
Citation: Lee, C.J.; Schnieders, J.H.;

Rubakhin, S.S.; Patel, A.V.; Liu, C.;

Naji, A.; Sweedler, J.V. D-Amino Acids

and Classical Neurotransmitters in

Healthy and Type 2 Diabetes-Affected

Human Pancreatic Islets of Langerhans.

Metabolites 2022, 12, 799. https://

doi.org/10.3390/metabo12090799

Academic Editors: Jianhong Ching

and German Perdomo

Received: 4 August 2022

Accepted: 25 August 2022

Published: 27 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Article

D-Amino Acids and Classical Neurotransmitters in Healthy and
Type 2 Diabetes-Affected Human Pancreatic Islets of Langerhans
Cindy J. Lee 1 , Jack H. Schnieders 1, Stanislav S. Rubakhin 1, Amit V. Patel 1, Chengyang Liu 2, Ali Naji 2

and Jonathan V. Sweedler 1,*

1 Department of Chemistry, The Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
2 Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
* Correspondence: jsweedle@illinois.edu

Abstract: The pancreatic islets of Langerhans are clusters of cells that function as endocrine units
synthesizing and releasing insulin and a range of additional peptide hormones. The structural and
chemical characteristics of islets change during type 2 diabetes development. Although a range of
metabolites including neurotransmitters has been reported in rodent islets, the involvement of these
cell-to-cell signaling molecules within human pancreatic islets in the pathophysiology of type 2 dia-
betes is not well known, despite studies suggesting that these molecules impact intra- and inter-islet
signaling pathways. We characterize the enigmatic cell-to-cell signaling molecules, D-serine (D-Ser)
and D-aspartate (D-Asp), along with multiple classical neurotransmitters and related molecules, in
healthy versus type 2 diabetes-affected human islets using capillary electrophoresis separations.
Significantly reduced D-Ser percentage and gamma-aminobutyric acid (GABA) levels were found in
type 2 diabetes-affected islets compared to healthy islets. In addition, the negative correlations of
many of the signaling molecules, such as D-Ser percentage (r = −0.35), D-Asp (r = −0.32), serotonin
(r = −0.42), and GABA (r = −0.39) levels, with hemoglobin A1c (HbA1c) levels and thus with the
progression of type 2 diabetes further demonstrate the disruption in intra- or inter-islet signaling
pathways and suggest that these cell-to-cell signaling molecules may be potential therapeutic targets.

Keywords: D-amino acids; amino acid; neurotransmitter; cell signaling; pancreatic islet; endocrine
system; diabetes; chiral analysis; laser-induced fluorescence; mass spectrometry

1. Introduction

Pancreatic islets are mini-organs that are composed of functionally and biochemically
heterogeneous cells including endocrine cells that secrete different glucose-regulating
hormones [1]. The canonical insulin-producing beta cells comprise 50–60% of endocrine
cell populations of human islets and are involved in cell-to-cell signaling leading to glucose
storage [2]. In addition, glucagon-producing alpha cells, making up 30–50% of human islets,
promote blood glucose elevation during hypoglycemia [3]. Together, cellular composition
of these pancreatic islet cells, as well as cell–cell interactions, plays a crucial role in the
normal and pathological functioning of organisms including beta cell dysfunction and
glucose homeostasis dysregulation during type 2 diabetes [4–7].

Besides the well-known peptide hormones, pancreatic islets contain a number of cell-to-
cell signaling molecules including serotonin [8], GABA [9,10], and acetylcholine [11], which
have been detected in human pancreatic islets through immunohistochemical staining
or the secretion from islets. These classical neurotransmitters are involved in intra-islet
communication and in modulating the release of a range of hormones in islets [12,13].

In addition to classical cell-to-cell signaling molecules, recent evidence suggests the
possible autocrine or paracrine function of other less common cell–cell signaling molecules—
the D-amino acids (D-AAs) [14]. D-AAs, enigmatic endogenous cell-to-cell signaling
molecules mostly found in the endocrine and central nervous systems, were denoted in
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human and rodent pancreatic islets largely through immunohistochemical staining [15–17].
Origins of these molecules are traced to microbiota, diet, and for some D-AAs, endogenous
synthesis [18]. For example, serine racemase, the enzyme that produces D-Ser from L-serine
(L-Ser), is expressed in both rodent and human beta cells [15], while D-Asp is detected
in rodent alpha cells [16]. Functionally important, D-Ser [19] and D-Asp [20] bind to the
subunits of the N-methyl-D-aspartate receptor (NMDAR), which is mainly expressed in
islet beta cells [21–23]. As NMDAR antagonists, like dextromethorphan, have been shown
to increase serum insulin and lower blood glucose in type 2 diabetes patients [24,25], the
potential signaling roles of these D-AAs through the NMDARs in human islets in vivo are
suggested.

Considerable progress has been made in elucidating the involvement of cell-to-cell
signaling molecules in islet biology. However, the changes in the levels of the aforemen-
tioned signaling molecules in normal and pathological functions of human islets are not
clear. Here, we compared the levels of D-AAs (i.e., D-Ser and D-Asp) and 11 neurotrans-
mitters and related molecules in isolated healthy, prediabetes, and type 2 diabetes-affected
human islets using chiral capillary electrophoresis (CE) separation with laser-induced
fluorescence (LIF) detection and microfluidic CE coupled to mass spectrometry (MS). As
several molecules correlate with disease, this work reveals a possible relationship between
the pathophysiology of type 2 diabetes and the levels of endogenous signaling molecules,
which can be further exploited as targets to understand the pancreatic regulation of glucose
homeostasis.

2. Materials and Methods
2.1. Materials and Chemicals

All materials and chemicals were purchased from Sigma-Aldrich (St. Louis, MO,
USA) or Fisher Scientific (Hampton, NH, USA) unless stated otherwise. The purity of each
reagent was established by the vendors and validated by us using control measurements.

2.2. Collection of Human Pancreatic Islets

Human islets for research were provided by the Human Pancreas Procurement and
Analysis Program (HPPAP) at the University of Pennsylvania, which is part of the In-
tegrated Islet Distribution Program (IIDP; https://iidp.coh.org/, accessed on 3 August
2022), and along with other centers, formed the Clinical Islet Transplant consortium (CIT).
Another source of human islets was the Alberta Diabetes Institute IsletCore (ADI) at the
University of Alberta in Edmonton (http://www.bcell.org/adi-isletcore.html, accessed
on 3 August 2022) with the assistance of the Human Organ Procurement and Exchange
(HOPE) program, Trillium Gift of Life Network (TGLN) and other Canadian organ pro-
curement organizations. Islet isolations were approved by the Institutional Review Board
at the University of Pennsylvania (826489) and the Human Research Ethics Board at the
University of Alberta (Pro00013094). All live, transplant-quality human pancreatic islets,
in addition to prediabtes and diabetes-affected islets, were isolated from the deceased
donors following the guidelines of each institute [26,27] to facilitate human islet research to
understand the pathophysiology of diabetes. All donors’ families gave informed consent
for the use of pancreatic tissue in research. Body mass index (BMI), HbA1c levels, and
health status of many (but not all) of the donors were provided by the HPPAP and ADI.
The health status was determined based on a donor’s previous medical history (if available)
or clinical diagnosis using HbA1c levels by each institute.

2.3. Human Pancreatic Islet Processing

Anonymized samples were shipped overnight and processed upon arrival following
the project approved by the Institutional Biosafety Committee (IBC, University of Illinois
Urbana-Champaign). Specifically, the pancreatic islet equivalents (IEQs) were divided
into aliquots based on the calculated numbers of IEQs provided by the senders. Resulting
samples were washed with cold (4 ◦C) modified Gey’s balanced salt solution (mGBSS)
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containing the following: 1.5 mM CaCl2, 4.9 mM KCl, 0.2 mM KH2PO4, 11 mM MgCl2,
0.3 mM MgSO4, 138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM Na2HPO4, and 25 mM HEPES,
pH 7.2. Washed aliquots were transferred into tubes containing 600 µL of methanol for
analyte extraction. The resulting samples were stored at −80 ◦C until analysis.

2.4. Amino Acid Extraction

Removed from a −80 ◦C environment, samples were kept on ice during the analyte
extraction procedure. Water was added to all samples to make 80:20 (v:v) methanol:water
analyte extraction media. Analytes were extracted from samples by vortexing and soni-
cating for 10 min. The samples were then centrifuged at 10,000× g for 5 min at 4 ◦C. The
supernatant was dried in a SpeedVac (Eppendorf Vacufuge plus). While drying, 1000 µL of
water was added to the pellet for an additional round of analyte extraction. The supernatant
collected after sample centrifugation was combined with the previously dried analyte ex-
tracts. Combined samples were dried again in a Speedvac and reconstituted in 30 µL of
LC-MS grade water. The Micro BCA Protein Assay kit or the Pierce BCA Protein Assay Kit
(ThermoFisher, Waltham, MA, USA) was utilized to determine the total protein amounts
from aliquots of the extracted islet samples according to the manufacturer’s instructions.
The remaining samples were stored at −80 ◦C until further analysis.

2.5. Capillary Zone Electrophoresis (CZE)-LIF for Chiral Separation
2.5.1. Amino Acid Derivatization

Aqueous solutions prepared in either LC-MS grade water or ultrapure water (Milli-Q
Direct Water Purification System, MilliporeSigma, Burlington, MA, USA) were used for
CE-LIF measurement. For CE-LIF detection, D/L-Ser and D/L-Asp were derivatized by
reaction with naphthalene-2,3-dicarboxaldehyde (NDA) (Invitrogen, Carlsbad, CA, USA).
A 4 µL mixture of an aliquot of the islet extract, 20 mM potassium cyanide (KCN) in
100 mM borate buffer, and 20 mM NDA in acetonitrile (ACN) was prepared in a 1:2:1
volume ratio. The mixture was allowed to react for 2 min in the dark at room temperature
and then diluted to 10 µL of total volume by water. The samples were further desalted
using a procedure similar to one previously used by our group [28] (see the Supplementary
Materials). For quantitation using linear calibration curves, D/L-Ser or D/L-Asp standards
of different concentrations ranging from 0.025–100 µM for D and 0.125–500 µM for L were
prepared, NDA-derivatized as previously described, and diluted to 100 µL by water for
CE-LIF analysis.

2.5.2. Enzyme Treatment for Confirmation of D-AA Identification

When the detection of endogenous D-AAs relies on standard migration time matching,
it is recommended that the peak identity assignment is confirmed via the enzymatic degra-
dation of the targeted compound and the disappearance of the corresponding signal [29].
Islet samples were treated with D-amino acid oxidase (DAAO) from porcine kidney (Cata-
log# A5222, Sigma-Aldrich) and D-aspartate oxidase (DAspO), cloned and purified within
our group [28], for confirmation of D-Ser and D-Asp signal identifications, respectively.
For D-Ser measurement, an aliquot of sample was mixed with 15 U/mL purified DAAO,
68 µg/mL purified catalase from bovine liver, 5 mM flavin adenine dinucleotide (FAD), and
PBS 1X (Gibco, ThermoFisher, Waltham, MA, USA) in a volume ratio of 1:2:1:1:5 (see the
Supplementary Materials for enzyme purification). For D-Asp confirmation, 5.4 mg/mL
DAspO substituted DAAO in the mixture for the volume ratio of 1:0.6:1:1:6.4. The reaction
mixtures were incubated at 37 ◦C for 24 h in a Bio-Rad T100 thermal cycler. After the
reaction, 50 µL of methanol was added to the mixtures, and they were dried in a SpeedVac
and stored at −80 ◦C until analysis. The enzyme-treated samples were reconstituted in
water, NDA-derivatized, desalted, and analyzed by CE-LIF.
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2.5.3. CZE-LIF

Chiral separations were performed using a PA 800 Plus Pharmaceutical Analysis
System equipped with LIF detection (AB SCIEX, Framingham, MA, USA). The system
was coupled with a fiber optic cable (OZ Optics, Ottawa, ON, Canada) connected to an
external diode laser (56ICS426, Melles Griot, Carlsbad, CA, USA). The 3 mW laser with a
centroid wavelength of 440 ± 8 nm was used in the measurements. A band-pass filter of
490 ± 15 nm (Omega Optical, Brattleboro, VT, USA) was selected for detecting the appro-
priate fluorescence emission band. Bare fused-silica capillaries (Polymicro Technologies,
Phoenix, AZ, USA) were used in all separations. The capillaries had the total/effective
lengths of 40/30 cm with inner/outer diameters of 50/360 µm. All capillaries were rinsed
with 1 M NaOH and water for 1 h each before initial use.

The stock solutions for D-Ser and D-Asp separations were prepared as follows. A
300 mM 2-(N-morpholino)ethanesulfonic acid (MES) (pH 6) was prepared in water and pH
adjusted with 5 M NaOH. Additionally, a 200 mM potassium bromide (KBr) in water, a 10%
(w/v) quaternary ammonium β-cyclodextrin (QAβCD) (CTD Holdings, Alachua, FL, USA)
solution in water, and a stock of 1 M citric acid in water were prepared. All mentioned
stock solutions were stored at 4 ◦C.

For the D-Ser separation, the separation buffer with final concentrations of 62 mM
MES (pH 6), 7 mM KBr, and 330 ppm QAβCD was prepared daily in water and adjusted to
pH 6.8. The D-Asp separation buffer (pH 4.7) was also prepared daily in water with final
concentrations of 30 mM citric acid, 20 mM KBr, 133 ppm QAβCD, and 50 mM NaOH.
D-Ser and D-Asp separations were performed using reverse polarity at 10 kV and cartridge
temperature at 20 ◦C. Samples were injected hydrodynamically with a pressure of 0.5 psi
for 5.0 s. Between runs, the CE capillary was pressure-rinsed (20.0 psi) with 1 M NaOH
(2 min), water (4 min), and separation buffer (2 min). The OriginPro 2022 (9.9) software
(Origin Lab Corp., Northampton, MA, USA) was used for data processing and analysis.

2.6. ZipChip-CZE-ESI-MS for Neurotransmitters

The ZipChip CE ion source (908 Devices, Boston, MA, USA) was installed in front
of the inlet of a Bruker maXis 4G Quadruple Time-of-Flight Mass Spectrometer (Bruker
Corp., Billerica, MA, USA). The HS ZipChips (part no. 810-00195) and ZipChip Metabolites
Assay Kit (part no. 850-00033) (908 Devices) were used for metabolite separation analysis
following the vendor’s recommended parameters. The separation was performed using the
HS Metabolites Default method from the vendor using the following ZipChip parameters:
field strength start, 1000 V/cm; background electrolyte (BGE) type, metabolites; injection
volume, 5 nL; pressure assist, enabled; pressure assist start time, 2.0 min; replicate delay,
20 s; analysis time, 3.0 min. BGE refresh was performed every 6 runs. Only cation
separation was performed on the ZipChip. Acquisition parameters for MS analysis were as
recommended by the vendor: source, CaptiveSpray; full scan mass to charge ratio (m/z)
range, 70–1000; spectra rate, 5.00 Hz; nanoBooster, 2.3 psi; dry gas, 1.0 L/min; dry temp,
200 ◦C; ion polarity, positive. The mass spectrometer was regularly calibrated in the m/z
range of 50–500 using a direct infusion of 15 mM sodium formate in a 1:1 ratio of ACN and
water via the ESI source.

For Zipchip-CE-ESI-MS analysis, the dried samples after desalting (see the Supplemen-
tary Materials) were reconstituted in acidified Metabolites Diluent (908 Devices) containing
1 µM quinine as an internal control. Stock standards ranging from 0.1–150 µM for GABA,
0.1–10 µM for glutamate, synephrine, norepinephrine, and L-DOPA, and 0.1–5 µM for
serotonin, acetylcholine, dopamine, tyramine, epinephrine, and tryptamine were pre-
pared in water with 1% formic acid. The standards were diluted 10-fold in the acidified
Metabolites Diluent to construct linear calibration curves for quantitation. A 5 µL aliquot
of sample/standard was manually loaded onto the ZipChip system for three replicate
measurements. Data were processed using the Bruker DataAnalysis (Bruker Corp.).
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2.7. Statistics

The sample size for each healthy, prediabetes, and type 2 diabetes-affected individual
was n = 9, n = 4, and n = 9, respectively. For comparison of analyte levels or ratios in healthy
versus type 2 diabetes samples, the Grubb’s outlier test was performed using GraphPad to
identify outliers, and the outliers were then excluded from the dataset for the two-tailed
Student’s t-test. Pearson correlation tests were used to assess the correlation of each analyte
level or ratio to BMI and HbA1c. Statistical analyses were performed using OriginPro
(OriginLab Corp.). Significant differences were stated at p < 0.05.

3. Results
3.1. Determination of D-AAs in Islets of Healthy and Type 2 Diabetes-Diagnosed Individuals

A number of studies demonstrated the presence of serine racemase [15] and D-Asp [16]
in rodent and human islets by immunohistochemical staining. In the present investigation,
we measured D-Ser and D-Asp levels in human islets using chiral CE-LIF (Figure 1A,B),
for its high sensitivity and low sample amount requirement [30], which is ideal for limited
human samples. However, analyte migration time matching and standard spiking are
not sufficient for high-confidence peak identification. Therefore, an additional step of
enzymatic analyte degradation was used to increase the confidence. DAAO and DAspO
mediate oxidative digestion of non-acidic D-AAs and acidic D-AAs, respectively [18,31].
As expected, the signals for D-Ser and D-Asp disappeared in electropherograms collected
after the enzymatic treatments (Figure 1A2,B2).
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Ser and D-Asp in healthy versus type 2 diabetes (T2D)-affected human pancreatic islets. Electropher-
Figure 1. Representative CZE-LIF electropherograms and the results of quantitative analysis of D-Ser
and D-Asp in healthy versus type 2 diabetes (T2D)-affected human pancreatic islets. Electrophero-
grams acquired for samples (A1) not treated with DAAO enzyme, (A2) treated with DAAO enzyme,
and (A3) treated with DAAO and spiked with D-Ser standard. Electropherograms acquired for sam-
ples (B1) not treated with DAspO enzyme, (B2) treated with DAspO enzyme, and (B3) treated with
DAspO and spiked with D-Asp standard. (C) D-AA levels and (D) D-AA percentages. %D = D/(D + L)
× 100. Values represent mean ± SD of 8–9 human islet samples after the removal of outliers. * p < 0.05.

Figure 1C,D shows the amounts of D-AAs found in islets of 9 healthy and 9 type 2
diabetes-affected humans, in addition to D-AA percentages, which are calculated by the
level of D-AA to the total level of both corresponding AA enantiomers (i.e., %D = D/(D + L)
× 100). In Figure 1C, the average amounts of D-Ser were 0.29 ± 0.24 pmole/µg protein
and 0.29 ± 0.21 pmole/µg protein in healthy and type 2 diabetes-affected human islets,
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respectively, demonstrating similar levels of D-Ser between the two groups. In the case
of D-Asp, although no significant difference in the levels of D-Asp was found between
the two groups, there was a noticeable tendency for its lower levels in type 2 diabetes-
affected islets (0.50 ± 0.50 pmole/µg protein in healthy and 0.14 ± 0.09 pmole/µg protein
in type 2 diabetes-affected islets). On the other hand, when comparing D-AA percentages
in islets of healthy and type 2 diabetes-diagnosed individuals as shown in Figure 1D, the
D-Ser percentage significantly decreased from 2.7 ± 2.1% in healthy islets to 0.8 ± 0.3%
in type 2 diabetes-affected islets, while D-Asp percentages were similar between the two
groups (0.8 ± 0.6% in healthy and 0.9 ± 0.4% in type 2 diabetes-affected islets). Our data
demonstrated that the significant difference in D-Ser percentage was due to higher L-Ser
levels in type 2 diabetes-affected islets (Supplementary Figure S1).

3.2. Determination of Neurotransmitters in Islets of Healthy and Type 2 Diabetes-Diagnosed Individuals

To enhance the knowledge of cell-to-cell signaling molecule levels in healthy and type
2 diabetes-affected islets, in addition to D-AAs, we examined 11 endogenous neurotrans-
mitters and related molecules. Because chiral separation was not required for the analysis
of targeted molecules including neurotransmitters, we used microfluidic CZE-MS (ZipChip
CE-MS) for its fast separation, within 3 min, and higher confidence analyte identification
utilizing both migration times and accurate m/z values. Figure 2 shows the representative
extracted electropherograms of acetylcholine, GABA, tryptamine, tyramine, dopamine,
serotonin, synephrine, norepinephrine, epinephrine, glutamate, and L-DOPA detected in
a human islet sample and a sample spiked with standards, demonstrating our ability to
detect all targeted molecules in the same biological matrix of human islets.
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Figure 2. Representative extracted electropherogram of ZipChp CE-MS showing the detection of
classical neurotransmitters and related molecules in human islets. (Top) sample; (Bottom) sample
spiked with standards. Inlet in top panel depicts magnified extracted ion electropherograms for five
analytes with relatively low signal areas.
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A comparison of classical neurotransmitter levels in healthy and type 2 diabetes-
affected human islets is shown in Figure 3, and the related data for each analyte measured
are summarized in Supplementary Table S1. Serotonin levels in type 2 diabetes-affected
islets were either below the limit of detection or very low, if detected, compared to healthy
islets. However, due to the large variation within both groups and a relatively small
number of samples analyzed, no statistical difference was found between healthy and type
2 diabetes-affected islets (0.46 ± 0.70 pmole/µg protein and 0.0049 ± 0.0076 pmole/µg
protein, respectively). On the other hand, a significantly lower GABA level was found in
type 2 diabetes-affected islets compared to healthy islets. Acetylcholine and glutamate were
detected in all human samples we analyzed at similar levels in both groups. The presence
of some other neurotransmitters, such as dopamine, varied from individual to individual
and was not different between the examined groups, as shown in Supplementary Table S1.
Tryptamine and L-DOPA were not detected in any human islet samples.
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3.3. Assessing the Correlation between Analyte Levels or Ratios and Donor Characteristics

Several biochemical and phenotypic characteristics, including BMI and HbA1c levels,
are associated with type 2 diabetes development and progression [32,33]. We performed a
Pearson correlation analysis in Figure 4 to determine possible relations between measured
biochemical parameters, including D-AAs and neurotransmitters, and the provided BMI
and HbA1c levels. Analytes with levels that varied by individuals rather than the health
state were not included in the correlation test. BMI is used as a screening parameter for
determining obesity (underweight, <18.5; normal weight, 18.5 to <25; overweight, 25.0
to <30; obese, 30.0 or higher) [32], while HbA1c represents average blood glucose level
over 2–3 months and is used for type 2 diabetes diagnosis (healthy <5.7%) [33]. Our work
demonstrated a positive correlation between BMI and HbA1c levels (Pearson correlation
coefficient (r) = 0.53), which agrees with the report by Boye et al. [34]. Out of the total of
22 donors, 5 healthy, 4 prediabetes, and 7 type 2 diabetes-affected individuals had BMI
information available (Supplementary Table S1). The analytes present in the islets were
correlated to the BMI of corresponding donors (Supplementary Figure S2). D-Ser percentage
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(r = −0.40), serotonin (r = −0.54), and GABA (r = −0.42) levels were all inversely correlated
to BMI, and thus to obesity. Using 3 healthy, 4 prediabetes, and 6 type 2 diabetes-affected
islet samples in Supplementary Table S1, the relationships between the selected analyte
and HbA1c levels were also explored (Figure 4 and Supplementary Figure S3). HbA1c
was negatively correlated to D-Ser percentage (r = −0.35), D-Asp (r = −0.32), serotonin
(r = −0.42), GABA (r = −0.39), and acetylcholine (r = −0.32) levels. Although some of
these analytes were not significantly different when comparing data on healthy and type
2 diabetes-affected islets (Figures 1C,D and 3), they showed correlations to BMI and/or
HbA1c levels. Several measured analytes also displayed positive or negative correlations
amongst each other (Figure 4).
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Figure 4. Correlation matrix plot showing Pearson correlation coefficients for selected measured
biochemical parameters, BMI, and HbA1c levels. Pearson correlation coefficient of 1 indicates a
perfect positive or negative linear relationship between variables, while 0 corresponds to absence of
linear relationship.

4. Discussion

Until now, the presence of D-AAs in pancreatic islets was reported and quantified in
rodent islets [35,36]. In the present study, we measured the endogenous D-Ser and D-Asp
in human islets for the first time and also compared their levels in healthy versus type 2
diabetes-affected human islets. Our detection of D-Ser is not surprising given previous
reports on serine racemase expression in primary human beta cells [15] and human beta-
cell lines [37]. Although studies have shown the mixed effects of D-Ser on the rodent
islet glucose-stimulated insulin secretion (GSIS) based on the D-Ser concentrations [38,39],
as well as opposing outcomes associated with serine racemase expression on the islet
GSIS [15,37], we observed similar D-Ser amounts in healthy and type 2 diabetes-affected
islets (Figure 1C). This suggests that D-Ser levels in human islets are not affected by beta cell
dysfunction in type 2 diabetes. In the case of L-Ser, we measured slight L-Ser elevation in
type 2 diabetes-affected islets (Supplementary Figure S1), although both amounts of D-Ser
and L-Ser in our study were not statistically different between healthy and type 2 diabetes-
affected islets. As L-Ser supplementation is suggested to enhance insulin secretion [40],
our observed increase in L-Ser levels may be the result of diseased islets countering the
changes in insulin secretion during type 2 diabetes development. This hypothesis may
have additional support if higher statistical power is achieved in a study with larger sample
sizes. Another possibility is that L-Ser accumulates in type 2 diabetes-affected islets, thus
increasing the formation of deoxysphingolipids which causes apoptosis in beta cells to
induce type 2 diabetes [40,41]. This latter hypothesis aligns with the L-Ser deficiency



Metabolites 2022, 12, 799 9 of 13

and deoxysphingolipids increase in blood/plasma of type 2 diabetes patients [40,42].
Nevertheless, the biochemical mechanisms responsible for D/L-AA profiles in human
islets remain unclear and warrant further study. D-Ser percentage, on the other hand,
was significantly reduced in type 2 diabetes-affected islets (Figure 1D). Therefore, the
D-Ser percentage may be a more consistent biomarker for assisting the diagnosis and
determination of type 2 diabetes progression, especially since the D-Ser percentage was
negatively correlated to both BMI and HbA1c levels with stronger relationships than either
D-Ser or L-Ser levels (Figure 4). As BMI and HbA1c levels were positively correlated
(Figure 4), reflecting the higher prevalence of type 2 diabetes in those who are affected by
obesity [43], it is not surprising that several signaling molecules are similarly correlated to
both BMI and HbA1c levels.

Although the islet pathology in type 2 diabetes is typically focused on insulin and
beta cells, increased glucagon secretion and alpha cell function can also contribute to
hyperglycemia in type 2 diabetes [44,45]. The levels of D-Asp, which was detected in
glucagon-secreting rodent alpha cells [16], were consistently lower in type 2 diabetes-
affected islets in contrast to healthy islets (Figure 1C). Interestingly, the D-Asp level had
a negative correlation to the HbA1c level, a characteristic of type 2 diabetes progression
(Figure 4). The reduced D-Asp level in type 2 diabetes-affected islets may be due to its
enhanced secretion or lower accumulation in the islets during type 2 diabetes progression.
The released D-Asp then may have a paracrine role on the neighboring beta cells by binding
to NMDAR, where D-Asp acts as an agonist [20], thus causing persistent activation of
NMDAR and inhibiting insulin secretion [1]. Our finding of a reduced trend in L-Asp levels
in type 2 diabetes-affected islets (Supplementary Figure S1) also aligns with the association
of aspartate with increased insulin resistance and reduced insulin secretion [46].

Although known as a classical neurotransmitter in the central nervous system, 90%
of the serotonin in the body is derived from the enterochromaffin cells located in the gas-
trointestinal tract [47]. Somewhat surprisingly, serotonin is found in human beta cells and
inhibits glucagon release upon increasing glucose levels, while its conflicting effects on
insulin release exist [8,47–49]. In Figure 3, our direct measurements uncovered a consis-
tently lower level of serotonin in type 2 diabetes-affected islets compared to healthy islets,
although limited by statistical power due to the availability of deceased human donors
with different health statuses. Nevertheless, together with our use of more than minimum
sample size necessary for statistical evaluation and with fewer serotonin receptors found
in alpha cells of type 2 diabetes patients via immunostaining [8], our result supports the
notion that alpha cells may have a weaker response to the change in glucose level with the
lack of serotonin stimulation, leading to the variable release of glucagon as seen in type
2 diabetes. In addition to the negative correlation to HbA1c levels, serotonin levels were
negatively related to BMI (Figure 4). Although serotonin-positive cell counts have shown
a positive correlation to BMI [8], cell counts do not necessarily correspond to serotonin
levels and may indicate a compensatory mechanism to the change in biological systems.
Abnormal regulations of serotonin in the whole blood [50] and the brain [51] have been
also linked to obesity. It is interesting to speculate whether the serotonin changes observed
are due to changes in the gut enterochromaffin cell serotonin levels, providing a distinct
molecular link between the gastrointestinal tract and islets.

Higher levels of GABA were found in our study compared to other measured analytes
(Supplementary Table S1), in addition to a significant difference in GABA levels between
healthy and type 2 diabetes-affected islets (Figure 3). This result agrees with a similar
study by Menegaz et al. [9] where lower levels of intracellular GABA and GABA release
were observed from islets of type 2 diabetes-exhibiting individuals. Since no change in the
GABA synthesizing enzyme (GAD65) was found in healthy versus type 2 diabetes-affected
human islets via immunostaining [9], several other factors may influence this parameter
including lower GABA synthesis as mentioned by Menegaz et al. through the increased
presence of either the inactive form of GAD65 or its inhibitor and more GABA metabolism
over GAD65 activation. Nevertheless, with mixed results of intra-islet GABA secretion on
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insulin release [9,52], the effect of impaired GABA signaling in the diseased islets remains
poorly understood.

Levels of other classical neurotransmitters we measured such as acetylcholine and
glutamate were not different between healthy and type 2 diabetes-affected islets (Figure 3).
Experimental evidence demonstrates the involvement of glutamate receptors in type 2 dia-
betes development and beta cell death [1]. This suggests that glutamate formation in islets,
even those derived from the TCA cycle in beta cells [1], may result in stable homeostatic glu-
tamate levels regardless of disease state and that the reported overactivation of glutamate
receptors may be linked to higher glutamate synthesis and release. Additionally, external
sources like plasma-derived glutamate may be responsible for this phenomenon [53].

Several measured analytes exhibited different levels of correlation between each other
(Figure 4). For example, glutamate and GABA levels had a strong positive relationship,
perhaps reflecting glutamate as a precursor for GABA synthesis [1]. The mechanisms of
many of the observed relationships in islets warrant further studies. However, the current
findings suggest the potential signaling function of D-AAs and neurotransmitters in human
islets, making them potential targets for future pharmacological intervention.

5. Conclusions

While the autocrine or paracrine role of D-AAs and neurotransmitters has been pro-
posed, prior direct measurement of their levels in human pancreatic islets is limited,
especially in type 2 diabetes-affected islets. Here, we uncovered significant reductions in
D-Ser percentage and GABA levels, as well as the changes in D-Asp and serotonin levels, in
type 2 diabetes-affected human islets compared to healthy islets. The negative correlations
of these analyte levels or ratios to type 2 diabetes-associated factors such as HbA1c levels
and BMI were further noted. Many aspects of how these signaling molecules are regulated
in islet normal and pathological conditions remain unclear. Nevertheless, given the cell–cell
signaling roles of these molecules, the observed differences suggest a misregulation of
intra-islet chemical communication and provide further pathways to explore for diabetes
therapeutics.
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//www.mdpi.com/article/10.3390/metabo12090799/s1, Supplementary Materials and Methods;
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Figure S1: Levels of L-Ser and L-Asp in healthy versus type 2 diabetes (T2D)-affected human pan-
creatic islets; Figure S2: Scatter plots of BMI and each D-Ser, D-Asp, and classical neurotransmitters;
Figure S3: Scatter plots of HbA1c and each D-Ser, D-Asp, and classical neurotransmitters.
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30. Szökő, É.; Vincze, I.; Tábi, T. Chiral separations for d-amino acid analysis in biological samples. J. Pharm. Biomed. Anal. 2016, 130,
100–109. [CrossRef]

31. Takahashi, S. d-Aspartate oxidase: Distribution, functions, properties, and biotechnological applications. Appl. Microbiol.
Biotechnol. 2020, 104, 2883–2895. [CrossRef]

32. Narayan, K.M.V.; Boyle, J.P.; Thompson, T.J.; Gregg, E.W.; Williamson, D.F. Effect of BMI on Lifetime Risk for Diabetes in the U.S.
Diabetes Care 2007, 30, 1562–1566. [CrossRef] [PubMed]

33. Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of
Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [CrossRef] [PubMed]

34. Boye, K.S.; Lage, M.J.; Shinde, S.; Thieu, V.; Bae, J.P. Trends in HbA1c and Body Mass Index Among Individuals with Type 2
Diabetes: Evidence from a US Database 2012–2019. Diabetes Ther. 2021, 12, 2077–2087. [CrossRef] [PubMed]

35. Iharada, M.; Hiasa, M.; Kobara, A.; Moriyama, Y. Exocytosis of D-Aspartate from INS-1E Clonal β Cells. Biol. Pharm. Bull. 2007,
30, 1329–1331. [CrossRef]

36. Ota, N.; Rubakhin, S.S.; Sweedler, J.V. d-Alanine in the islets of Langerhans of rat pancreas. Biochem. Biophys. Res. Commun. 2014,
447, 328–333. [CrossRef]

37. Ndiaye, F.K.; Ortalli, A.; Canouil, M.; Huyvaert, M.; Salazar-Cardozo, C.; Lecoeur, C.; Verbanck, M.; Pawlowski, V.; Boutry, R.;
Durand, E.; et al. Expression and functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes
contributing to human insulin secretion. Mol. Metab. 2017, 6, 459–470. [CrossRef]

38. Lockridge, A.; Gustafson, E.; Wong, A.; Miller, R.F.; Alejandro, E.U. Acute D-Serine Co-Agonism of β-Cell NMDA Receptors
Potentiates Glucose-Stimulated Insulin Secretion and Excitatory β-Cell Membrane Activity. Cells 2021, 10, 93. [CrossRef]

39. Suwandhi, L.; Hausmann, S.; Braun, A.; Gruber, T.; Heinzmann, S.S.; Gálvez, E.J.C.; Buck, A.; Legutko, B.; Israel, A.; Feuchtinger,
A.; et al. Chronic d-serine supplementation impairs insulin secretion. Mol. Metab. 2018, 16, 191–202. [CrossRef]

40. Holm, L.J.; Buschard, K. L-serine: A neglected amino acid with a potential therapeutic role in diabetes. APMIS 2019, 127, 655–659.
[CrossRef]

41. Zuellig, R.A.; Hornemann, T.; Othman, A.; Hehl, A.B.; Bode, H.; Güntert, T.; Ogunshola, O.O.; Saponara, E.; Grabliauskaite, K.;
Jang, J.-H.; et al. Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin-Producing Cells. Diabetes
2014, 63, 1326–1339. [CrossRef]
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