fine-tuning fates of

cisplatin treated cells has been experimentally demonstrated in previous studies [10]. These

biologically meaningful results, achieved from machine learning analysis of the solid, experi-

mentally validated models, provided a ‘proof of principle’ of our novel pipeline to integrate

knowledge and data to cope with uncertainties and design novel treatments.

Overall, we have successfully integrated high resolution experimental data and currently

available knowledge into a validated and comprehensive model that connects the non-genetic

variations within cells to their fates in response to combination chemotherapy treatment. The

model then represents our knowledge in a suitable framework for machine learning methods

to make quantitative discoveries on chemotherapy sensitizers. Furthermore, the model allows

us to extract causal insights on how the sensitizers work. Our innovative pipeline, in which

mechanistic modeling chaperones machine learning, is empowered by the strength of these

two different approaches, and could provide a way to efficiently identify effective drug combi-

nations for a diverse set of cancers.

Results

An expanded model that incorporates multiple sources of variability

The current model for fractional killing incorporates three sources of variability: p53 regula-

tion, BCL family proteins, and caspase proteins (Fig 1). Heterogeneity in the apoptosis regula-

tor BCL proteins as well as caspases was incorporated due to recent work by Márquez-Jurado

et al. [13], who showed that variation in the pro- and anti- apoptotic proteins Bcl-2, Bax, Smac,

XIAP, Caspase-8 and Caspase-9 fine-tuned the apoptotic responses among individual cells

[13].
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The influence diagram (Fig 1) of the expanded model was translated into a set of ordinary

differential equations (ODEs, details in Methods). Holding these equations constant, we varied

equation parameters to simulate a population of models each representing a single cell, thus

mimicking a population of tumor cells with cell-to-cell variability. The temporal simulations

of representative cells are shown in Fig 2. In response to an identical concentration of cisplatin,

some cells died (red curves, Fig 2), while others survived (blue curves, Fig 2). Cells with differ-

ent fates activate p53 at different rates, with dead ones activating p53 faster (Fig 2A), matching

previously published experimental results [10]. In apoptotic cells, rapidly accumulating p53

activates Baxm proteins, which results in the release of CytoC from mitochondria (Fig 2B).

Meanwhile, Smac is also released from mitochondria and the apoptosis inhibitor XIAP is

sequestered into the inactivated Smac:XIAP dimer form (Fig 2C). Together, CytoC and Smac

result in the activation of caspase-9 (Fig 2D), which cleaves inactive pro-caspase-3 into the

activated form of caspase-3 (Fig 2E and 2F). Once activated, caspase-3 can directly induce cell

death [5, 12]. Cell death is triggered and simulation stops when caspase 3 activity rises above a

threshold level of 0.3.

Fig 1. The molecular interactions and variabilities described in the current model. Nodes of different shapes represent the model components; arrows indicate

activation; lines and curves with solid circle heads indicate repression. The model contains four sources of variability arising from p53, caspase 8 activation, BCL-

family proteins and Caspase proteins. The variability of p53 (highlighted in grey rectangle) is inherited from our previous model [46]. Meanwhile, caspase 8 is

activated with different rates; the expression of BCL family proteins (in blue dashed rectangle); and the caspase proteins (in red rectangle) are also varied between

individual cells.

https://doi.org/10.1371/journal.pcbi.1007158.g001
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Experimental validation of the expanded model

We next validated this expanded model by experimentally examining its predictions. Cancer

cells also undergo fractional killing in response to treatment with TRAIL ligand [5], and our

model predicts that the incorporation of TRAIL would enhance the killing efficiency of cis-

platin (Fig 3A and 3B). Kaplan-Meier plotting suggests that the combined therapy results in

more rapid death as well as a higher cellular mortality rate. Cisplatin alone induces the death

of 40.6% of treated cells, while the combination of cisplatin with TRAIL increases the rate of

cellular death to around 73.7% (Fig 3A). All other settings in these two populations are

identical.

Furthermore, density plots of the distribution of death times suggest that the cisplatin and

TRAIL combination induces “two waves of death”: the initial peak is around 18 hours after

treatment and corresponds to the peak time observed with TRAIL alone; and the 2nd peak

time is around 65 hours, similar to the single peak induced by cisplatin alone (Fig 3B). From

the temporal simulations following combination therapy, we could see that as the p53 dynam-

ics changes little in response to the combination therapy, the combination results in two waves

of activations of Caspase 9 and Caspase 3 (Fig 3C–3E).

This predicted ‘two waves of death’ indicates that the level of TRAIL ligand does not remain

constant but decays over time, as assumed in the current model. Indeed, if an alternative

assumption is made and the level of TRAIL is held constant, the combined therapy results in

only one large wave of cellular death (S1A and S1B Fig).

Fig 2. The current model describes the sequence of events during fractional killing. Time series simulation of the current model provides a comprehensive picture

of the molecular events during cisplatin induced fractional killing. Blue traces indicate cells that survived treatment, while red traces indicate cells that underwent

apoptosis (40.6% of total). Cisplatin treatment results in the activation of p53 (A), the release of CytoC from mitochondria (B), the inactive dimer of Smac and XIAP

(C). Eventually, cisplatin leads to the activation of caspase 9 (D), cleavage of pro-caspase 3 (E) and the activation of caspase 3 (F).

https://doi.org/10.1371/journal.pcbi.1007158.g002
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Although the timing of cell death is sensitive to the TRAIL decay rate, the prediction of

enhanced cellular death is robust and insensitive to it; a higher fraction of cells will die in

response to the combination treatment, whether TRAIL decays or remains constant (Fig 3A

and S1A Fig). Hence, the model generates two predictions, one robust prediction of higher

death fraction and one less robust prediction of ‘two waves of death’ (Fig 3).

We proceeded to test these model predictions of death time and death rate. We first gener-

ated dose-response curves for HCT116 colon cancer cells treated with cisplatin alone or a com-

bination of cisplatin with a low dose of TRAIL (Fig 4A). Consistent with the model’s robust

prediction, the combination treatment led to a decrease in cell viability when compared to cis-

platin alone (Fig 4A, cisplatin EC50 7.1 μM V.S. cisplatin + TRAIL EC50 1.7 μM).

The population measurements generated by the dose-response curves cannot detect the

dynamical features of the cells, such as time to death. Testing whether there are ‘two waves of
death’ requires observing death events in single cells with high temporal resolution. Therefore,

we used time-lapse microscopy to track the kinetics of cisplatin and TRAIL induced cell death

over time. We used a previously engineered colon cancer cell line where one allele of p53 was

tagged with the Venus fluorescent protein at the endogenous locus and harbored mCerulean

fused to a nuclear localization signal to track nuclear p53 levels (HCT116 p53-VKI, [10, 14]).

In these single cells, p53-Venus levels and cell fate (death or survival) were measured following

the treatments with cisplatin alone and cisplatin + TRAIL by time-lapse fluorescence micros-

copy every 15 minutes over a 74 hour period (Fig 4B and 4C, S1–S3 Movies). Kaplan-Meier

Fig 3. Simulated dynamics that characterize the combined therapy. (A). Kaplan-Meier plot of the simulated data with TRAIL functioning as a dynamical variable.

(B). Density plots of the distribution of the time of death predicted by the model for TRAIL alone (right y-axis), cisplatin or cisplatin+TRAIL combination (left y-

axis). TRAIL functions as a dynamical variable. (C-E). Temporal simulation of p53 (C), caspase-9 (D) and caspase-3 (E) following cisplatin+TRAIL combination.

https://doi.org/10.1371/journal.pcbi.1007158.g003
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plotting revealed that the combination TRAIL plus cisplatin treatment killed more cells and at

a faster rate when compared to cisplatin treatment alone (Fig 4D). Furthermore, the experi-

mental data revealed two waves of death in the cisplatin + TRAIL combination treatment (Fig

4E). Time-lapse images were also acquired for the TRAIL mono treatment, however due to the

large number of divisions we were unable to track single cells when they receive only TRAIL.

We did measure the times of death of single cells to get the death distributions in Fig 4E. The

first peak of death aligned closely with the peak observed with TRAIL treatment alone, while

the second peak of death aligned to the cisplatin only therapy. Hence, these data confirm the

model assumption that TRAIL actively decays rather than remaining at its initial concentra-

tion. The experimental confirmation of the model’s predictions show that the model

Fig 4. Experimental data for the combination therapy with TRAIL and cisplatin. Cultured HCT116 cells were subjected to

treatments with cisplatin alone, TRAIL alone, or cisplatin plus TRAIL, respectively. (A) Dose-response curve of HCT116 cells 72

hours after treatment with different concentrations of cisplatin, in the absence (blue) or presence (green) of 25 ng/ml of TRAIL.

Error bars represent the standard deviation of four biological replicates. (B and C) p53-Venus dynamics were measured by live-

cell microscopy (lower panel), and cell death was identified by morphological changes of the cells measured by phase contrast

microscopy (top Panel, see middle cell in C at 40 hours for example of an apoptotic cell). (D). A Kaplan-Meier plot of the

experimental data. 192 single cells were tracked for each dose. (E) Density plot of the distribution of the time of death measured in

live-cell microscopy time-lapse experiments. Dashed red line represents the peak time for cell death for TRAIL; dashed blue line is

the peak time of death for cisplatin.

https://doi.org/10.1371/journal.pcbi.1007158.g004
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assumptions are reasonable and indicates that our expanded model can serve as a faithful ‘in
silico’ representation of the biological system.

Systematic machine learning identifies chemotherapy sensitizers

Since the expanded model incorporates the relevant data into a suitable, knowledge con-

strained framework, we hypothesized that rigorous analysis of this model could yield biologi-

cally meaningful results. To test this hypothesis, the expanded model was simulated with a

total of 6000 different sets of parameters whose values were randomly selected (details in

Methods). In this way, these simulations served as an “in silico” proxy of 6000 cisplatin treated

tumor cells and are referred to as in silico cells (ISCs) hereafter.

Among the population, an ISC is labelled as “dead” if caspase-3 is activated past a specific

threshold and as “alive” if caspase-3 activity is kept below the threshold. In this way, cell fate is

determined by the peak value of caspase-3, which is a continuous response variable. As the

level of caspase-3 is a systems level property and controlled by many parameters, Partial Least

Squares regression (PLS) was used to reduce the parameter dimension and to identify the

parameters that contribute most to the value of this continuous variable [15]. PLS identified

two principal factors that together explain about 60% of the variance that characterizes the

change of peak caspase-3 level (Fig 5A). Based on their relative contributions to these principal

Fig 5. Machine learning analysis of in silico cells. (A), Biplot from PLS analysis, with variances from both parameters and Caspase 3 level explained (B), the four

components in green are the common ones identified by all these methods. Upper panel: the Variable Importance in Projection (VIP) of parameters achieved by PLS;

Middle panel: a hierarchical order of the control parameters based on the percentage increase in the mean squared errors (%IncMSE) in Random forests; Lower panel:

the ranking of parameters selected by the logistic regression on the basis of Wald Chi Square; (C), The SVM plotting carried out with the life promoting and death

promoting factors. Red circles indicate dead cells, while black circles are surviving cells.

https://doi.org/10.1371/journal.pcbi.1007158.g005
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factors, PLS then generated a rank of the contributions by individual parameters (Fig 5B, top

panel). With this rank, PLS revealed that caspase-3 activity is most sensitive to variabilities

characterizing the level of Bcl-2, the level of Bax, the positive feedback controlling the tran-

scription factor p53, and the stability of BH3.

To avoid bias induced by any single analysis method, we subjected the discrete life-death

responses of ISCs to two additional machine learning methods: random forest and logistic

regression. For our analysis, the random forest established 2000 decision trees to calculate the

relative contribution of each variable in distinguishing living cells from dead ones, while logis-

tic regression identified the dominant factors using backward elimination [15]. Consistent

with the results from PLS, these two alternative methods also identified the variability of four

components (Bcl-2, Bax, p53 self-activation and BH3 stability) as the dominant factors con-

tributing to cell death in response to cisplatin (Fig 5B, middle and bottom panels).

The sensitizers identified by these machine learning methods are consistent with previous

studies. Our previous work has shown that cell death in response to cisplatin can be greatly

enhanced by inhibiting BCL proteins [10]. Meanwhile, other studies using either gain-of-func-

tion [16–18] or loss-of-function [19–21] of Bax showed its importance in regulating cell death

under diverse conditions. This partial confirmation indicates that indeed, machine learning

analysis of knowledge based, data constrained mechanistic models can yield biologically mean-

ingful sensitizers that are informed by both experimental data and biological knowledge.

Furthermore, the identified controlling components have opposite effects on cellular death.

As the elevation of p53 positive feedback strength and Bax level promote cellular death; the

increase of the other two components (BCL level and BH3 stability) promote cellular survival.

On the basis of these biological considerations, we then carried out support vector machine

(SVM) analysis with a linear combination of the two life promoting components (Fig 5C, y-

axis) and the two death promoting components (Fig 5C, x-axis). The combination coefficients

were identified using independent logistic regressions (details in Method). As a result, SVM

plotting identified a two dimensional plane with two clearly distinguished regions: the top left

region is mainly occupied by living cells, while the bottom right region contains mostly dead

cells (Fig 5C).

Starting from a high dimensional space of over 30 parameters, this SVM identified a

2-dimentional plane that correctly identified the fates of a majority of cells (84.5%). In this

way, the SVM identified boundary derived from simulated data provides an elegant way to

simplify and to understand the complex control of cellular fates.

Discussion

Mechanistic modeling has been widely used to aid in the design of effective cancer therapies or

to identify biomarkers for personalized treatment [22–35]. Recently, machine learning meth-

ods have also gained popularity in multiple areas including biomedicine [36–38]. Given their

distinct power and limitations, it is reasonable to expect that the integration of these two differ-

ent methods could result in a powerful tool for the biomedical community [39]. Indeed, Gong

and Sobie have elegantly integrated mechanistic modeling and machine learning to predict

drug responses across different types of cultured cells [40].

In this work, we illustrate a novel way to use mechanistic modeling to chaperone and

improve machine learning to extract biologically meaningful results. By incorporating existing

knowledge and providing mechanistic explanations, mechanistic modeling allows us to cope

with two major limitations of machine learning performed in isolation: being unable to incor-

porate available knowledge and lack of causality. Hence, this novel, integrated approach uti-

lizes the power of machine learning and reduces its limitations.
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Recently, machine learning analysis has gained rapid popularity and there is concern on

how the biomedical community should apply this new tool in conjunction with traditional

mechanistic modeling [39, 41, 42]. In this exploration, we revealed one plausible way to inte-

grate these two, in which the machine learning algorithms were used to shed light on the con-

trol of the mechanistic model when all its parameters are changed simultaneously. In doing so,

we achieved a robust and consistent ranking of the model components, as well as a clearer

representation of the system on the reduced two dimensional SVM plane. By efficiently utiliz-

ing these methodologies, we believe that the traditional field of mechanistic modeling can ben-

efit from the rapid development of machine learning algorithms.

Meanwhile, our work also indicates that solid and well-validated models are essential for

this integrated approach to be successful. We believe that mechanistic models can only become

solid if they are continuously validated and improved against experimental findings, and we

have insisted in continuously testing and modifying our model with novel experimental

results.

A brief time line of the model’s history and its interaction with relevant experimental stud-

ies is shown in Fig 6. Initiated by dynamical studies on p53 oscillations [43, 44], our original

model for the pulsatile dynamics of p53 in 2007 [11]. Meanwhile in 2009, we also developed a

computational framework for the intrinsic cell death pathway [12].

At the time, the model of programmed cell death made a novel assumption. It assumed that

the inactivation of the mitochondrial form of Baxm is catalyzed by the apoptosis inhibitor BCL

family proteins. In other words, BCL family proteins serve not only as stoichiometric inhibi-

tors, but also as enzymes to accelerate the inactivation of Baxm from the mitochondria and

shuttle them back to the cytoplasm. This essential model assumption was then validated inde-

pendently by Edlich et al. [45]. By observing fluorescence loss in photobleaching, Edlich et al.
demonstrated that the translocation of Bax from the mitochondria to the cytoplasm is sped up

when a member of the BCL family, Bcl-xl, is overexpressed; on the contrary, this translocation

rate decreased when Bcl-xl is inhibited, as reported in Fig 6D from [45]. This independent con-

firmation of the model assumption suggested that the model is reasonable and can be used for

further expansion and predictions.

In 2016, the high temporal resolution data reported by Paek, et al. suggested an intriguing

relationship between the dynamical activation of p53 and cellular fates [10]. Following this

report, we developed a comprehensive model that combined our models of p53 and apoptosis

while incorporating the newly found incoherent pathways activated by the chemotherapy drug

cisplatin. The model successfully recaptured and explained the observed dynamic relation

[46]. In the current study, we further expanded the available model with recent data from the

literature and from the Paek lab. When additional data is available in the future, the model will

be further improved to better represent our growing knowledge of the biological system.

Since our mechanistic model has been continuously updated and validated with experimen-

tal data from multiple sources, it currently serves as a general apoptosis framework. Because

each component of the combined model was derived from models tested on different cell

types, it yields results that broadly apply to many different cell types. We hope that in the near

future, the apoptosis model can be constrained with data from a single cell line. Then, integrat-

ing the cell line specific model with machine learning analysis will promise to yield novel, spe-

cific results in that particular cell line. Meanwhile, the methodology we apply in the

manuscript integrates the powers of both mechanistic modeling and machine learning, and

achieves more than either approach in isolation. This approach can be generally applied to

study a broad range of cancers as well as other complex diseases.
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Methods

Simulating a population of cells with different fate

The wiring diagram of the model was translated into a set of ordinary differential equations

(S1 Table) and simulated following our established protocol [46]. The structure and basal

parameter values of the model are mostly inherited from previous publications [11, 12, 46].

The rate constants are characterized by the inverse of the time scale of model (hour -1). The

levels of the control molecules, as well as the regulatory strengths, are dimensionless. For the

population level simulations, the parameters were randomly sampled from uniform distribu-

tions ranging between 70%–120% of their basal levels, which were used to properly recapture

Fig 6. Interplay between model and experimental observation. The outer pieces show the experimental work that were used for the construction,

verification, expansion, and refinement of the models. The inner pieces indicate the pieces of the model.

https://doi.org/10.1371/journal.pcbi.1007158.g006
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the corresponding experimental observations from our previous publication [10, 46]. The

models are simulated with stiff methodology in the software Xppaut (http://www.math.pitt.

edu/~bard/xpp/xpp.html). The simulated living cells and death cells in response to different

drug treatments, these simulated cells are then subject to analysis with machine learning

methods.

Machine learning analysis of the simulated data

An ensemble of machine learning methods was used to analyze the model simulated data. Par-

tial Least Square (PLS) Analysis was used for dimension reduction with multivariate linear

regression [15]. Similar to Principal Component Analysis (PCA), PLS also identifies a smaller

set of factors that are linear combinations of the original parameters. However, in contrast to

an unsupervised PCA, PLS is supervised and the factors identified here do not always include

all the original parameters. Rather, only part of the original parameters are included in the

PLS-identified factors on the basis of the comparison between the observation and statistical

prediction. In the factor space with reduced dimensions, the composed linear regression

model bears the smallest distance (least squares) between the measured values and the fitted

ones. The PLS was carried out with the standard procedure within the statistical software SAS

(SAS Institute Inc., Cary, NC, USA).

By assembling multiple Decision Trees, Random Forest was used to improve the classifica-

tion results and generate a rank of how each parameter contributes to the prediction accuracy

[15]. Computation was done in R using the Random forests algorithm within the standard

package [47]. Default parameters were used along with 10-fold cross-validation.

Logistic regression, which models the logistic transformation of probability of the binary

response cell fates [15], was used to rank the contribution of the control parameters as well as

to identify the linear combination of the life promoting and death promoting parameters. The

logistic regression, together with backward elimination and 10-fold cross validation, was com-

puted in SAS programming environment using the standard method and default parameter

setting. For ranking the control parameters, all parameters are incorporated at the beginning;

for identifying the linear combinations, the selected parameters were used.

Support Vector Machine

The Support Vector Machine (SVM) is a popular classification method. With a subset of the

models from the population, SVM computes the boundaries that separate different popula-

tions of data with maximal margin. The chosen data are referred to as “support vectors” since

they are used to compute the boundaries. The SVM was carried out within R.

The “life factor” used in SVM is a linear combination of the BCL-2 level and BH3 degrada-

tion rate (−17.6132 + 14.5786 � nbcl2total + 6.9014 � kdbh3), while the “death factor” is a linear

combination of the strength of p53 positive feedback and the level of Bax (−6.0579 + 1.5398 �

Rp53p53 + 3.3541 � baxtotal). These coefficients are identified with logistic regression that best

fits the probability of cellular survival with Bcl2 level and Bh3 degradation rate; and then fits

the probability of cellular death with the p53 positive feedback strength and Bax level.

Bifurcation analysis

The one parameter bifurcation and the two parameter bifurcation analysis were carried out

with death factor and life factor as control parameters, and the position of the threshold

between life and death regions was tracked with the freely available Oscill8 software (http://

oscill8.sourceforge.net).
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Dose-response curves

Approximately 3,000 HCT116 cells were plated to each well of a 96 well plate in McCoys 5A

+ 10% FBS. After 24 hours, cisplatin (Sigma, 1134357) and/or TRAIL (Sigma, T9701) was

added to the media. 72 hours after drug treatment, cells were washed 2x by PBS and fixed in

PBS containing 3.5% paraformaldehyde for 20 minutes at room temperature. Cells were then

permeabilized using PBS containing. 1% Triton X-100 for 1 hour at room temperature and

then stained using Cell Tag 700 stain (LiCor 926–41090) which stains the nucleus and cyto-

plasm of cells. Total cell viability was measured using the 700nm channel of a LiCor Odyssey

scanner. Cell viability was normalized to untreated cells. EC50 was estimated by fitting the data

using MATLAB to the hill function: EHill ¼ 1þ
E1� 1

1þ
EC50
Cð Þ

H where C is the concentration of cis-

platin, E1 is the maximum effect, EC50 is the 50% effective concentration and H is the hill

exponent.

Measurement of p53 dynamics and determination of apoptosis in single

cells

To measure p53 dynamics and cellular death in single human colon cancer derived, HCT116

cells, we used the HCT116 p53-VKI cell line which has one allele of p53 tagged at the C-termi-

nus with the Venus fluorescent protein and mCerulean-NLS as described previously [10, 14].

We have previously shown that the p53-Venus reporter matches endogenous p53 dynamics

[10]. Cellular morphology was used to determine whether cells have enacted apoptosis (See Fig

4). For microscopy, ~10,000 cells were plated on poly-d-lysine coated glass bottom dishes

(MatTek, P35GC-1.5-14-C) and allowed to attach to plates for 72 hours in McCoy’s media 5A

Media with 10% FBS. Media was washed out with PBS and replaced with DMEM FluoroBrite

(ThermoFisher) with 5% FBS and 1% Glutamax (ThermoFisher). Cells were imaged on a

Nikon Eclipse Ti-E microscope enclosed in an OKO labs incubation chamber to maintain

humidity, a temperature of 37˚C and 5% CO2. Images were captured every 15 minutes for 74

hours. Drugs were added 1.5 hours into the experiment, and mineral oil was added to prevent

evaporation of media. We used previously written custom MATLAB scripts to extract p53

dynamics and cell death from single-cells.

Supporting information

S1 Fig. Simulated dynamics that characterize the combined therapy. TRAIL is assumed to

remain constant. (A). Kaplan-Meier plot of the simulated data with TRAIL functioning as a

dynamical variable. (B). Density plots of the distribution of the time of death predicted by the

model for TRAIL alone (right y-axis), cisplatin or cisplatin+TRAIL combination (left y-axis).

TRAIL functions as a dynamical variable.

(PPTX)

S1 Movie. HCT116 p53-VKI cells treated with 6.25 μM cisplatin 1.5 hours into the movie.

p53-Venus is colored in yellow, scale bar at bottom right, time stamp at top left. Contrast of

p53-Venus channel is the same in all three movies.

(MP4)

S2 Movie. HCT116 p53-VKI cells treated with 25 ng TRAIL. Cisplatin was added 1.5 hours

into the movie, p53-Venus is colored in yellow, scale bar at bottom right, time stamp at top

left. Contrast of p53-Venus channel is the same in all three movies.

(MP4)
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S3 Movie. HCT116 p53-VKI cells treated with 6.25 μM cisplatin and 25 ng TRAIL 1.5

hours into the movie, p53-Venus is colored in yellow, scale bar at bottom right, time

stamp at top left. Contrast of p53-Venus channel is the same in all three movies.

(MP4)

S1 Data. Description of the format of the data files (S2–S4 Data).

(DOCX)

S2 Data. Time lapse data of HCT116 p53-VKI cells treated with 6.25 μM cisplatin between

frame 5 and 6. Data format is described above in ‘SupportingData’.

(XLSX)

S3 Data. Time lapse data of HCT116 p53-VKI cells treated with 25 ng TRAIL between

frame 5 and 6. Data format is described above in ‘SupportingData’.

(XLSX)

S4 Data. Time lapse data of HCT116 p53-VKI cells treated with 6.25 μM cisplatin and 25

ng TRAIL between frame 5 and 6. Data format is described above in ‘SupportingData’.

(XLSX)

S1 Table. Model equations, parameters and initial conditions.

(DOCX)
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