

# Alemtuzumab versus antithymocyte globulin induction therapies in kidney transplantation patients

# A systematic review and meta-analysis of randomized controlled trials

Jianming Zheng, MD<sup>\*</sup>, Wenli Song, MS

#### Abstract

Alemtuzumab (ALEM) is widely used as an induction therapy for organ transplantation, and numerous randomized controlled trials (RCTs) have been published to evaluate its efficacy and safety in kidney transplantation as compared with antithymocyte globulin (ATG). The purpose of this study was to compare the benefits and safety of ALEM with those of ATG for induction therapy.

A systematic literature search in three electronic databases, including PubMed, EmBase, and Cochrane Library, since inception through October 2016, was conducted to identify potential RCTs for inclusion. Trials that investigated the risk of biopsy-proven acute rejection (BPAR), mortality, graft failure, delayed graft function (DGF), chronic allograft nephropathy (CAN), infections, cytomegalovirus (CMV) infections, new-onset diabetes mellitus after transplant (NODAT), and granulocyte colony stimulation factor (GCSF) use in kidney transplant recipients who received ALEM or ATG as an induction therapy were included. Relative risk (RR) and 95% confidence intervals (CIs) were calculated using a random-effects model.

Six RCTs involving 446 kidney transplantation patients were included in this meta-analysis. The effects of ALEM therapy were not significantly different from those of ATG therapy, including the incidence of BPAR (RR: 0.77; 95% CI: 0.51–1.18; P=.229), mortality (RR: 0.64; 95% CI: 0.30–1.39; P=.263), graft failure (RR: 0.81; 95% CI: 0.49–1.33; P=.411), DGF (RR: 1.00; 95% CI: 0.60–1.67; P=.999), CAN (RR: 1.42; 95% CI: 0.44–4.57; P=.556), infections (RR: 1.00; 95% CI: 0.74–1.35; P=.989), CMV infections (RR: 0.70; 95% CI: 0.38–1.30; P=.263), NODAT (RR: 0.50; 95% CI: 0.18–1.36; P=.174), and GCSF use (RR: 1.16; 95% CI: 0.81–1.66; P=.413). Sensitivity analyses were consistent with the overall analysis for all effects except CAN, suggesting that the risk of CAN might be higher with ALEM therapy than ATG therapy (RR: 2.45; 95% CI: 1.02–5.94; P=.046).

The findings of this study suggest that the beneficial effects of ALEM therapy are greater than those of ATG therapy in kidney transplantation patients; however, the effects were not statistically significant because of the limited number of trials. Further large-scale RCTs are needed to verify the treatment effects of ALEM.

**Abbreviations:** ALEM = alemtuzumab, ATG = antithymocyte globulin, BPAR = biopsy-proven acute rejection, CAN = chronic allograft nephropathy, CIs = confidence intervals, CMV = cytomegalovirus, DGF = delayed graft function, ESRD = end-stage renal disease, GCSF = granulocyte colony stimulation factor, NODAT = new-onset diabetes mellitus after transplant, rATG = rabbit antithymocyte globulin, RCTs = randomized controlled trials.

Keywords: alemtuzumab, antithymocyte globulin, kidney transplantation

# 1. Introduction

End-stage renal disease (ESRD) is characterized by a long-term irreversible decline in kidney function that requires renal

\* Correspondence: Jianming Zheng, Department of Transplant Surgeons, Tianjin First Center Hospital, Tianjin 300192, China (e-mail: zhengijanming76317@aliyun.com).

Received: 13 January 2017 / Received in final form: 18 May 2017 / Accepted: 19 May 2017

http://dx.doi.org/10.1097/MD.000000000007151

replacement therapy. Chronic kidney disease progresses to ESRD over the course of 5.5 years in the United Kingdom.<sup>[1]</sup> Currently, kidney transplantation is the treatment of choice to improve survival and quality of life of ESRD patients.<sup>[2,3]</sup> However, major clinical concerns including acute kidney rejection and graft loss<sup>[4]</sup> have been noted; further, immunosuppressive therapy is necessary to reduce the risk of kidney rejection and to prolong survival of the graft.<sup>[5,6]</sup>

Previous studies have illustrated induction therapy, both intraoperatively and immediately postoperatively, to be associated with lower overall doses of maintenance immunosuppressive regimens.<sup>[7,8]</sup> Currently, the main types of induction therapy include alemtuzuman (ALEM), rabbit antithymocyte globulin (rATG), basiliximab, and conventional immunosuppressive agents containing cyclosporine, mycophenolate, and methyl prednisolone that are always combined with other therapy regimens.<sup>[9–12]</sup> In low-risk patients, Oliaei et al<sup>[11]</sup> found that the combination of rATG with conventional agents is associated with a lower incidence of posttransplantation problems such as signs of rejection, rise of creatinine, graft losses, and delayed graft function. Further, the rate

Editor: Gerald Brandacher.

The authors declare no conflict of interests.

Department of Transplant Surgeons, Tianjin First Center Hospital, Tianjin, China.

Copyright © 2017 the Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Noncommercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Medicine (2017) 96:28(e7151)

of acute rejection in low-risk patients receiving ALEM was lower than in patients receiving rATG; however, no significant differences were observed between ALEM and rATG in high-risk patients.<sup>[13]</sup> Consequently, the inconsistent results regarding the treatment effects in patients receiving ALEM and rATG require verification. Therefore, we attempted a comprehensive examination of the available RCTs to determine the efficacy and safety of ALEM versus ATG in kidney transplantation patients.

# 2. Methods

#### 2.1. Data sources, search strategy, and selection criteria

This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Statement issued in 2009 (Checklist S1).<sup>[14]</sup>

The ethical approval and written consent are not necessary for the meta-analysis, because the data of meta-analysis are collected from published literature.

Any RCT that evaluated the efficacy and safety of ALEM versus ATG was eligible for inclusion in this meta-analysis. Further, language and publication status were not restricted. Three electronic databases, including PubMed, EmBase, and the Cochrane Library were searched through October 2016. Core keywords included ("alemtuzumab" OR "campath" OR "mabcampath" OR "lemtrada") AND "antithymocyte globulin" AND "kidney transplant." Ongoing RCTs that have been completed but are not published were also identified from the Meta-register of Controlled Trials and the http://clinicaltrials.gov/website. We also conducted manual searches of reference lists from all relevant original and review articles to identify additional eligible studies.

The literature search was independently undertaken by two authors using a standardized approach. Any inconsistencies between the results obtained by these two authors were settled by the corresponding author until a consensus was reached. The meta-analysis was restricted to RCTs as observational studies are susceptible to confounding factors. Studies were eligible for inclusion if the following criteria were met: (1) patients underwent kidney transplantation; (2) the study had an RCT design; (3) patients received ALEM or ATG therapy; and (4) at least one of the following outcomes were reported: biopsy-proven acute rejection (BPAR), mortality, graft failure, delayed graft function (DGF), chronic allograft nephropathy (CAN), infections, cytomegalovirus (CMV) infections, new-onset diabetes mellitus after transplant (NODAT), and granulocyte colony stimulation factor (GCSF) use. Exclusion criteria were as follows: (1) studies that studied patients with diseases other than ESRD, (2) studies that included patients with inappropriate disease control, (3) studies without an RCT design, and (4) studies in which the data could not be extracted.

# 2.2. Data collection and quality assessment

A standardized protocol was adopted by two authors to extract all the data from included trials. The collected data included the first author's name, publication year, country, sample size, mean age of recipient, percentage of male patients, history of diabetes, percentage of retransplant patients, immunologic risk, percentage of CMV infections, mean age of donor, interventions, controls, and the duration of follow-up periods. The Jadad scale, which is quite comprehensive and has been partially validated for evaluating the quality of RCTs in meta-analyses, was employed to assess methodological quality.<sup>[15]</sup> The Jadad scale is based on randomization, blinding, allocation concealment, withdrawals and dropouts, and use of intention-to-treat analysis; scores range from 0 to 5.

#### 2.3. Statistical analysis

The results of individual RCTs were considered dichotomy data; relative risks (RRs) and 95% confidence intervals (CIs) from each study were calculated from events and nonevents in each group. The summary RRs and 95% CIs for ALEM versus ATG were calculated using a random-effects model.<sup>[16,17]</sup> Furthermore, RRs with 95% CIs were calculated for BPAR, mortality, graft failure, DGF, CAN, infections, CMV infections, NODAT, and GCSF use. Heterogeneity between studies was investigated using the Q statistic, and we considered P < .10 as indicative of significant heterogeneity.<sup>[18,19]</sup> We performed sensitivity analyses by removing each individual study from the meta-analysis.<sup>[20]</sup> Subgroup analyses were performed for BPAR based on sample size, percentage of males, immunologic risk, percentage of cytomegalovirus cases, ALEM doses, and control. Egger<sup>[21]</sup> and Begg<sup>[22]</sup> tests were also used to statistically assess publication bias for interesting outcomes. All reported P values are two-sided, and P < .05 were considered statistically significant for all included studies. Statistical analyses were performed using STATA software (version 12.0; Stata Corporation, College Station, TX).

# 3. Results

#### 3.1. Literature search

Results of the study selection process are shown in Figure 1. We identified 258 articles in our initial electronic search, of which 244 were excluded after duplicates and irrelevant studies were identified. Fourteen potentially eligible studies were chosen. After detailed evaluations, 6 RCTs were selected for the final meta-analysis.<sup>[13,23–27]</sup> A manual search of the reference lists from these studies did not yield any new eligible studies. The general characteristics of the included studies are presented in Table 1.<sup>[13,23–27]</sup>



Figure 1. Study selection process.

| Table .                 |                     | :          | :              |                  | :                      | :                          |                     | •                   | 113 93-07              | 5                 |                                                       |                                                                                           |                                                                                                                                          |                                                                                           |                               |                |
|-------------------------|---------------------|------------|----------------|------------------|------------------------|----------------------------|---------------------|---------------------|------------------------|-------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------|----------------|
| Baseline                | charact             | eristics c | of studi       | es inclu         | In the                 | e systemati                | c review a          | and meta-an         | alysis.                | -                 |                                                       |                                                                                           |                                                                                                                                          |                                                                                           |                               |                |
| Study                   | Publication<br>year | Country    | Sample<br>size | Mean<br>age (yr) | Percentage<br>male (%) | History of<br>diabetes (%) | Retransplant<br>(%) | Immunologic<br>risk | Cytomegalovirus<br>(%) | Donor<br>age (yr) | Intervention<br>(induction)                           | Intervention<br>(maintenance)                                                             | Control<br>(induction)                                                                                                                   | Control<br>(maintenance)                                                                  | Duration of<br>follow up (yr) | Jadad<br>score |
| Thomas <sup>[23]</sup>  | 2007                | SN         | 19             | 45.02            | 42.11                  | NA                         | 52.63               | High                | 94.74                  | NA                | ALEM (30 mg)                                          | Tacrolimus                                                                                | Thymoglobulin<br>(1.5 mg/kg),<br>with                                                                                                    | Tacrolimus,<br>mycophenolate, and<br>steroids                                             | 1.0                           | -              |
| Farney <sup>[27]</sup>  | 2009                | SN         | 180            | 49.94            | 58.11                  | 44.14                      | 10.36               | High and low        | 22.52                  | 41.47             | ALEM (30 mg)                                          | Tacrolimus/cyclosporin,<br>mycophenolate<br>mofetil,<br>mycophenolic acid<br>and steroids | rATG (1.5 mg/kg,<br>3–7 total<br>doses)                                                                                                  | Tacrolimus/cyclosporin,<br>mycophenolate<br>mofetil,<br>mycophenolic acid<br>and steroids | 2.0                           | 5              |
| Ciancio <sup>[24]</sup> | 2010                | SU         | 26             | 42.25            | 73.08                  | 7.70                       | NA                  | High and low        | NA                     | NA                | ALEM (0.3 mg/kg)                                      | Methylprednis olone                                                                       | Thymoglobulin<br>(1 mg/kg/d)                                                                                                             | Methylprednis olone                                                                       | 3.0                           | 2              |
| Ciancio <sup>(25)</sup> | 2008                | SN         | 60             | 49.75            | 63.33                  | 25.00                      | NA                  | High and low        | NA                     | 34.65             | ALEM (0.3 mg/kg)                                      | Methylprednisolone                                                                        | Thymoglobulin<br>(1 mg/kg/d)                                                                                                             | Methylprednisolone                                                                        | 2.0                           | 2              |
| Lu <sup>[26]</sup>      | 2011                | China      | 22             | 39.95            | 40.91                  | NA                         | 50.00               | High                | 86.36                  | NA                | ALEM (15 mg) and<br>another dosage<br>of ALEM (15 mg) | Acetaminophen,<br>diphenhydramine,<br>and 40 mg<br>methylprednisolone                     | rATG (9.0 mg/kg)                                                                                                                         | Methylprednisolone                                                                        | 1.0                           | -              |
| Hanaway <sup>[13]</sup> | 2011                | S          | 139            | 46.59            | 54.68                  | A                          | 17.27               | High                | 23.74                  | 35.29             | ALEM (30 mg)                                          | Tacrolimus,<br>mycophenolate<br>morephenolic acid<br>and steroids                         | rATG in four<br>intravenous<br>dokes of 1.5<br>mg/kg, given<br>on day 0, day<br>1, and day 2,<br>as well as<br>either day 3 or<br>day 4. | Tacrolimus,<br>mycophenolate<br>morophenolic acid<br>and steroids                         | 0.<br>0.                      | က              |

3

ALEM = alemtuzumab, rATG = rabbit antithymocyte globulin.



#### 3.2. Study characteristics

The meta-analysis includes 6 trials with a total of 446 kidney transplantation patients. The follow up for patients was 1.0 to 3.0 years, with 19 to 180 patients included in each trial. Five studies were conducted in the United States,<sup>[13,23–25,27]</sup> and the remaining 1 study was conducted in China.<sup>[26]</sup> The mean recipient age ranged from 39.95 to 49.94 years, and the percentage of male patients ranged from 40.91% to 73.08%. Three trials included patients at high immunologic risk,<sup>[13,23,26]</sup> one trial included both high and low immunologic risk patients,<sup>[27]</sup> and the remaining two trials did not provide recipient characteristics.<sup>[24,25]</sup> The quality of studies was evaluated by the Jadad scale; 1,<sup>[13]</sup> 3,<sup>[24,25,27]</sup> and the remaining 2<sup>[23,26]</sup> had scores of 3, 2, and 1, respectively.

#### 3.3. Summary of results

Data relating the effects of ALEM versus ATG on BPAR were collected from 6 trials. The summary RRs indicate the risk of BPAR was reduced by 23% in patients receiving ALEM; however, this result did not reach statistical significance (RR: 0.77; 95% CI: 0.51–1.18; P=.229; Fig. 2). Further, no heterogeneity was observed among the included trials ( $I^2 = 0.0\%$ ; P=.450). Sensitivity analyses were performed to evaluate the influence of individual trials and confirmed that the study outcomes were not affected by the exclusion of any specific trial (Table 2). Subgroup analysis for BPAR was performed, and ALEM had little or no significant effect on BPAR in the various populations (Table 3).

The number of trials with information available for mortality and graft failure was 6 and 5, respectively. The pooled results for mortality and graft failure indicate no significant differences between outcomes for ALEM and ATG therapy (mortality: RR, 0.64, 95% CI: 0.30–1.39, P=.263; graft failure: RR, 0.81, 95% CI: 0.49–1.33, P=.411; Fig. 3). There was no heterogeneity across the trials included in the study (mortality:  $I^2=0.0\%$ , P=.634; graft failure:  $I^2=0.0\%$ , P=.616). The results of the sensitivity analyses were consistent with the overall analysis (Table 2).

The number of trials with information available for DGR and CAN was 5 and 3, respectively. No significant differences in DGF

and CAN were observed between patients treated with ALEM and ATG (DGF: RR, 1.00, 95% CI: 0.60–1.67, P=.999; CAN: RR, 1.42, 95% CI: 0.44–4.57, P=.556; Fig. 4). Substantial heterogeneity was observed for CAN ( $I^2$ =73.7%; P=.022), whereas no evidence of heterogeneity was noted for DGF ( $I^2$ = 0.0%; P=.514). The results of sensitivity analyses for DGF were consistent with the overall analysis. However, based on the sensitivity analysis for CAN, we excluded the study by Farney et al,<sup>[27]</sup> which included patients undergoing renal and pancreas transplantation; this may have affected the incidence rate of CAN in each group. After this exclusion, we concluded that the risk of CAN is 145% higher in patients receiving ALEM therapy than that of patients receiving ATG therapy (RR: 2.45; 95% CI: 1.02–5.94; P=.046; with no evidence of heterogeneity; Table 2).

The number of trials with information available for infections and CMV was 6 and 3, respectively. The summary RRs suggest little or no significant effects on the risk of infection (RR: 1.00; 95% CI: 0.74–1.35; P=.989; Fig. 5) or CMV infections (RR: 0.70; 95% CI: 0.38–1.30; P=.263; Fig. 5) in patients receiving ALEM. Unimportant heterogeneity was detected for infections and CMV infections (infections:  $I^2=25.4\%$ , P=.243; CMV infections:  $I^2=10.2\%$ , P=.328), and results from the sensitivity analyses were consistent with the overall analysis (Table 2).

The number of trials with information available for NODAT and GCSF use was 3 and 2, respectively. We noted ALEM was not associated with the incidence of NODAT (RR: 0.50; 95% CI: 0.18-1.36; P=.174; Fig. 6) or GCSF use (RR: 1.16; 95% CI: 0.81-1.66; P=.413; Fig. 6). Heterogeneity was not detected across included trials for NODAT and GCSF use, and results of the sensitivity analyses were consistent with the corresponding overall analysis (Table 2).

# 3.4. Publication bias

The Egger<sup>[21]</sup> and Begg<sup>[22]</sup> test results are presented in Table 4. We noted no evidence of publication bias for BPAR, mortality, graft failure, DGF, CAN, CMV infections, and NODAT. Although the Egger<sup>[21]</sup> test showed no evidence of publication bias for infections (P=.147), the Begg<sup>[22]</sup> test showed potential evidence of publication bias (P=.060). The conclusions were not

Table 2

| Dutcomes     Excluding study     RR and 95% Cl     P     Heterogeneity (%)     P for heterogeneity       BPAR     Thomas     0.81 (0.51-1.30)     .390     .8.0     .561       Farney     1.03 (0.60-17.5)     .924     .0.0     .759       Cancio     0.70 (0.44-1.12)     .137     .0.0     .408       Cancio     0.70 (0.44-1.12)     .137     .0.0     .425       Li     0.80 (0.49-1.31)     .372     1.47     .320       Hanaway     0.66 (0.40-1.07)     .0.94     .0.0     .529       Death     Thomas     0.68 (0.22-1.53)     .266     0.00     .507       Cancio     0.55 (0.22-1.35)     .133     0.0     .662       Li     0.66 (0.29-1.51)     .331     0.0     .4828       Grancio     0.55 (0.27-1.35)     .133     0.0     .4438       Cancio     0.56 (0.29-1.51)     .331     0.0     .438       Grancio     0.71 (0.41-1.23)     .217     0.0     .718       Li     0.85 (0.51-1.41)     .523                                                                                                                        | Sensitivity analy | ses.            |                   |      |                   |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-------------------|------|-------------------|---------------------|
| PPAR     Thomas     0.81 (0.51-1.30)     .900     8.0     .961       Farmey     1.03 (0.60-1.75)     .924     0.0     .759       Ciancio     0.76 (0.49-1.15)     .191     0.0     .425       Ciancio     0.76 (0.49-1.12)     .137     0.0     .425       Ciancio     0.76 (0.49-1.12)     .137     0.0     .425       Death     Hanaway     0.66 (0.40-1.07)     .094     0.0     .529       Ciancio     0.58 (0.22-1.53)     .269     0.0     .561       Ciancio     0.58 (0.22-1.53)     .193     0.0     .562       Lu     0.66 (0.29-151)     .331     0.0     .545       Ciancio     0.58 (0.51-141)     .523     0.0     .545       Ciancio     0.71 (0.41-1.23)     .217     0.0     .545       Ciancio     0.72 (0.37-1.40)     .333     0.0     .545       Ciancio     0.71 (0.41-1.23)     .217     .00     .545       Ciancio     0.72 (0.37-1.40)     .333     0.0     .545 <t< th=""><th>Outcomes</th><th>Excluding study</th><th>RR and 95% Cl</th><th>Р</th><th>Heterogeneity (%)</th><th>P for heterogeneity</th></t<> | Outcomes          | Excluding study | RR and 95% Cl     | Р    | Heterogeneity (%) | P for heterogeneity |
| Farney     1.03 (0.60-1.75)     9.24     0.0     .759       Cancio     0.75 (0.49-1.15)     1.91     0.0     .408       Cancio     0.75 (0.44-1.12)     1.37     0.0     .425       Lu     0.80 (0.49-1.31)     .372     14.7     .320       Hanaway     0.66 (0.40-1.07)     .094     0.0     .567       Cancio     0.58 (0.22-1.53)     .353     0.0     .664       Cancio     0.58 (0.22-1.53)     .193     0.0     .664       Cancio     0.56 (0.22-1.53)     .193     0.0     .662       Cancio     0.56 (0.22-1.53)     .193     0.0     .663       Cancio     0.56 (0.22-1.53)     .193     0.0     .495       Gancio     0.56 (0.23-1.43)     .595     0.0     .682       Cancio     0.77 (0.37-1.40)     .333     0.0     .498       Cancio     0.77 (0.37-1.40)     .333     0.0     .498       Cancio     0.77 (0.37-1.40)     .373     .00     .493       Cancio     1.70 (0.47-1.                                                                                                                                           | BPAR              | Thomas          | 0.81 (0.51-1.30)  | .390 | 8.0               | .361                |
| Gancio     0.75 (0.49-1.15)     1.91     0.0     4.08       Clancio     0.70 (0.44-1.12)     1.37     0.0     4.25       Lu     0.80 (0.49-1.31)     .372     14.7     .320       Hanaway     0.66 (0.40-1.07)     0.94     0.0     .549       Death     Farrey     0.58 (0.22-1.53)     .269     0.0     .549       Cancio     0.58 (0.22-1.53)     .193     0.0     .562       Cancio     0.58 (0.22-1.53)     .193     0.0     .562       Lu     0.66 (0.29-1.51)     .331     0.0     .562       Cancio     0.55 (0.22-1.35)     .193     0.0     .562       Lu     0.66 (0.29-1.51)     .331     0.0     .562       Gancio     0.71 (0.41-1.23)     .217     0.0     .718       Lu     0.83 (0.50-1.38)     .460     0.0     .547       Lu     0.83 (0.53-1.71)     .872     0.0     .557       Cancio     1.50 (0.53-1.71)     .876     0.0     .543       Cancio     1.50                                                                                                                                                         |                   | Farney          | 1.03 (0.60-1.75)  | .924 | 0.0               | .759                |
| Glancio     0.70 (0.44-1.12)     1.37     0.0     4.25       Lu     0.80 (0.49-1.31)     .372     14.7     .320       Haraway     0.66 (0.40-1.07)     .094     0.0     .529       Death     Thomas     0.68 (0.21-1.52)     .363     0.0     .549       Glancio     0.58 (0.28-1.52)     .269     0.0     .567       Glancio     0.58 (0.28-1.53)     .193     0.0     .562       Glancio     0.56 (0.29-1.51)     .331     0.0     .545       Hanaway     0.80 (0.35-1.83)     .595     0.0     .545       Grancio     0.72 (0.37-1.40)     .333     0.0     .498       Grancio     0.71 (0.41-1.23)     .217     0.0     .480       Grancio     0.70 (0.41-1.23)     .40     0.0     .453       Grancio     1.08 (0.63-1.76)     .850     0.0     .480       Grancio     1.08 (0.63-1.76)     .850     0.0     .453       Grancio     1.08 (0.63-1.76)     .850     0.0     .410       Lu </td <td></td> <td>Ciancio</td> <td>0.75 (0.49-1.15)</td> <td>.191</td> <td>0.0</td> <td>.408</td>                                          |                   | Ciancio         | 0.75 (0.49-1.15)  | .191 | 0.0               | .408                |
| Lu     0.80 (0.49-1.31)     .372     14.7     .320       Haraway     0.66 (0.40-1.07)     .094     0.0     .529       Death     Farney     0.58 (0.22-1.53)     .269     0.0     .564       Gancio     0.58 (0.22-1.53)     .269     0.0     .654       Cancio     0.55 (0.22-1.35)     .193     0.0     .654       Lu     0.66 (0.29-1.51)     .331     0.0     .856       Gardio     0.55 (0.22-1.35)     .193     0.0     .856       Hanaway     0.80 (0.35-1.83)     .595     0.0     .828       Graft fallure     Thomas     0.55 (0.51-1.41)     .523     0.0     .718       Lu     0.83 (0.50-1.33)     .480     0.0     .788     .780     0.0     .788       DGF     Hanaway     0.95 (0.52-1.71)     .872     0.0     .781     .780     .780     .780     .781     .781     .781     .781     .781     .781     .781     .781     .781     .781     .781     .781     .781                                                                                                                                                      |                   | Ciancio         | 0.70 (0.44–1.12)  | .137 | 0.0               | .425                |
| Hanaway     0.66 (0.01-07)     0.94     0.0     529       Death     Thomas     0.68 (0.31-1.52)     .353     0.0     .549       Cancio     0.58 (0.22-1.53)     .269     0.0     .654       Ciancio     0.58 (0.22-1.53)     .182     0.0     .656       Ciancio     0.55 (0.22-1.35)     .193     0.0     .455       Graft failure     Hanaway     0.80 (0.35-1.83)     .595     0.0     .828       Graft failure     Thomas     0.85 (0.51-1.41)     .523     0.0     .498       Ciancio     0.71 (0.41-1.23)     .217     0.0     .498       Ciancio     0.71 (0.41-1.23)     .217     0.0     .498       Ciancio     0.95 (0.53-1.71)     .872     0.0     .493       DGF     Farney     0.96 (0.51-1.55)     .780     0.0     .478       Lu     0.89 (0.51-1.55)     .867     0.0     .478     .410       Lanaway     0.99 (0.51-1.55)     .876     0.0     .478     .410       Cancio     1.                                                                                                                                       |                   | Lu              | 0.80 (0.49-1.31)  | .372 | 14.7              | .320                |
| Death     Tonnas     0.68 (0.31-152)     .353     0.0     .549       Farney     0.58 (0.22-1.53)     .269     0.0     .567       Cancio     0.58 (0.22-1.35)     .182     0.0     .654       Cancio     0.55 (0.22-1.35)     .183     0.0     .495       Lu     0.66 (0.29-1.51)     .331     0.0     .495       Hanaway     0.80 (0.35-1.83)     .595     0.0     .628       Graft failure     Tonnas     0.85 (0.51-1.41)     .523     0.0     .545       Grancio     0.71 (0.41-1.23)     .217     0.0     .718       Lu     0.83 (0.50-1.38)     .460     0.0     .460       Grancio     0.71 (0.41-1.23)     .217     0.0     .718       Def     Earney     0.84 (0.34-208)     .702     1.9     .383       Def     Earney     0.84 (0.34-208)     .702     1.9     .363       Cancio     1.05 (0.63-1.75)     .877     .0.0     .410       Cancio     1.08 (0.63-1.85)     .760     .621 <td></td> <td>Hanaway</td> <td>0.66 (0.40-1.07)</td> <td>.094</td> <td>0.0</td> <td>.529</td>                                             |                   | Hanaway         | 0.66 (0.40-1.07)  | .094 | 0.0               | .529                |
| Farney     0.58 (0.22-1.53)     .269     0.0     .567       Ciancio     0.58 (0.26-1.29)     .182     0.0     .664       Ciancio     0.55 (0.22-1.35)     .193     0.0     .485       Ciancio     0.55 (0.22-1.35)     .193     0.0     .485       Graft failure     Hanaway     0.80 (0.35-1.83)     .595     0.0     .482       Grancio     0.71 (0.41-1.23)     .217     0.0     .488       Grancio     0.71 (0.41-1.23)     .217     0.0     .486       Oracio     0.71 (0.41-1.23)     .217     0.0     .480       Ole     0.83 (0.50-1.38)     .460     0.0     .480       OleF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       OleF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.08 (0.83-1.76)     .850     0.0     .478       Lu     1.04 (0.62-1.75)     .867     0.0     .410       Ciancio     1.98 (0.51-1.5)     .667     0.0     .                                                                                                                                       | Death             | Thomas          | 0.68 (0.31-1.52)  | .353 | 0.0               | .549                |
| Clancio     0.58     0.26-1.29)     .182     0.0     .654       Clancio     0.55     0.22-1.33)     .193     0.0     .495       Lu     0.66     0.29-1.51)     .331     0.0     .828       Graft failure     Thomas     0.80     0.55-1.83)     .595     0.0     .828       Graft failure     Thomas     0.86     0.51-1.41)     .523     0.0     .495       Clancio     0.71     0.72     0.37-1.40     .333     0.0     .498       Clancio     0.71     0.41-1.23)     .217     0.0     .718       Lu     0.83     0.50-1.38)     .480     0.0     .480       DGF     Farney     0.84     0.34-2.08)     .702     1.9     .383       DGF     Clancio     1.05     0.63-1.70     .850     0.0     .410       Lu     1.04     0.62-1.75     .867     0.0     .422       Clancio     1.05     0.51-1.55     .676     0.0     .422       Lu                                                                                                                                                                                                |                   | Farney          | 0.58 (0.22-1.53)  | .269 | 0.0               | .507                |
| Giancio     0.55 (0.22-1.35)     .193     0.0     .562       Lu     0.66 (0.29-1.51)     .331     0.0     .495       Graft failure     Thomas     0.85 (0.51-1.41)     .523     0.0     .545       Graft failure     Thomas     0.85 (0.51-1.41)     .523     0.0     .498       Graft failure     O.70 (0.37-1.40)     .333     0.0     .498       Graft failure     0.83 (0.50-1.38)     .480     0.0     .498       Graft failure     0.83 (0.50-1.38)     .480     0.0     .498       DGF     Famey     0.96 (0.53-1.71)     .872     0.0     .653       Graft Gancio     1.05 (0.63-1.76)     .850     0.0     .557       Grancio     1.05 (0.63-1.76)     .850     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .442       Lu     1.04 (0.62-1.75)     .876     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .410       Infection     1.40 (0.16-1.259)     .764                                                                                                                   |                   | Ciancio         | 0.58 (0.26-1.29)  | .182 | 0.0               | .654                |
| Lu     0.66 (0.29-1.51)     .331     0.0     .496       Hanaway     0.80 (0.35-1.83)     .555     0.0     .828       Graft failure     Thomas     0.85 (0.51-1.41)     .523     0.0     .545       Farney     0.72 (0.37-1.40)     .333     0.0     .498       Clancio     0.71 (0.41-1.23)     .217     0.0     .748       Lu     0.83 (0.50-1.38)     .480     0.0     .480       DGF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.08 (0.63-1.75)     .870     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .441       CAN     Farney     .245 (1.02-5.94)     .046     0.0     .442       Infection     1.12 (0.35-3.62)     .850     81.4     .020       Cancio     1.21 (0.68-2.17)     .516     .33.8     .196       Cancio     0.39 (0.83 1.05)     .263     0.0     .774<                                                                                                                                       |                   | Ciancio         | 0.55 (0.22-1.35)  | .193 | 0.0               | .562                |
| Hanaway     0.80     0.35-1.83     595     0.0     .828       Graft failure     Thomas     0.85     0.51-1.41     .523     0.0     .545       Farney     0.72     0.37-140     .333     0.0     .488       Clancio     0.71     0.41-1.23     .217     0.0     .718       Lu     0.83     0.50-1.38     .480     0.0     .480       DGF     Farney     0.95     0.53-1.71     .872     0.0     .653       DGF     Farney     0.94     0.34-2.08     .702     1.9     .383       Clancio     1.05     0.63-1.76     .850     0.0     .410       Lu     1.04     0.62-1.75     .887     0.0     .410       Hanaway     0.89     0.51-1.55     .687     0.0     .442       Clancio     1.12     0.05-1.25     .687     0.0     .442       Clancio     1.24     0.37     .50     .81.4     .020       Clancio     1.21     0.62-1.75                                                                                                                                                                                                         |                   | Lu              | 0.66 (0.29-1.51)  | .331 | 0.0               | .495                |
| Graft failure     Thomas     0.85 (0.51-1.41)     523     0.0     .545       Farrey     0.72 (0.37-1.40)     .333     0.0     .498       Ciancio     0.71 (0.41-1.23)     .217     0.0     .718       Lu     0.83 (0.50-1.38)     .480     0.0     .480       DGF     Farrey     0.95 (0.53-1.71)     .872     0.0     .653       Ciancio     1.05 (0.63-1.76)     .850     0.0     .557       Ciancio     1.08 (0.63-1.85)     .780     0.0     .410       Hanaway     0.99 (0.51-1.55)     .687     0.0     .543       Ciancio     1.08 (0.63-1.85)     .780     0.0     .442       Lu     1.04 (0.62-1.75)     .687     0.0     .543       CAN     Farrey     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.82)     .850     .81.4     .020       Ciancio     1.29 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.97 (0.73-1.28)     .822     .40.0 <t< td=""><td></td><td>Hanaway</td><td>0.80 (0.35-1.83)</td><td>.595</td><td>0.0</td><td>.828</td></t<>                                  |                   | Hanaway         | 0.80 (0.35-1.83)  | .595 | 0.0               | .828                |
| Farney     0.72 (0.37-1.40)     .333     0.0     .498       Clancio     0.71 (0.41-1.23)     .217     0.0     .718       Lu     0.83 (0.50-1.38)     .480     0.0     .480       Hanaway     0.95 (0.53-1.71)     .872     0.0     .653       Clancio     1.05 (0.63-1.76)     .850     0.0     .557       Clancio     1.08 (0.63-1.85)     .760     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .478       Lu     1.04 (0.62-1.75)     .687     0.0     .543       CAN     Farney     2.45 (1.02-5.94)     0.46     0.0     .442       CAN     Farney     2.45 (1.02-5.94)     0.46     0.0     .442       Cancio     1.12 (0.35-3.62)     .650     81.4     .020       Clancio     1.21 (0.35-3.62)     .850     81.4     .020       Clancio     0.93 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196                                                                                                                                                          | Graft failure     | Thomas          | 0.85 (0.51-1.41)  | .523 | 0.0               | .545                |
| Ciancio     0.71 (0.41-1.23)     2.17     0.0     .718       Lu     0.83 (0.50-1.38)     .480     0.0     .480       Hanaway     0.95 (0.53-1.71)     .872     0.0     .653       DGF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.05 (0.63-1.76)     .850     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .478       Lu     1.04 (0.62-1.75)     .687     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     81.4     .020       Infection     1.00 (0.70-1.56)     .263     .0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.93 (0.83-1.05)     .263     .0.0     .557       Lu                                                                                                                                                |                   | Farney          | 0.72 (0.37-1.40)  | .333 | 0.0               | .498                |
| Lu     0.83 (0.50-1.38)     .480     0.0     .480       Hanaway     0.95 (0.53-1.71)     .872     0.0     .653       DGF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.05 (0.63-1.76)     .850     0.0     .557       Ciancio     1.08 (0.63-1.75)     .887     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .442       Cancio     1.12 (0.35-3.62)     .850     81.4     .020       Cancio     1.40 (0.16-12.59)     .764     62.1     .104       Infection     1.093 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Infection     1.000 (0.70-1.56)     .825     40.2     .153       Cancio     0.97 (0.73-1.28)     .822     24.0     .261       Ciancio     1.05 (0.70-1.56)     .825     40.2     .153       C                                                                                                                                           |                   | Ciancio         | 0.71 (0.41-1.23)  | .217 | 0.0               | .718                |
| Hanaway     0.95 (0.53-1.71)     .872     0.0     .653       DGF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.05 (0.63-1.76)     .850     0.0     .557       Ciancio     1.08 (0.63-1.85)     .780     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .442       CAN     Farney     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     81.4     .020       Ciancio     1.40 (0.16-12.59)     .764     62.1     .104       Infection     Thomas     .093 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     .097 (0.73-1.28)     .822     24.0     .261       Cancio     .097 (0.71-1.21)     .437     45.4     .119       CMV infection     Farney     .1.26 (0.71-2.21)     .437 <td></td> <td>Lu</td> <td>0.83 (0.50-1.38)</td> <td>.480</td> <td>0.0</td> <td>.480</td>                                     |                   | Lu              | 0.83 (0.50-1.38)  | .480 | 0.0               | .480                |
| DGF     Farney     0.84 (0.34-2.08)     .702     1.9     .383       Ciancio     1.05 (0.63-1.76)     .850     0.0     .557       Ciancio     1.08 (0.63-1.76)     .850     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .543       CAN     Farney     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     .81.4     .020       Ciancio     1.12 (0.35-3.62)     .850     .81.4     .020       Ciancio     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.93 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.97 (0.73-1.28)     .822     24.0     .261       Ciancio     0.07 (0.70-1.42)     .999     .362     .180       Muta     1.00 (0.70-1.42)     .999     .362     .180                                                                                                                                          |                   | Hanaway         | 0.95 (0.53-1.71)  | .872 | 0.0               | .653                |
| Ciancio     1.05 (0.63-1.76)     .850     0.0     .557       Ciancio     1.08 (0.63-1.85)     .780     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .442       CAN     Farney     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     .81.4     .020       Ciancio     1.40 (0.16-12.59)     .764     62.1     .104       Infection     Thomas     0.93 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.97 (0.73-1.28)     .822     .40.0     .261       Ciancio     0.97 (0.73-1.28)     .825     .40.2     .153       Lu     1.00 (0.70-1.42)     .999     .36.2     .180       Hanaway     1.25 (0.71-2.21)     .437     .45.4     .119       CMV infection     Farney     1.08 (0.46-2.56)     .855     .0.0                                                                                                                          | DGF               | Farney          | 0.84 (0.34-2.08)  | .702 | 1.9               | .383                |
| Ciancio     1.08 (0.63-1.85)     .780     0.0     .478       Lu     1.04 (0.62-1.75)     .887     0.0     .410       Hanaway     0.89 (0.51-1.55)     .687     0.0     .543       CAN     Farney     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     81.4     .020       Ciancio     1.40 (0.16-12.59)     .764     62.1     .104       Infection     Thomas     0.93 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     33.8     .196       Ciancio     0.97 (0.73-1.28)     .822     24.0     .261       Ciancio     0.97 (0.73-1.28)     .825     40.2     .153       Lu     1.00 (0.70-1.42)     .999     .36.2     .180       CMV infection     Farney     1.08 (0.46-2.56)     .855     0.0     .582       CMV infection     Farney     1.08 (0.46-2.56)     .855     0.0     .582       NDDMAT     Ciancio     0.63 (0.21-1                                                                                                                          |                   | Ciancio         | 1.05 (0.63-1.76)  | .850 | 0.0               | .557                |
| Lu     1.04 (0.62–1.75)     .887     0.0     .410       Hanaway     0.89 (0.51–1.55)     .687     0.0     .543       CAN     Farney     2.45 (1.02–5.94)     .046     0.0     .442       Ciancio     1.12 (0.35–3.62)     .850     .81.4     .020       Ciancio     1.40 (0.16–12.59)     .764     .62.1     .104       Infection     Thomas     .0.93 (0.83–1.05)     .263     .0.0     .774       Farney     1.21 (0.68–2.17)     .516     .33.8     .196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Ciancio         | 1.08 (0.63-1.85)  | .780 | 0.0               | .478                |
| Hanaway     0.89 (0.51-1.55)     .687     0.0     .543       CAN     Farney     2.45 (1.02-5.94)     .046     0.0     .442       Ciancio     1.12 (0.35-3.62)     .850     .81.4     .020       Ciancio     1.40 (0.16-12.59)     .764     .62.1     .104       Infection     Thomas     0.93 (0.83-1.05)     .263     0.0     .774       Farney     1.21 (0.68-2.17)     .516     .33.8     .196       Ciancio     0.97 (0.73-1.28)     .822     .40.0     .263       Ciancio     0.97 (0.73-1.28)     .822     .40.0     .263       Ciancio     0.97 (0.73-1.24)     .999     .36.2     .180       Hanaway     1.25 (0.71-2.21)     .437     .45.4     .119       CMV infection     Farney     1.08 (0.46-2.56)     .855     0.0     .582       Ciancio     0.66 (0.33-1.31)     .233     .27.7     .240       Hanaway     0.63 (0.21-1.84)     .394     .21.9     .258       NODMAT     Ciancio     0.56 (0.18-1.74)                                                                                                                  |                   | Lu              | 1.04 (0.62–1.75)  | .887 | 0.0               | .410                |
| CAN     Farney     2.45 (1.02–5.94)     .046     0.0     .442       Ciancio     1.12 (0.35–3.62)     .850     81.4     .020       Ciancio     1.40 (0.16–12.59)     .764     62.1     .104       Infection     Thomas     0.93 (0.83–1.05)     .263     0.0     .774       Farney     1.21 (0.68–2.17)     .516     33.8     .196       Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     .36.2     .180       Manaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NDDMAT     Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)                                                                                                                               |                   | Hanaway         | 0.89 (0.51-1.55)  | .687 | 0.0               | .543                |
| Ciancio     1.12 (0.35–3.62)     .850     81.4     .020       Ciancio     1.40 (0.16–12.59)     .764     62.1     .104       Infection     Thomas     0.93 (0.83–1.05)     .263     0.0     .774       Farney     1.21 (0.68–2.17)     .516     33.8     .196       Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     0.97 (0.73–1.28)     .825     40.2     .153       Lu     1.00 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     .36.2     .180       Manaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .630       Ciancio     0.50 (0.13–1.94)     .315     0.                                                                                                                          | CAN               | Farney          | 2.45 (1.02-5.94)  | .046 | 0.0               | .442                |
| Ciancio     1.40 (0.16–12.59)     .764     62.1     .104       Infection     Thomas     0.93 (0.83–1.05)     .263     0.0     .774       Farney     1.21 (0.68–2.17)     .516     33.8     .196       Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     36.2     .180       Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       MomAp     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.13–1.94)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       MADAPA     0.13–1.94)     .315     0.0     .630       MODMAT     Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184 <td></td> <td>Ciancio</td> <td>1.12 (0.35-3.62)</td> <td>.850</td> <td>81.4</td> <td>.020</td>                               |                   | Ciancio         | 1.12 (0.35-3.62)  | .850 | 81.4              | .020                |
| Infection     Thomas     0.93 (0.83–1.05)     .263     0.0     .774       Farney     1.21 (0.68–2.17)     .516     33.8     .196       Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     36.2     .180       Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501                                                                                                                          |                   | Ciancio         | 1.40 (0.16–12.59) | .764 | 62.1              | .104                |
| Farney     1.21 (0.68–2.17)     .516     33.8     .196       Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     36.2     .180       Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                        | Infection         | Thomas          | 0.93 (0.83-1.05)  | .263 | 0.0               | .774                |
| Ciancio     0.97 (0.73–1.28)     .822     24.0     .261       Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     36.2     .180       Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                     |                   | Farney          | 1.21 (0.68–2.17)  | .516 | 33.8              | .196                |
| Ciancio     1.05 (0.70–1.56)     .825     40.2     .153       Lu     1.00 (0.70–1.42)     .999     36.2     .180       Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                   |                   | Ciancio         | 0.97 (0.73–1.28)  | .822 | 24.0              | .261                |
| Lu     1.00 (0.70-1.42)     .999     36.2     .180       Hanaway     1.25 (0.71-2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46-2.56)     .855     0.0     .582       Ciancio     0.66 (0.33-1.31)     .233     27.7     .240       Hanaway     0.63 (0.21-1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18-1.74)     .317     0.0     .816       Ciancio     0.50 (0.13-1.94)     .315     0.0     .630       Hanaway     0.44 (0.13-1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48-3.59)     .594     -     -       Hanaway     1.14 (0.78-1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                 |                   | Ciancio         | 1.05 (0.70-1.56)  | .825 | 40.2              | .153                |
| Hanaway     1.25 (0.71–2.21)     .437     45.4     .119       CMV infection     Farney     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Lu              | 1.00 (0.70–1.42)  | .999 | 36.2              | .180                |
| CMV infection     Famey     1.08 (0.46–2.56)     .855     0.0     .582       Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     –       Hanaway     1.14 (0.78–1.67)     .501     -     –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Hanaway         | 1.25 (0.71-2.21)  | .437 | 45.4              | .119                |
| Ciancio     0.66 (0.33–1.31)     .233     27.7     .240       Hanaway     0.63 (0.21–1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CMV infection     | Farney          | 1.08 (0.46-2.56)  | .855 | 0.0               | .582                |
| Hanaway     0.63 (0.21-1.84)     .394     21.9     .258       NODMAT     Ciancio     0.56 (0.18-1.74)     .317     0.0     .816       Ciancio     0.50 (0.13-1.94)     .315     0.0     .630       Hanaway     0.44 (0.13-1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48-3.59)     .594     -     -       Hanaway     1.14 (0.78-1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | Ciancio         | 0.66 (0.33-1.31)  | .233 | 27.7              | .240                |
| NODMAT     Ciancio     0.56 (0.18–1.74)     .317     0.0     .816       Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | Hanaway         | 0.63 (0.21-1.84)  | .394 | 21.9              | .258                |
| Ciancio     0.50 (0.13–1.94)     .315     0.0     .630       Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Farney     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NODMAT            | Ciancio         | 0.56 (0.18–1.74)  | .317 | 0.0               | .816                |
| Hanaway     0.44 (0.13–1.48)     .184     0.0     .759       GCSF use     Famey     1.31 (0.48–3.59)     .594     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Ciancio         | 0.50 (0.13-1.94)  | .315 | 0.0               | .630                |
| GCSF use     Famey     1.31 (0.48–3.59)     .594     -     -     -       Hanaway     1.14 (0.78–1.67)     .501     -     -     -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | Hanaway         | 0.44 (0.13–1.48)  | .184 | 0.0               | .759                |
| Hanaway 1.14 (0.78–1.67) .501 – – –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GCSF use          | Farney          | 1.31 (0.48–3.59)  | .594 | _                 | _                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | Hanaway         | 1.14 (0.78–1.67)  | .501 | _                 | -                   |

BPAR = biopsy-proven acute rejection, CAN = chronic allograft nephropathy, CMV = cytomegalovirus, DGF = delayed graft function, ESRD = end-stage renal disease, GCSF = granulocyte colony stimulation factor, NODAT = new-onset diabetes mellitus after transplant.

| Table 3                       |                    |                  |      |                             |                     |
|-------------------------------|--------------------|------------------|------|-----------------------------|---------------------|
| Subgroup analysis for BPAI    | R.                 |                  |      |                             |                     |
| Fctors                        | Subsets            | RR and 95% Cl    | Р    | Heterogeneity ( <i>l</i> ²) | P for heterogeneity |
| Sample size                   | ≥100               | 0.74 (0.31-1.78) | .506 | 63.6                        | .097                |
|                               | <100               | 0.91 (0.45-1.85) | .797 | 0.0                         | .657                |
| Percentage male               | ≥50.0              | 0.86 (0.48-1.54) | .613 | 29.5                        | .235                |
|                               | <50.0              | 0.57 (0.19-1.71) | .314 | 0.0                         | .768                |
| Immunologic risk              | High               | 0.92 (0.48-1.78) | .805 | 0.0                         | .540                |
|                               | High and low       | 0.76 (0.35-1.64) | .485 | 32.9                        | .225                |
| Percentage of cytomegalovirus | ≥80.0              | 0.57 (0.19-1.71) | .314 | 0.0                         | .768                |
|                               | <80.0              | 0.74 (0.31-1.78) | .506 | 63.6                        | .097                |
| ALEM doses                    | 30 mg              | 0.69 (0.36-1.30) | .249 | 32.3                        | .228                |
|                               | 15 mg or 0.3 mg/kg | 1.08 (0.49-2.39) | .855 | 0.0                         | .673                |
| Control                       | rATG               | 0.72 (0.39-1.33) | .290 | 27.3                        | .253                |
|                               | Thymoglobulin      | 0.99 (0.44-2.19) | .972 | 0.0                         | .490                |

 $\mathsf{ALEM} = \mathsf{alemtuzumab}, \ \mathsf{Cl} = \mathsf{confidence} \ \mathsf{interval}, \ \mathsf{rATG} = \mathsf{rabbit} \ \mathsf{antithymocyte} \ \mathsf{globulin}, \ \mathsf{RR}.$ 



changed after adjusting for publication bias using the trim and fill method.  $^{\left[ 28\right] }$ 

# 4. Discussion

This meta-analysis was based on RCTs and we evaluated the potential efficacy and safety of ALEM versus ATG in treatment of kidney transplantation patients. Our study included 446 patients from six RCTs across a broad range of populations. The findings suggest no significant differences between ALEM and ATG for BPAR, mortality, graft failure, DGF, CAN, infections, CMV infections, NODAT, and GCSF use. Sensitivity analyses indicated that ALEM might increase the risk of CAN; however, future large-scale RCTs are needed to verity this result. A previous meta-analysis suggested that the risk of BPAR is significantly lower in patients receiving ALEM induction therapy than those receiving interleukin-2 receptor antibodies, whereas similar effects were observed for BPAR, graft loss, DGF, and mortality between patients receiving ALEM and rATG therapy.<sup>[29]</sup> Zhang et al<sup>[30]</sup> indicated that ALEM induction therapy for kidney transplantation patients is superior to traditional antibody therapy for preventing acute rejection; however, in patients at high immunologic risk, no statistically significant differences were observed. Further, the authors indicated no significant differences for graft survival and patient survival rates. Finally, Hao et al<sup>[31]</sup> conducted a meta-analysis comparing the efficacy and safety of ALEM, ATG, and daclizumab for induction therapy in organ transplantation patients, suggesting that ALEM





and daclizumab are as effective as ATG for induction therapy in kidney transplantation after 24 months. Further, the risk of infection was significantly lower after 36 months in patients receiving ALEM than those receiving ATG. The studies by Zhang et al<sup>[30]</sup> and Hao et al<sup>[31]</sup> did not directly compare the efficacy and safety of ALEM and ATG, which is an inherent limitation of the data. Further, the potential influence of a single trial in the meta-analysis by Morgan et al was not evaluated.<sup>[29]</sup> Finally, because of the small number of trials included in this study, event rates were lower than expected. Consequently, although the summary results were consistent, no statistically significant differences between ALEM and ATG were noted. Therefore, we performed a meta-analysis based on RCTs to evaluate the treatment effects of ALEM versus ATG in kidney transplantation patients.

There were no significant differences in the risk of BPAR between ALEM and ATG. However, the study conducted by Farney et al<sup>[27]</sup> reported inconsistent results, suggesting that ALEM significantly reduces the risk of BPAR with similar adverse events to those observed for rATG induction therapies. These results are likely attributable to the large sample size, which allowed higher statistical power to detect small differences between ALEM and ATG. Further, the number of patients at low immunologic risk included in this study may have contributed to this significant difference.<sup>[13]</sup> In addition, the results of individual trials were consistent with the overall analysis of other outcomes, likely attributable to the sample size being smaller than expected; further, these trials were designed to evaluate BPAR or renal function levels as the primary endpoint. Hence, clinically



Table 4

CAN

Infection

NODMAT

CMV infection

| Publication bias. <sup>[21,22]</sup> |                             |  |
|--------------------------------------|-----------------------------|--|
| Outcomes                             | P for Egger <sup>[21]</sup> |  |
| BPAR                                 | .556                        |  |
| Death                                | .711                        |  |
| Graft failure                        | .508                        |  |
| DGF                                  | .276                        |  |

significant differences in individual trials were not found, and the summary results for these outcomes may be unreliable because of low statistical power. Finally, subgroup analysis revealed ALEM had no significant effect on BPAR in any subpopulations, possibly because of the small number of trials included in each subset. Therefore, the summary results provide relative results and a synthetic review.

.295

.147

439

636

P for Begg<sup>[22]</sup>

1.000

1.000

1.000

.221

1.000

.060

1.000

1.000

There are several limitations of this study. First, the number of included trials was small and event rates were low. Therefore, stratified analyses not detecting significant differences might be because of the low statistical power. Second, publication bias might exist. In this study, 5 of the included trials were conducted in the United States and only 1 in China. The treatment effects might be a trend in US patients. Third, several important characteristics and individual data were not available, which restricted our ability to perform a more detailed relevant analysis. Fourth, although stratification based on induction therapy doses and control drugs have already conducted, the impact of maintenance therapies could not be ruled out, and might affect the treatment effect of different induction therapies. Finally, in the planning stages, we intend to evaluate the changes of CMV prophylaxis among the included trials; such results were not available in the above trials.

In conclusion, the findings of this study indicate there are no significant differences between ALEM and ATG for the outcomes of BPAR, mortality, graft failure, DGF, CAN, infections, CMV infections, NODAT, and GCSF use. Future large-scale trials should be conducted to verify the treatment of ALEM in kidney transplantation, and a network meta-analysis should be conducted to summarize the direct and indirect comparisons of the best treatment regimens.

#### References

- Drey N, Roderick P, Mullee M, et al. A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am J Kidney Dis 2003;42:677–84.
- [2] Wolfe RA, Ashby VB, Milford EL, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 1999;341: 1725–30.
- [3] Laupacis A, Keown P, Pus N, et al. A study of the quality of life and costutility of renal transplantation. Kidney Int 1996;50:235–42.
- [4] KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant 2009;9(Suppl 3):S1–55.
- [5] RDS U. USRDS 2013 Annual Data Report: atlas of chronic kidney disease and end-stage renal disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases 2013.
- [6] Organization WH. Global observatory on donation and transplantation. World Health Organization. Available at: http://www. trans

plant-observatory.org/Pages/Data-Reports.aspx. Accessed on June 12, 2015.

- [7] Hardinger KL, Rasu RS, Skelton R, et al. Thymoglobulin induction dosing strategies in a low-risk kidney transplant population: three or four days? J Transplant 2010;2010:957549.
- [8] Nashan B. Antibody induction therapy in renal transplant patients receiving calcineurin-inhibitor immunosuppressive regimens: a comparative review. Bio Drugs 2005;19:39–46.
- [9] Kaufman DB, Leventhal JR, Axelrod D, et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction—long-term results. Am J Transplant 2005;5:2539–48.
- [10] Margreiter R, Klempnauer J, Neuhaus P, et al. Alemtuzumab (Campath-1H) and tacrolimus monotherapy after renal transplantation: results of a prospective randomized trial. Am J Transplant 2008;8:1480–5.
- [11] Oliaei F, Akbari R, Ghazi Mirsaeid AM. Adding thymoglobuline to the conventional immunosuppressant regimen in kidney transplantation: a cost-benefit analysis. Caspian J Intern Med 2012;3:514–8.
- [12] Cravedi P, Codreanu I, Satta A, et al. Cyclosporine prolongs delayed graft function in kidney transplantation: are rabbit anti-human thymocyte globulins the answer? Nephron Clin Pract 2005;101:c65–71.
- [13] Hanaway MJ, Woodle ES, Mulgaonkar S, et al. Alemtuzumab induction in renal transplantation. N Engl J Med 2011;364:1909–19.
- [14] Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- [15] Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1–2.
- [16] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177–88.
- [17] Ades AE, Lu G, Higgins JP. The interpretation of random-effects metaanalysis in decision models. Med Decis Making 2005;25:646–54.
- [18] Deeks JJ, Higgins JPT, Altman DG. Analyzing data and undertaking meta-analyses. In: Higgins J, Green S, eds. Cochrane Handbook for Systematic Reviews of Interventions. 5.0.1. ed. Oxford, UK: The Cochrane Collaboration; 2008.
- [19] Higgins JP, Thompson SG, Deeks JJ, et al. Measuring inconsistency in meta-analyses. BMJ 2003;327:557–60.
- [20] Tobias A. Assessing the influence of a single study in the meta-analysis estimate. Stata Technical Bulletin 1999;8:
- [21] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34.
- [22] Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994;50:1088–101.
- [23] Thomas PG, Woodside KJ, Lappin JA, et al. Alemtuzumab (Campath 1H) induction with tacrolimus monotherapy is safe for high immunological risk renal transplantation. Transplantation 2007;83:1509–12.
- [24] Ciancio G, Gaynor JJ, Roth D, et al. Randomized trial of thymoglobulin versus alemtuzumab (with lower dose maintenance immunosuppression) versus daclizumab in living donor renal transplantation. Transplant Proc 2010;42:3503–6.
- [25] Ciancio G, Burke GW, Gaynor JJ, et al. A randomized trial of thymoglobulin vs. alemtuzumab (with lower dose maintenance immunosuppression) vs. daclizumab in renal transplantation at 24 months of follow-up. Clin Transplant 2008;22:200–10.
- [26] Lu TM, Yang SL, Wu WZ, et al. Alemtuzumab induction therapy in highly sensitized kidney transplant recipients. Chin Med J (Engl) 2011;124:664–8.
- [27] Farney AC, Doares W, Rogers J, et al. A randomized trial of alemtuzumab versus antithymocyte globulin induction in renal and pancreas transplantation. Transplantation 2009;88:810–9.
- [28] Duval S, Tweedie R. A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. J Am Stat Assoc 2000;95:89–98.
- [29] Morgan RD, O'Callaghan JM, Knight SR, et al. Alemtuzumab induction therapy in kidney transplantation: a systematic review and meta-analysis. Transplantation 2012;93:1179–88.
- [30] Zhang X, Huang H, Han S, et al. Alemtuzumab induction in renal transplantation: a meta-analysis and systemic review. Transpl Immunol 2012;27:63–8.
- [31] Hao WJ, Zong HT, Cui YS, et al. The efficacy and safety of alemtuzumab and daclizumab versus antithymocyte globulin during organ transplantation: a meta-analysis. Transplant Proc 2012;44:2955–60.