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ABSTRACT
Oral squamous cell carcinoma (OSCC) is a major cause of cancer-associated morbidity and mortality and
may develop from oral premalignant lesions (OPL). An improved molecular classification of OPL may
help refining prevention strategies. We identified two main OPL gene-expression subtypes, named
immunological and classical, in 86 OPL (discovery dataset). A gene expression-based score was then
developed to classify OPL samples from three independent datasets, including 17 (GSE30784),13
(GSE10174) and 15 (GSE85195) OPLs, into either one of the two gene-expression subtypes. Using the
single sample gene set enrichment analysis, enrichment scores for immune-related pathways were
different between the two OPL subtypes. In OPL from the discovery set, loss of heterozygosities (LOH)
at 3p14, 17p13, TP53, 9p21 and 8p22 and miRNA gene expression profiles were analyzed. Deconvolution
of the immune infiltrate was performed using the Microenvironment Cell Populations-counter tool. A
multivariate analysis revealed that decreased miRNA-142-5p expression (P = 0.0484) and lower T-cell,
monocytic and myeloid dendritic cells (MDC) immune infiltration (T-cells, P = 0.0196; CD8 T cells,
P = 0.0129; MDC, P = 0.0481; and monocytes, P = 0.0212) were associated with oral cancer development
in the immunological subtype only. In contrast, LOH at 3p14 (P = 0.0241), 17p13 (P = 0.0348) and TP53
(P = 0.004) were associated with oral cancer development in the classical subtype only. In conclusion, we
identified 2 subtypes of OPLs, namely immune and classical, which may benefit from different and
specific personalized prevention interventions.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is ranked
as the seventh most common cancer worldwide, with more
than 600,000 cases diagnosed annually, and is a major cause of
cancer-associated morbidity and mortality.1 Patients with
squamous cell carcinomas of the oral cavity (OSCC), the
most common anatomical site of HNSCC, have the greatest
risk of death,2 which is commonly related to local-regional
advanced disease.3 Since OSCC may develop from oral pre-
malignant lesions (OPL), prevention of malignant transforma-
tion of OPL to OSCC may substantially improve the clinical
outcome of patients. Nonetheless, one of the greatest chal-
lenges in managing patients with oral OPL is determining risk
for malignant transformation and the need for intervention,
with a risk of OSCC between 0.13% and 34%4 during periods
of up to 30 years. The current histologic classification of oral
epithelial dysplasia is subjective and unreliable, and surgical

resection of OPL has not been shown to reduce OSCC
development.5

Some biomarkers of risk of malignant transformation, such
as loss of heterozygosity (LOH),6–8 and epithelial growth
factor receptor (EGFR) gene copy number gain,9 have been
identified and validated in OPL. Retrospective and prospec-
tive studies completed initially by our group6 and subse-
quently by others7,8 demonstrate that LOH profiles
(primarily at 3p14 and/or 9p21) in OPL are the most robust
marker of cancer risk in this setting. Despite these efforts,
randomized controlled trials (RCT) of chemopreventive
agents have not yet resulted in the development of an inter-
vention that can be considered as standard of care.10–14

The recent Erlotinib for Prevention of Oral Cancer
(EPOC)15 trial was the first RCT to use molecular selec-
tion (LOH) to treat patients suffering from high-risk OPL.
The rationale for testing erlotinib for prevention of OSCC
was partly based on the significant decrease of
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premalignant and neoplastic lesions induced by erlotinib
treatment in the 4-nitroquinoline-1-oxide (4-NQO)-
induced murine model of oral carcinogenesis.16 Although
EPOC paved the way for the beginning of an era of
personalized-based prevention strategies,17 it failed to
reach the primary endpoint of oral cancer-free survival.15

To provide insight into the molecular heterogeneity of
HNSCC, four distinct gene expression-based molecular
subtypes have been identified, reproduced and well-char-
acterized in terms of their genomic alterations, canonical
pathways and methylation profiles.18–21 Interestingly,
some of these molecular subtypes present different drug
sensitivity patterns21 as well as different levels of
radioresistance,22 suggesting their potential relevance to
define personalized-based therapy in head neck cancers.

Using a similar rationale, we hypothesized that the
identification of OPL gene expression-based molecular
subtypes may help design precision prevention strategies.
Using a discovery set of 86 OPL samples, we identified
two distinct gene expression subtypes of OPL, namely
immunological and classical, that were validated in three
independent datasets. Deconvolution scores of immune
populations were computed in all datasets. Loss of hetero-
zygosity at specific chromosomal loci as well as miRNA

expression were measured in the discovery dataset and
their association with oral cancer free-survival was tested.

Results

Discovery of two molecular subtypes of OPL:
‘immunological’ and ‘classical’

To identify gene expression based OPL subtypes, we used
genome-wide expression profiles that we previously generated
in a set of 86 oral leukoplakias23 (GSE26549). Using the 2,500
most variable genes, we performed an unsupervised and
unbiased clustering of the 86 OPL from the discovery dataset,
as previously described.18 Two main clusters, including 42
(cluster 1) and 44 (cluster 2) OPLs, respectively, were identi-
fied based on the heatmap of the consensus matrix
(Figure 1A) and plots (Supplementary Figure 1) produced
by the ConsensusClusterPlus R package, as well as on the
heatmap of hierarchical clustering using ArrayStudio software
(Supplementary Figure 2).

To gain some insight into the biological differences
between these two clusters, the enrichment score (ES) of
1,329 canonical pathways was computed for each OPL sample,
using the single sample Gene Set Enrichment Analysis
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Figure 1. Identification of two gene expression-based subtypes, “classical” and “immunological”, in the discovery dataset of 86 OPL. To identify gene
expression subtypes, we ran the ConsensusClusterPlus R package55 with the 2,500 most variable genes, which were selected using the median absolute deviation, as
previously described 18. (A) Heatmap of the consensus matrix for k = 2 clusters, with samples in rows and columns, and consensus values ranging from 0 (never
clustered together) to 1 (always clustered together) and marked by white to dark blue. (B) Enrichment scores of 1,329 canonical pathways in each OPL samples were
computed and the 15 pathways most enriched in the immunological and the classical subtypes are shown. (C) The percentage of stromal inflammatory cells (SIC) as
well as intraepithelial inflammatory cells (EIC) were compared between the two subtypes (Fisher’s exact test). Abbreviation: NS: not significant.
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(ssGSEA) tool.24–26 The ES was then compared between the
two clusters using a Wilcoxon test. Since we observed a strong
and significant enrichment of immune pathways, especially
lymphocyte-related pathways, in cluster 1 compared to cluster
2 (Figure 1B; supplementary file 1), cluster 1 was named
‘immunological’. Conversely, cluster 2 was characterized by
a moderate enrichment of pathways involved in xenobiotic
metabolism as well as EGFR signaling and was therefore
named ‘classical’ by analogy with the classical subtype of
head neck cancers.18,21 Of note, EGFR gene expression was
significantly higher in the classical subtype compared to the
immunological subtype of OPL (P < 0.0001; Supplementary
Figure 3).

As the main biological difference between the two subtypes
lied in the tumor microenvironment, we used the
MCPcounter R package27 to deconvoluate the immune infil-
trate and compute a score of the absolute abundance of eight
immune and two stromal cell populations. When compared to
the classical subtype, the immunological subtype had higher
score of T-cells (P < 0.0001), cytotoxic lymphocytes
(P < 0.0001), B lineage (P = 0.0025), monocytic lineage
(P < 0.0001) and myeloid dendritic cells (P < 0.0001)
(Supplementary Table S1). No significant differences were
found when we evaluated the abundance of other cell popula-
tions such as neutrophils, endothelial cells and fibroblasts.
Interestingly, the presence of intraepithelial inflammatory
cells (EIC) and stromal inflammatory cells (SIC) as defined
previously28 was significantly higher in the immunological
subtype compared to the classical subtype (P = 0.0014)
(Figure 1C). No significant difference was observed with
regard to clinical and pathological characteristics between
the two subtypes (Table 1).

Overall, we identified two biologically distinct gene expres-
sion subtypes of OPL that harbor major differences in terms
of immune microenvironment, despite being clinically
similar.

Classification of OPL samples using a 400-gene
expression based score

To build and test a classifier of OPL samples, the discovery
dataset of 86 OPL samples was randomly split into two sub-
sets of 57 samples (training set) and 29 OPL samples (testing
set) (see methods). In the training subset, we used a method
of classification based on a gene-expression ES of genes which
were differentially expressed between the two subtypes. The
comparison of genome-wide expression profiles resulted in
the identification of 200 most overexpressed genes (UP sub-
set) and 200 most under-expressed genes (DOWN subset) in
the immunological subtype compared to the classical subtype
(Wilcoxon test with a Q-value< 0.05 and a |FC| > 1.5; supple-
mentary file 2). Using ssGSEA, we computed an ES of the UP
and DOWN subsets and a combined score equal to the ESUP –

ESDOWN. Using this “ES-based classifier”, an OPL was classi-
fied as being immunological or classical if the score was > 0 or
< 0, respectively.

In order to compare the ES-based classifier to alternative
methods of classification, three well-established algorithms of
classification based on centroid (partial least square, linear

discriminant analysis and k-nearest neighbor) were also
applied to the 57 OPL samples from the training set (see
method) using 500 selected genes (F-test) and leave one-out
cross validation. The best classifier in the training set was the
Partial Least Square with K = 3 (i.e., PLS3 classifier)
(Supplementary Figure 4). The ES-based classifier score and
the PLS3 classifier were applied to the remaining 29 OPL
samples from the testing set and the percentage of classifica-
tion accuracy was compared between the two classifiers. The
ES-based score had a higher accuracy (96.5%) compared to
PLS3 (89.7%), misclassifying only 1 of the 29 OPLs from the
testing subset.

Subsequently, we used the ES-based classifier in order to
classify 17, 13 and 15 new OPL samples from two indepen-
dent validation sets (V1,V2 and V3 respectively) which were
downloaded from Gene Expression Omnibus (see method).
The distribution of samples in each molecular subtype for all
datasets is provided in Supplementary Fig. 5. The ES of 1,329
canonical pathways was computed and compared between the
two subtypes in V1, V2 and V3 (Supplementary File 1). We
computed the estimate ([Mean pathway in immunological
subtype] – [mean pathway in classical subtype]) in V1,V2
and V3, and tested its correlation with the estimate calculated
in the discovery dataset (Figure 2A). Coefficients of correla-
tion were high (r > 0.6, P < 0.0001) for both V1, V2 and V3,
emphasizing the consistency of the biological differences
between the two molecular subtypes across multiple datasets.

Deconvolution of the immune infiltrate was also per-
formed in V1 and V2 and the scores of the immune and
stromal populations were compared between the two subtypes
using a Wilcoxon test. The T-cell and monocyte scores were
higher in the immunological subtype in the two validation
datasets V1 (P = 0.0553 and P = 0.0068 respectively), V2
(P = 0.414 and P = 0.0503 respectively) and V3 (P = 0.1377
and P = 0.0015 respectively) (Figure 2B–C) (Supplementary
Table S1).

Overall, we defined and validated an accurate method of
classification based on a gene-expression enrichment score
(ES) of 400 genes that were differentially expressed between
the two subtypes.

Integrated network of mRNAs and mrnas in OPL subtypes

The main difference between the two subtypes of OPL lied in
the immune microenvironment. Because microRNA-
mediated RNA interference has been described as an impor-
tant regulatory mechanism of the immune response,29 we
analyzed miRNA expression profiles of 71/86 OPL samples
from the discovery dataset (37 “classical” and 34 “immunolo-
gical”). A total of 46 and 15 miRNAs were found to be over-
expressed and underexpressed respectively in the
immunological subtype compared to the classical subtype
(Wilcoxon test, Q-value< 0.05, |FC|> 2) (Supplementary File
3). Of note, 14/46 miRNAs overexpressed in the immunolo-
gical subtype, have been involved in the activation or differ-
entiation of lymphocytes and/or monocytes.30,31 Using the
miRNet tool, we identified 3,251 validated mRNAs targets of
the 31/61 differentially expressed miRNAs (Figure 3).
Interestingly, 970/3,251 (30%) mRNAs targets were also
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Figure 2. Validation of biological pathways and immune populations infiltrate characterizing the two subtypes. (A) In each dataset (discovery set and three
validation sets: V1 = GSE30784, V2 = GSE10174 and V3 = GSE85195), the enrichment scores (ES) of 1,329 canonical pathways and the estimate was calculated for
each pathway in the following manner: (Mean score Pathway in immunological score) – (Mean score Pathway in classical subtype). We tested the correlation of
estimates calculated for each pathway in each validation set with the estimate of the corresponding pathways computed in the discovery set (Pearson’s correlation).
(B) Using MCPcounter to deconvoluate the immune infiltrate, the score of T-cells (B) and monocytes (C) scores were computed and compared between the two
subtypes in the discovery and validation sets (Wilcoxon test).

Table 1. Characteristics of the 86 patients from the OPL discovery dataset. Characteristics were compared between the immunological (N = 42) and the classical
(N = 44) subtypes, using a fisher’s exact test. RP: retinyl palmitate; BC: beta-carotene; 13cRA: 13-cis retinoic acid.

Variable
ALL

N = 86 Immunological N = 42
Classical
N = 44 P–value

Oral cancer dvt
Yes 35 (41) 21 (50) 14 (32) 0.1241
No 51 (59) 21 (50) 30 (68)

Gender
Male 45 (52) 20 (48) 25 (57) 0.5174
Female 41 (48) 22 (52) 19 (43)

Ethnicity
White 78 (91) 38 (90) 40 (91) 1
Other 8 (9) 4 (10) 4 (9)

Alcohol
Current 49 (57) 20 (48) 29 (66) 0.1409
Former 8 (9) 6 (14) 2 (5)
Never 29 (34) 16 (38) 13 (30)

Smoking
Current 22 (25) 11 (26) 11 (25) 0.5847
Former 35 (41) 19 (45) 16 (36)
Never 29 (34) 12 (29) 17 (39)

Age
Median 57.5 59.5 54.5 0.0949
Range 23–90 24–90 23–80

Treatment arm
BC+ RP 21 (24) 12 (29) 9 (20) 0.6716
13cRA 47 (55) 22 (52) 25 (57)
RP only 18 (21) 8 (19) 10 (23)

Histology at baseline
Hyperplasia 54 (63) 26 (62) 28 (64) 1
Dysplasia 32 (37) 16 (38) 16 (36)

e1496880-4 J.-P. FOY ET AL.



found to be differentially expressed between the two classes of
OPL (Wilcoxon test, Q-value< 0.05). An integrated network
of these differentially expressed mRNAs and miRNAs was
performed using the Gephi software (Figure 3A). Over-
expressed miRNAs and their underexpressed target genes
(Figure 3B), as well as the underexpressed miRNAs and
their over-expressed target genes (Figure 3C) in the immuno-
logical versus classical subtypes, were connected within two
distinct networks. These networks highlighted 7 miRNAs
connected with over 30 target genes. Two and five miRNAs
were under-expressed (hsa-mir-30c-1-3p; mir-508-5p) and
over-expressed (mir-142-3p; mir-512-3p; mir-519b-3p; mir-
223-5p; mir-142-5p) in the immunological versus classical
subtypes respectively (Figure3 B–C).

In summary, the two gene expression-based subtypes of
OPL were also characterized by distinct patterns of miRNAs,
some of which known to be involved in the regulation of the
immune response.

Molecular subtypes of OPL and oral cancer risk

We then tested whether the immunological and classical sub-
types of OPL were clinically relevant using the discovery
cohort in which samples were collected in the context of a
clinical trial.13 No difference was observed in OCFS between
patients with immunological versus classical OPL
(Supplementary Fig. 6).

We then looked at effect of LOH at specific chromoso-
mal loci, a previously reported biomarker of risk of oral
cancer development in patients with OPL.6,7,15,32 LOH at
3p14, 3p21, 17p13, TP53 and 8p22 were analyzed as pre-
viously described in 70/86 (81.4%) OPL samples from the
discovery cohort.6 The percentage of LOH at these sites
was not significantly different between the two subtypes
(P > 0.05, Fisher’s exact test) (Table 2). We tested the
association of LOH at these sites with OCFS, using Kaplan
Meier curves (Fig; 4A-B) as well as a univariate and multi-
variate cox proportional hazard model including age,
treatment arm and histology (hyperplasia vs. dysplasia)
(Supplementary File 4). No significant association was
observed in the overall population of patients with OPL.
However, LOH at D17S1176 (17p13) (P = 0.0348; Odds
Ratio (OR) = 12.40; Confidence Interval 95%
(CI95) = [1.197;128.497]), at TP53 (P = 0.004; Odds
Ratio (OR) = 52.19;CI95 = [3.612;754]) and D3S1285
(3p14) (P = 0.0241; OR = 6.46; CI95 = [1.277;32.681])
were associated with worse OCFS in the classical but not
in the immunological subtypes.

In addition, we evaluated the association of 8 immune (T-
cells; CD8 T-cells; cytotoxic lymphocytes; NK cells; B lineage;
monocytic lineage; myeloid dendritic cells; and neutrophils)
and 2 stromal (endothelial cells and fibroblasts) cell popula-
tions based on their deconvolution scores with OCFS, using
Kaplan-Meier curves (Figure 4 C-D) and a multivariate cox

A

B

C

Figure 3. Integrative network of miRNAs and target genes differentially expressed between the two subtypes. In the discovery set, we identified a set of 31
miRNAs differentially expressed between the immunological and classical subtypes (Q-value< 0.05, |FC|> 2) and connected with 970 target genes (miRNet tool)
which were also differentially expressed between the two subtypes (Q-value< 0.05). The Gephi software allowed visualizing the integrative network of these 31
miRNAs and their 970 target genes (A). Two central sub-networks were identified: (B) over-expressed miRNA connected to under-expressed targeted genes; (C)
under-expressed miRNA connected to over-expressed targeted genes. In this network, miRNAs are shown as purple circles with increasing size according to the
number of connections with its target gene (yellow circles). Connections between a miRNA and a target gene are shown as colored curved lines: purple
lines = miRNA overexpressed – gene overexpressed; turquoise lines = miRNA underexpressed – gene underexpressed; red lines: miRNA overexpressed – gene
underexpressed; green lines: miRNA underexpressed – gene overexpressed; yellow circles = genes; purple circles = miRNA. Nodes (miRNA and genes) were clustered
using the ForceAtlas2 algorithm.
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proportional hazard model including age, treatment arm and
histology (hyperplasia vs. dysplasia) (Supplementary File 4).
While no significant association was observed between
immune or stromal cell populations and OCFS in the overall
population, increased scores of the monocytic lineage
(P = 0.0212; OR = 0.22; CI95 = [0.06;0.80]) and myeloid
dendritic cells (P = 0.0481; OR = 0.55; CI95 = [0.30;0.99])
were associated with improved OCFS in the immunological
(n = 42) but not in the classical (n = 44) subtypes (Figure 4C–
D and Supplementary File 4:). Similarly, increased scores of
T-cells (P = 0.0196; OR = 0.3264; CI95 = [0.13;0.84]) and
CD8 T-cells (P = 0.0129; OR = 0.06; CI95 = [0.007;0.552])
were associated with improved OCFS (Supplementary File 4).

Finally, we tested whether the 7 miRNAs identified in the
integrative analyses were associated with the OCFS.
Consistent with the association of the monocytic lineage
with improved OCFS in the immunological subtype only,
hsa-miR-142-5p monocyte-macrophage transducer was the
only one significantly associated with a lower risk to develop
OSCC in the immunological subtype only (P = 0.0484;
OR = 0.68; CI95 = [0.46;0.997]), while no association was
found in the classical subtype (Kaplan Meier curves: Figure
4E–F; univariate and multivariate cox models: Supplementary
File 4).

Discussion

Large-scale programs have provided important biological
insights into HNSCC and allowed for the identification of
four gene expression-based subtypes18,19 that have been asso-
ciated with different patterns of drug sensitivity21 and
response to radiation therapy.22 A pre-cancer atlas is the
next step for elucidating the molecular heterogeneity at the
early steps of head and neck tumorigenesis and help designing
next generation prevention interventions.33 Given that 0.13%
to 34% of OPLs will transform into invasive SCC4 over a
period of up to 30 years, the generation of prospective collec-
tions of OPL samples has been challenging. Using previously
established independent cohorts of OPL, we defined a gene
expression-based classification of OPL into two subtypes,
immunological and classical. The immunological subtype
was characterized by overexpression of miR-142-5p as well
as increased infiltration of monocytes and T-cells according to
computed deconvolution of immune populations, all being
associated with OCFS in this subtype only but not in the
classical subtype.

Molecular classifications have been reported in different
cancer types, using well-established classification algorithms,
such as linear discriminant analysis, partial least square and
k-nearest neighbor.34,35 In our study, we applied these algo-
rithms to build a classifier of OPL that we compared to an
alternative classification method based on a 400 gene expres-
sion score using the ssGSEA tool. Scores based on gene expres-
sion and computed in individual samples have previously been
proposed for classification purposes in biological samples e.g.
epithelial – vs. mesenchymal-like samples using a pancancer
signature of epithelial-to-mesenchymal transition.36 Unlike
algorithm-based methods, they allow classifying new samples
independently from previous ones, which is attractive in the
clinical setting, especially in the context of the forthcoming
clinical trials evaluating new prevention strategies. Our OPL
classifier was built from a training subset of the discovery
dataset, including a relative small number of samples.
Moreover, the discovery dataset includes samples from patients
who had been diagnosed with oral leukoplakia and who had
been randomly assigned to intervention with different chemo-
preventive agents, that could also limit interpretation of our
results. However, the association of biomarkers with oral can-
cer free survival was tested using multivariate analysis including
the treatment arm. Moreover, biological differences between
the two gene expression based subtypes were validated in three
independent datasets, which greatly enhanced confidence in
our results. Nevertheless, our ES-based classifier needs to be
validated in larger cohorts.

We report two subtypes of OPL while 4 subtypes of
HNSCC have been proposed, i.e. classical, basal, atypical and
mesenchymal-like.18,19 More recently, the mesenchymal-like
subtype has been questioned as it may be reflecting the con-
tribution of non-malignant mesenchymal cell types of the
tumor micro-environment.37 Finally, a recent pancancer
study from TCGA has reported 6 immune subtypes that
encompass multiple cancer types.38 The vast majority of
HNSCC fits into the wound healing (more frequent in the
classical subtype) or the IFN-gamma dominant subtypes that
do not completely overlap with previously described subtypes.
Whether the immunological subtype of OPL precedes trans-
formation to the IFN-gamma subtype and the classical sub-
type of OPL precedes transformation to the wound healing
and classical subtypes is a plausible hypothesis that remains to
be demonstrated through the analysis of OPL and subsequent
paired oral squamous cell carcinoma. Whether driver and
passenger mutation patterns are different in these different
subtypes of OPL remain to be studied. Moreover, we have

Table 2. Percentage of loss of heterozygosities (LOH) in the discovery dataset. LOH were evaluated in the discovery dataset (n = 70) at different chromosomal
loci: D9s171 and D9S1747 (9p21), D3s1285 (3p14), D17s1176 (17p13), TP53 and D8s254 (8p22). Percentage of LOH was compared between immunological and
classical OPL (Fisher’s exact test). “Missing data” actually include both non-informative cases and cases for which analysis could not be performed.

Loci
ALL
LOH

ALL
Missing data

Immuno
LOH

classical
LOH

p-value
(immuno vs classical)

D9s171 12 (17.1%) 34 (48.6%) 6 (17.1%) 6 (17.1%) 1
D3s1285 14 (20.0%) 26 (37.1%) 7 (20.0%) 7 (20.0%) 1
D17s1176 12 (17.1%) 29 (41.4%) 7 (20.0%) 5 (14.3%) 0.7337
D8s254 12 (17.1%) 30 (42.9%) 8 (22.9%) 4 (11.4%) 0.5048
D9s1747 9 (12.9%) 33 (47.1%) 7 (20.0%) 2 (5.7%) 0.2616
TP53 11 (15.7%) 22 (31.4%) 3 (8.6%) 8 (22.9%) 0.1733
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recently shown that the main biological and actionable differ-
ence between oral SCC from never-smoker never-drinker and
smoker drinker patients lies into the immune microenviron-
ment. It was tempting to hypothesize that this difference
would also be observed in premalignancy. However, we

found no significant association between the smoking and
drinking habits and immunological subtyping. The small
size of our cohort may explain the lack of statistical signifi-
cance of this association and larger cohorts are needed to
confirm this result.

high

high
low

low

C D

E F

high

low

high

low

A B

yes

no
yes

no

Score monocytic lineage in classical OPL

Expression level of miR-142-5p in classical OPL

Score monocytic lineage in immunological OPL

Expression level of miR-142-5p in 

immunological OPL

LOH at D17S1176 in classical OPL LOH at D17S1176 in immunological OPL

Figure 4. OPL subtypes and biomarkers of oral cancer risk in the discovery set. In the 86 OPL discovery dataset, classical (A, C, E) and immunological (B, D, F)
OPL were split into two groups according to loss of heterozygosity at D17S1176 (17p13) (A-B); the median score of monocytic lineage (C-D) (high i.e. > median), the
median expression of miR-142-5p (E-F) (high i.e. > median). Oral-cancer free survival curves were compared between these groups, using a log-rank test.
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In our analyses, the immunological subtype was character-
ized by a strong enrichment in immune-related pathways,
especially pathways related to lymphocytes and monocytes
functions and a higher infiltration of monocytes and T-cells
as compared to the classical subtype. This result was consistent
with the overexpression of 14 miRNAs in the immunological
subtype that have been involved in the activation or differen-
tiation of lymphocytes and/or monocytes.30,31 In particular,
miR-142-5p expression was higher in the immunological sub-
type compared to the classical subtype while its decreased
expression was associated with a higher risk of oral cancer
development in the immunological subtype only. A study of
microRNA profiles during progression of oral leukoplakia to
cancer has shown the complex deregulation of miR-142-5p
expression during oral carcinogenesis. It was found to be
upregulated in cancer versus normal mucosa, while its expres-
sion changes in hyperplasia, dysplasia and cancer was not
consistent across all patients, suggesting that its dysregulation
could be different depending on the molecular subtype of
OPL.39 In other contexts, miR142-5p has been reported to
play a role into macrophages differentiation40 and to be
down-regulated in glioblastoma-infiltrating macrophages.41

Overall, the interaction between the immune system and neo-
plasia reflects a fundamental principle, applicable to all organ/
cell types.42 The recent success of the use of PD-1 immune
checkpoint blockade in advanced HNSCC43–45 confirms the
clinical importance of immune modulation in this context.
Overall, tumors orchestrate a complex signaling network to
induce immune tolerance.46 These events can occur as early
as in the OPL, as demonstrated in preclinical47 and early
clinical studies48 that illustrate the dynamic and complex of
the premalignant immune microenvironment.

The classical subtype of OPL was characterized by an over-
expression of Epidermal Growth Factor Receptor (EGFR) as well
as a significant enrichment by EGFR signaling pathway.
Inhibition of the EGFR pathway has been proposed for oral
cancer prevention, based on the significant decrease of prema-
lignant and neoplastic lesions induced by EGFR inhibitors in the
4-nitroquinoline-1-oxide (4-NQO)-induced murine model of
oral carcinogenesis. However, the recent Erlotinib for
Prevention of Oral Cancer (EPOC) trial failed to reach its pri-
mary endpoint (oral cancer-free survival). In light of our results,
it is tempting to hypothesize that the benefit of EGFR targeting
agents could be higher in patients suffering from classical lesions,
and therefore, that the proposed molecular classification may
potentially help for refining oral cancer prevention strategies.

In our study, LOH status was not significantly different
between the classical or the immunological OPL subtypes.
Interestingly, although LOH results are limited by the number
of primers used for each region, LOH at 3p14, TP53 and 17p13
were significantly associated with a higher risk of oral cancer
development in the classical subtype but not in the immunolo-
gical subtype. In contrast to LOH, down-regulation of miRNA-
142-5p and decreased infiltration of monocytes, myeloid den-
dritic cells and T-cells according to computed deconvolution of
immune populations, were associated with poor OCFS in the
immunological subtype but not in the classical subtype. Our
results suggest that beyond LOH, our gene expression-based

classification of OPL may provide an opportunity to refine the
molecular assessment of oral cancer risk. Consistent with pre-
vious observations in HNSCC,49–51 we found that premalig-
nant-infiltrating T-cells and monocytes are associated with a
lower oral cancer risk, suggesting an important role of these
populations during oral carcinogenesis. Scattered evidence on
the biology of OPL suggests the presence of an immune stimu-
latory environment characterized by IFN-gamma, and other
pro-inflammatory cytokines and immune cells, including NK
cells, macrophages and activated CD8 + T-cells. The 4-NQO
mouse model of oral carcinogenesis, which mimics the effects of
tobacco and induces molecular, genetic and tumor antigen
changes similar to those of human OPL and oral SCC,52 pro-
vides an opportunity to study the mechanisms governing the
evolution of pre-malignant clones and early immune intercep-
tion of this oncogenic process. Recent reports on the 4-NQO
model found that OPL cells themselves elicit increased cytokine
production (e.g., IFN-gamma), immune cell (e.g., activated
T-cell) activation,53 and therefore serve as a basis to define a
mechanism by which OPLs modulate the immune response.
Importantly, these studies suggest that immune intervention
may be effective in patients with OPL as they are in a significant
proportion of patients with oral cancer. Recent reports showing
that metformin exerts immune-mediated anti-tumor effects,54

in addition to preventing tumorigenesis and malignant conver-
sion of OPL to oral cancer in the 4-NQO model, we have
launched an immune interception trial assessing the activity of
Metformin For Oral Cancer Prevention (M4OC-Prevent)
(www.clinicaltrials.gov, NCT02581137).

In conclusion, we report a gene expression-based classifi-
cation of OPL, into immunological and classical subtypes, that
may be applicable in the clinical setting for refining preven-
tion strategies. Large prospective cohorts of OPL are needed
to validate our results. Further characterization of the
immune infiltrate is required, which may pave the road to
immune intervention strategies.

Methods

Four independent sets of OPL samples

Four independent sets of OPL samples with available gene
expression profiles were established, using data generated in
OPL biopsies collected prospectively in a chemoprevention trial
run at The University of Texas MD Anderson Cancer Center
(MDACC) (discovery set), as well as data downloaded from the
public data repository Gene Expression Omnibus (GEO) (valida-
tion sets V1, V2 and V3). Written informed consent was
obtained for all patients included in the trials at MDACC.

The discovery set included 86 OPL biopsies collected in
patients followed prospectively with a median follow-up of
7 years (95% CI [5.6–8.6]) in a chemoprevention trial with
available gene expression profiles previously published in
GEO (GSE26549).13,23 Patients had been diagnosed with
OPL and randomly assigned to intervention with 13-cisre-
tinoic acid (13cRA) versus retinyl palmitate (RP) with or
without b-carotene (BC). Of note, loss of heterozygosity
status at 9p21 (D9S171, D9S1747), 3p14 (D3S1285), 17p13
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(D17S1176), TP53, 8p22 (D8S254) was available for 70/86
OPLs. Moreover, miRNA gene expression profiling was gen-
erated in 71/86 OPLs (see below the subsection “miRNA
profiling of OPL”). Finally, based on the examination of
OPL biopsies under a multi-headed microscope by three
observers, each OPL was defined by the presence or absence
of inflammatory cells in the stroma (SIC) and intra-epithelial
inflammatory cells (EIC).28

In order to validate our gene expression based classifica-
tion, three independent gene expression validation datasets
V1, V2 and V3 were downloaded from Gene Expression
omnibus and included 17 oral dysplastic lesions
(GSE30784),13 OPL with hyperplasia or dysplasia
(GSE10174) and 15 OPL (GSE85195) respectively.

A detailed description of the different datasets is provided
in Supplementary Table S2.

MicroRNA profiling of OPL in the discovery set

All steps leading to the generation of raw data using the
samples from the discovery set were processed at the
University of Texas M.D. Anderson Cancer Center
(MDACC) Genomics Core Facility. We produced miRNA
profiles in 71/86 OPL (discovery set) using available aliquots
previously prepared for mRNA gene expression profiling.23

Each sample was hybridized on TaqMan® low density arrays
Cards A and B, using the manufacturer’s instructions
(Applied Biosystems, Foster City, CA). All TLDA cards were
run on the Applied Biosystems 7900HT real-time PCR plat-
form (Applied Biosystems, Foster City, CA).

Loss of heterozygosity analysis

In 70/86 OPL, loss of heterozygosities (LOH) at 9p21 (D9s171,
D9S1747), 3p14 (D3s1285), 17p13 (D17s1176), TP53 and 8p22
(D8s254) were evaluated as previously reported.6

Unsupervised discovery of OPL gene expression subtypes

Using gene expression data of the 86 OPL samples from the
discovery set (GSE26549),23 identification of the distinct
molecular subtypes of OPL was performed as previously
described.18,34 Gene expression values were gene median cen-
tered and the 2,500 most variable genes, using the median
absolute deviation, were selected for clustering. We then used
the ConsensusClusterPlus R package to cluster the OPL sam-
ples in an unbiased and unsupervised manner.55 This proce-
dure was performed with 1,000 randomly selected sets of
microarray samples using a sampling proportion of 80% and
a distance metric equal to one minus the Pearson correlation
coefficient.

Classification methods of OPL subtypes

The discovery dataset of 86 OPL samples was randomly split
into a training and a testing subsets of 57 and 29 OPL samples
respectively using the “sample” function in the R language.
Using the ArrayStudio© software (OmicSoft©, Cary, NC),
different classification algorithms (partial least square, linear

discriminant analysis, and K-nearest neighbor) were applied
to the training subset to build a classifier, including the 500
most significant genes based on F-test. According to an exter-
nal cross validation, the best gene classifier was selected and
applied to the testing subset. In addition, based on differential
gene expression between OPL subtypes, we computed a gene
expression score for the OPL classification, using the single
sample gene set enrichment analysis (ssGSEA)24,25 from Gene
Pattern.26 We compared these methods of classification in
terms of the accuracy percentage (= [number of samples
misclassified/number of samples well-classified]*100).

Pathway analysis

To characterize the OPL subtypes, we performed an enrich-
ment pathway analysis based on large-scale gene expression
data in the four OPL datasets. Pathway-specific pathways were
downloaded from the Molecular Signature Database (MSigDB
database Molecular Signatures Database v5.2, 2016) and
included a total of 1,329 canonical pathways. The ssGSEA
was used to compute an enrichment score for each pathway
in each sample24,25 which was run from GenePattern.26 Unlike
GSEA which analyzes differential pathways between two phe-
notypical groups, the ssGSEA tool allows for computing an
enrichment score (ES) of a given gene set in each sample. The
gene expression values for a given sample are rank-normal-
ized, and an ES is produced using the empirical cumulative
distribution functions of the genes in the gene set and the
remaining genes.24,25 When UP and DN versions of a gene set
are available, a combined score was computed. Default para-
meters were used (weighting component of 0.75 and minimal
gene set size of 10 genes).

Deconvolution of the immune infiltrate in OPL

The Microenvironment Cell Populations-counter (MCP-coun-
ter) R package27 was used for deconvolution of the immune
infiltrate in each OPL sample. This method allows computing a
score of the absolute abundance of eight immune cell types (T-
cells; CD8 T-cells; Cytotoxic lymphocytes; NK cells; B lineage;
Monocytic lineage; Myeloid dendritic cells; and Neutrophils) as
well as of two stromal cell populations (endothelial cells and
fibroblasts) in heterogeneous tissues from transcriptomic data.
This score was defined as the log2 average expression of specific
well-defined transcriptomic markers for each population.

Bioinformatics and statistics

Bioinformatics and statistics were performed using the Array
Studio software (Omicsoft Corporation) as well as
Bioconductor packages in the R language56 and GraphPad
Prism version 6.00 (San Diego, SA). Raw data from micro-
arrays were processed using quantile normalization and the
robust multi-array average (RMA) algorithm and were log2
transformed.57 Custom CDF were used and downloaded from
brainarray website.58 miRNA raw data was log2 transformed
for normalization. An integrative network including miRNA
and differentially expressed genes between subtypes was built
and visualized using miRNet59 and the Gephi software,60
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respectively. The algorithm layout used in the Gephi software
was ForceAtlas2. Hierarchical clustering analysis was done
using the Pearson correlation and ward linkage method.

Unpaired Mann-Whitney or Wilcoxon tests were per-
formed to compare the continuous values between the
subtypes. Fisher’s exact test allowed us to analyze the con-
tingency tables. In the 86 samples from the discovery set
(GSE26549), oral cancer-free survival (OCFS) distributions
were estimated using the Kaplan-Meier method and com-
pared with the log- rank test. The OCFS was defined as the
time from the first biopsy to oral cancer or to the date of
last follow-up (for censored patients). The univariate and
multivariate Cox proportional hazard model, including age,
treatment arm (13cRA, RP with or without b-carotene BC)
and histology (hyperplasia vs. dysplasia), were built to
investigate the potential association between some biomar-
kers and OCFS in each molecular subtype. All statistical
tests were two-sided, and P–values of 0.05 or less were
considered to be statistically significant.
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