
1Scientific Reports |          (2020) 10:264  | https://doi.org/10.1038/s41598-019-57187-z

www.nature.com/scientificreports

Domain-mediated interactions for 
protein subfamily identification
Heetak Lee   , Inhae Kim, Seong Kyu Han, Donghyo Kim, Jungho Kong & Sanguk Kim   *

Within a protein family, proteins with the same domain often exhibit different cellular functions, 
despite the shared evolutionary history and molecular function of the domain. We hypothesized that 
domain-mediated interactions (DMIs) may categorize a protein family into subfamilies because the 
diversified functions of a single domain often depend on interacting partners of domains. Here we 
systematically identified DMI subfamilies, in which proteins share domains with DMI partners, as 
well as with various functional and physical interaction networks in individual species. In humans, 
DMI subfamily members are associated with similar diseases, including cancers, and are frequently 
co-associated with the same diseases. DMI information relates to the functional and evolutionary 
subdivisions of human kinases. In yeast, DMI subfamilies contain proteins with similar phenotypic 
outcomes from specific chemical treatments. Therefore, the systematic investigation here provides 
insights into the diverse functions of subfamilies derived from a protein family with a link-centric 
approach and suggests a useful resource for annotating the functions and phenotypic outcomes of 
proteins.

Protein families consist of evolutionarily, functionally, and structurally relevant proteins1, which provide insights 
into protein functions and the relationship between genes and phenotypes2–6. Protein subfamilies emerged to 
divide protein families into subgroups of diversified molecular functions; hence, each subfamily includes func-
tionally more similar proteins. Many previous studies, including subfamily classifications in phylogenomics 
(SCI-PHY)7, Genome Modeling and Model Annotation (GeMMA)8, Active Sites Modeling and Clustering 
(ASMC)9, Two-Level Iterative Clustering Process (TuLIP)10, and Signature Dynamics of Protein Families 
(SignDy)11, utilize the similarity between proteins based on sequence, structure, or dynamics to identify protein 
subfamilies. As a result of previous classification methods, the functionally relevant proteins within the same 
subfamily tend to have similar structures and sequences, which may mediate distinct protein interactions across 
subfamilies within the same protein family12.

Here, we propose that particular domain-mediated interactions (DMIs) subdivide a protein family into its 
subfamilies consisting of biologically relevant proteins. Indeed, functional activities of proteins are closely asso-
ciated with processes in which interacting proteins are involved13,14. For instance, although Pho85 and Bck1 
are single-domain proteins and both possess a Pkinase domain (Pfam-A, PF00069), Pho85 interacts with Pcl1 
(cyclin) and acts in the cell cycle mechanism, whereas Bck1 interacts with and activates Mkk2 (mitogen-activated 
kinase kinase) in a cell wall modulation pathway in yeast15,16. Similarly, changes in a shared domain across pro-
teins within the same protein family mediate the divergence of interactions17. Furthermore, the interacting pro-
teins in a domain-domain interaction are known to co-evolve18 and to be functionally similar19,20. In previous 
work, we showed that proteins connected by domain-domain interactions tend to form specific biological mod-
ules such as functional groups, protein complexes, and subcellular localization21. Thus, protein interactions medi-
ated by the same domain may be an appropriate metric by which to classify subfamilies. However, the implication 
of using DMIs for dividing protein subfamilies has not yet been systematically investigated.

In this study, we systematically identified DMI subfamilies consisting of proteins sharing the same DMIs 
in species-specific domain-resolved protein interaction networks (DPNs). We then evaluated the qualification 
of DMI subfamilies as functional subdivisions of the protein family. We generated 15 independent sets of DMI 
subfamilies from 15 DPNs based on functional or physical networks in human, yeast, fly, and plant genomes. We 
found that proteins within the same DMI subfamily tended to be associate with similar functions. Moreover, we 
compared DMI subfamilies to the functional subfamilies, designated using the kinase classification, and con-
firmed that members of DMI subfamilies frequently co-occurred in kinase subfamilies. In addition, proteins 
within the same kinase groups utilized more similar DMIs than did proteins from different kinase groups. In 
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yeast, we sought to identify the relationships between domain interaction interfaces and chemical compounds, 
and we confirmed these relationships using protein structures. Our results suggest that DMI information con-
tributes to the identification of a group of biologically relevant proteins as a subdivision of protein families and 
provides insights into a link-centric point of view in inferring the biological roles of proteins.

Results
DMI subfamilies are functional subdivisions of their parent-domain families.  To investigate 
the biological relevance among proteins sharing DMIs, we systematically identified DMI subfamilies from 
domain-resolved protein-protein interaction (PPI) networks. Specifically, we defined a DMI subfamily, SF(i, j), 
as a group of proteins that satisfies the following conditions: i) the member proteins share domain i; ii) the mem-
bers have at least one PPI neighbor with domain j; iii) domains i and j interact with each other. We also defined a 
parent-domain family, F(i), as a set of proteins that have domain i in a species. Note that F(i) is a parent-domain 
family of SF(i, j) because SF(i, j) is always a subset of F(i) and F(i) needs to contain at least one SF(i, j). For this 
identification, we constructed domain-resolved PPI networks (Fig. 1a) in which each PPI connects two proteins 
with at least one pair of interacting domains. We summarized statistics for such networks in Supplementary 
Table S1. We used 12,207 pairs of interacting domains that had been identified by either 3D structures of protein 
complexes or various prediction methods21,22. We applied this approach to 15 PPI networks and generated 15 sets 

Figure 1.  Subcategorization of parent-domain family. (a) Scheme for the detection of DMI subfamilies 
considering domain-mediated interactions from parent-domain family. To construct domain-resolved protein 
interaction networks (DPNs), species-specific protein interaction networks (e.g., BIOGRID network in 
humans), domain annotations, and reference domain interactions were used (left). When a protein interaction 
was connected with at least one DMI, this protein interaction was selected as a link in the DPN (middle). In 
the genome, proteins sharing a domain were involved in the same parent-domain family (upper right). Among 
parent-domain family members, proteins sharing a domain interaction were selected as a DMI subfamily (lower 
right). (b,c) Correlation between the number of annotated functions of parent-domain family members without 
duplicates and the number of DMI subfamilies contained in the parent-domain family. (b) Correlation for 
all parent-domain subfamilies. (c) Correlation for the largest 25% of parent-domain families. (d) Correlation 
between the number of DMI-exclusive functions and the number of DMI subfamilies within the parent-domain 
families.
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of DMI subfamilies (see Methods). For example, from the human-BIOGRID network, we detected 3,620 DMI 
subfamilies from 630 parent-domain families (Supplementary Table S2).

We found that DMI subfamilies are functional subgroups of their parent-domain families. We observed 
that the number of DMI subfamilies significantly correlated with the number of functional annotations within 
the parent-domain families (Fig. 1b; Spearman correlation coefficient, R = 0.59, P < 10−56). We also confirmed 
this result based on functional annotations excluding gene-function associations bearing the IPI evidence code 
(inferred from physical interactions) (see Methods) (Fig. S1a; R = 0.58, P < 10−55). These results indicate that 
parent-domain families with greater functional diversity tend to be divided into more DMI subfamilies. We 
observed such a positive correlation (Fig. 1c; R = 0.66, P < 10−19) for the largest 25% of parent-domain families, 
which contained more than 27 members (Fig. S2a); the results were consistent in other quarters (Fig. S2b–d; 
P < 0.05).

We also found that DMI subfamilies characterized protein functions that were unexplained by their 
parent-domain families. We defined such functions as DMI-exclusive functions and summarized them in 
Supplementary Table S3. The existence of DMI-exclusive functions indicates that DMI information clusters the 
dispersed parent-domain family proteins that perform in the same biological process or pathway. The number 
of DMI subfamilies was significantly correlated with the number of DMI-exclusive functions (Fig. 1d; R = 0.66, 
P < 10−75). For example, exocytosis (GO:0006887) is a DMI-exclusive function in F(Ras), which is enriched 
with SF(Ras, FYVE_2) consisting of RAB8B, RAB27A, RAB27B, RAB8A, HRAS, NRAS, RAB11A, RAB3A, and 
KRAS. These Rab GTPases regulate steps of vesicle transports. In particular, RAB27A interacts with two FYVE_2 
domain-containing proteins, SYTL1-5 and RPH3A, which are effectors that function in the dynamics of secretory 
granules23. On the other hand, SF(Ras, RhoGEF) consists of 15 proteins, including 10 Rho GTPases. This DMI 
subfamily is enriched with a DMI-exclusive function, regulation of cell migration (GO:0030334). We also found 
that the number of DMI subfamilies correlated with the number of DMI-exclusive functions based on functional 
annotation excluding gene-function associations bearing the IPI evidence code (Fig. S1b; R = 0.61, P < 10−63). 
Furthermore, we found that the number of associated DMIs was positively correlated with the functional diver-
sity of genes (Fig. S3; R = 0.23, P < 10−67). Taken together, these results suggest that DMI information reduces the 
functional heterogeneity of parent-domain families.

DMI subfamilies contain functionally and phenotypically relevant proteins.  We next investigated 
the biological relevance of DMI subfamily members using two types of functional similarity measurements: the 
kappa score and the number of enriched terms (see Methods). The kappa score (κ) represents the functional 
similarity between members and quantifies the extent to which two genes share categorical items, considering 
the agreement expected by chance24. The number of enriched terms (NE) indicates how many functions are com-
monly associated with the members of a DMI subfamily. A subfamily with higher κ and NE values contains 
functionally more relevant proteins than a subfamily with lower κ and NE values. Furthermore, we compared the 
values from DMI subfamilies with the values from random DMI (rDMI) subfamilies. For example, for a subfam-
ily, SF(i, j), which contained four members, we randomly sampled four proteins from the parent-domain family, 
F(i), for 1,000 times (Fig. 2a). In humans, DMI subfamily members consistently had higher κ scores than the 
members of rDMI subfamilies across six comparisons (Fig. 2b; Wilcoxon signed-rank test, P < 10−9). For exam-
ple, in the co-fractionation network (‘Wan et al.’ on the figure), average κ scores of DMI and rDMI were 0.305 
and 0.247, respectively (P = 5.29 × 10−10). We also confirmed the same tendency in sets of DMI subfamilies from 
yeast, fly, and plant genomes using the species-specific networks STR > 0.7, STR_EXP, and BIOGRID, respec-
tively (see Methods) (Fig. S4; P < 10−9).

Furthermore, when we investigated the number of enriched functions (NE) in DMI subfamilies and com-
pared this with the NE in rDMI subfamilies, we recognized that DMI subfamilies had a higher NE in all of the 
sets from the given networks (Fig. 2c; P < 10−10). We also found the same tendency in other sets of DMI sub-
families from the other nine networks (Fig. S5; P < 10−25). In addition, because we were concerned about the 
potential bias raised by GO annotations such as “inferred from physical interaction” (IPI), we tested the number 
of enriched functions using the functional annotations except gene-function annotations bearing the IPI code 
and confirmed the same tendency (Fig. S6; P < 10−6). To confirm the robustness of our findings, we investigated 
NE based on gene-disease associations (see Methods). We found that DMI subfamilies were enriched with more 
diseases than rDMI subfamilies in all comparisons except the co-fractionation network (Fig. 2d; Supplementary 
Table S4; P < 10−4). Moreover, DMI subfamilies within the same parent-domain family were distinctly related 
to cancer types (Supplementary Table S5, Hypergeometric test, Corrected P < 0.01). For example, SF(Pkinase, 
tRNA-synt_1c), SF(Pkinase, I-set), SF(Pkinase, FGF), SF(Pkinase, DSPc), and SF(Pkinase, Death) associated with 
melanoma, breast carcinoma, skin neoplasms, squamous cell carcinoma, and lung neoplasms, respectively. For 
instance, SF(Pkinase, Death) contains seven members (MAP3K8, MAPK3, MAPK14, MAPK1, AKT1, CHEK2, 
and DAPK1) that are related to lung neoplasms. Indeed, Fas-associated protein with death domain (FADD) is 
upregulated in lung adenocarcinomas, and expression of phosphorylated FADD correlated with poor clinical 
outcomes25. This indicates that FADD needs to interact with kinases, and kinases may collaborate with particular 
substrates in distinct cancer types. Taken together, the results suggest that DMI subfamilies can be regarded as 
functional and phenotypic subcategories of parent-domain families.

Because the identity of shared PPI partners is a powerful aid in detecting groups of biologically relevant proteins, 
we next investigated how many DMI subfamilies were associated with multiple-shared PPI partners. Conceptually, 
DMI subfamily members may interact with multiple proteins through a corresponding DMI (Fig. S7a). For example, 
SF(DEAD, PROCT) contains seven proteins including DExH-Box Helicases (DHXs), and these proteins commonly 
interact with PRPF8, which possesses a PROCT domain. We found that in human datasets, 6.6% to 10.8% of DMI 
subfamilies have a single PPI partner from the given networks (Supplementary Table S6). For instance, from the 
BIOGRID network, 6.6% (238 out of 3,620) of DMI subfamilies have a single PPI partner. This indicates that most 
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DMI subfamilies (89.2% to 93.4%) have multiple-shared PPI partners, and DMI information provides a distinct 
boundary for the identification of protein groups. Furthermore, we investigated κ and NE for sets of DMI subfam-
ilies classified by the number of shared PPI partners (n): DMI-A (n = 1) and DMI-B (n > 1). Almost all compari-
sons showed that DMI subfamilies have significantly higher κ than rDMI subfamilies (P < 0.001) apart from the 
AP-MS network (‘Huttlin et al.’ on the figure) DMI-A case (Fig. S7b; P = 0.002). DMI subfamilies also have signifi-
cantly higher NE (function) than rDMI subfamilies in all the given comparisons (Fig. S7c; P < 0.001). Although on 
average DMI subfamilies have higher NE (disease) than rDMI subfamilies, DMI-A shows significance only in the 
AP-MS network. However, DMI-B shows significance in almost all networks except for the co-fractionation network 
(Fig. S7d; P < 0.001), and these results show the same tendency as the disease results presented in Fig. 2d.

DMI information is relevant to the functional classification of kinases.  To test our hypothesis 
with well-known functional subfamilies, we investigated overlaps between DMI subfamilies of F(Pkinase) from 
the BIOGRID network and kinase groups in human kinase classification. Manning et al. (2002) classified kinases 
into subfamilies using substrate specificity and functional similarity of kinases26,27. The kinase groups are func-
tionally divergent subfamilies of kinases, and each kinase group contains biologically relevant kinases. We found 
that SF(Pkinase, *) members significantly co-occurred in individual kinase groups, including the protein kinase 
A, G, and C group (AGC), the glycogen synthase kinase and CDK-like kinase group (CMGC), the calcium- and 
calmodulin-regulated kinase group (CAMK), and a group of sterile kinases (STE) (Fig. 3a; empirical P < 0.01). The 
overlap ratio is defined as the number of overlapping kinases between a DMI subfamily and a kinase group divided 
by the number of members in a given DMI subfamily (see Methods). For example, SF(Pkinase, MAT1), consisting of 
CDK2, CDK7, CDK8, and ICK, is significantly enriched with only the CMGC kinase group. All SF(Pkinase, MAT1) 
members interact with MNAT1, which possesses a targeting factor for CDK-activating kinase, the MAT1 domain28. 
In another example, SF(Pkinase, TGF_beta_GS) is significantly enriched with the tyrosine kinase-like (TKL) group. 
Among members of this DMI subfamily, BMPR2 phosphorylates the glycine/serine rich domain (TGF_beta_GS 
domain, PF08515) contained in BMPR1A and BMPR1B29. These results and examples indicate that there is a sub-
stantial agreement between kinase classification and DMI subfamilies of F(Pkinase).

Figure 2.  DMI subfamilies as biological subcategories of parent-domain families. (a) Scheme for preparation of 
comparisons between subcategories of a parent-domain family: rDMI is a random sample of a parent-domain 
family with size N, which is the number of members of the real DMI subfamily. For each DMI subfamily, we 
sampled 1,000 times from a parent-domain family to prepare an rDMI set for comparison. (b–d) Comparisons 
between DMI subfamily and random samples of parent-domain family. Gray and black boxplots indicate 
distributions of values from random samples and DMI subfamily, respectively. Diamonds show mean; p-values 
were calculated by Wilcoxon signed-rank test. Several networks were used to detect DMI subfamilies: STR > 0.7 
(a STRING network containing links with a combined score greater than 0.7); STR_EXP (a STRING network 
containing links with an experimental score greater than zero); BIOGRID (involving experimentally-confirmed 
links); and Huttlin et al., Wan et al., and Luck et al. (networks constructed through AP-MS, co-fractionation, 
and yeast two-hybrid, respectively). (b) Functional similarity between members within each subfamily 
(*P < 10−9). (c) The number of enriched functional terms (*P < 10−10). (d) The number of enriched diseases 
(*P < 10−4).
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We detected DMI subfamilies using individual DMIs that proteins use to form protein interactions. However, to 
compare DMI information with sequence and structure features, we calculated similarities between proteins using 
DMI profiles as DMI similarity. Each DMI profile consists of the Pkinase domain (PF00069)-mediated interactions 
associated with a protein. We found that kinases within the same kinase group tended to be close to each other in 
dendrograms based on DMI similarity (Fig. S8). We also estimated average DMI similarities of kinase pairs within 
and across kinase groups (see Methods). The DMI similarities of kinase pairs within kinase groups (diagonal terms) 
were significantly higher than those of kinase pairs across kinase groups (off-diagonal terms) (Fig. 3b,c; P < 10−5). 
DMI similarity was greater for proteins within the same kinase subfamilies than for proteins between different sub-
families, and the difference was more distinguishable compared to sequence identity (P < 0.01), structural distance 
(RMSD, P = 0.08), and structural similarity (TM-score, P = 0.39) (Fig. 3c,d). Note that higher DMI similarity, higher 
sequence identity, higher structural similarity (TM-score), and shorter structural distance (RMSD) indicate that the 
compared proteins are biologically more similar. Taken together, these results suggest that the functional subcatego-
rization of kinases is related to DMI information rather than to the structure of the kinases.

Figure 3.  Relationship between kinase groups and DMI subfamilies. (a) Overlap analysis between the kinase 
group and child DMI subfamilies of Pkinase (PF00069) domain family. DMI subfamilies, enriched with at 
least one kinase group (P < 0.01 and top three DMI subfamilies), were represented on a matrix. Circle size 
shows the overlap ratio between kinase group and DMI subfamily. Gradient indicates the empirical p-value of 
the overlap ratio. (b–d) Similarity matrices between kinase groups. The similarities are calculated distinctly 
according to the features of members such as DMI profile similarity, sequence identity, structural distance, and 
structural similarity. Each cell of a matrix contains the average similarity between members within the kinase 
group (diagonal terms) or across kinase groups (off-diagonal terms). (b) The similarity between kinase group 
members based on their associated DMIs. The color bar shows similarities (red: similar; blue: dissimilar). (c) 
Comparison of the average similarity between distributions from diagonal terms and off-diagonal terms. Higher 
values indicate higher similarity for DMI similarity, sequence identity, and structural similarity. Lower values 
indicate higher similarity for structural distance. The p-values were calculated by the Mann-Whitney U test. 
Diamonds indicate mean; blue lines show median of distributions. (d) Similarity matrices based on sequence 
identity (left), structural distance (middle), and structural similarity (right).
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DMI subfamilies contribute to the identification of the interaction between DMI interface and 
chemical compound.  Chemogenomic experiments in yeast have identified genotype-phenotype relation-
ships by measuring fitness defect (FD) score, defined as growth fitness change between a mock-treated deletion 
strain and a chemical compound (e.g., tunicamycin, 25 μM)-treated deletion strain. Positive or negative FD scores 
suggest that the deletion strain is sensitive or resistant to the compound, respectively30. We determined κ and 
NE values for DMI subfamilies using gene-phenotype associations from chemogenomic experiments. We found 
that DMI subfamilies tended to have higher κ (Fig. 4a; P < 10−4) and NE (Fig. 4b; P < 10−3) values than did rDMI 
subfamilies. This finding indicates that the DMI subfamily subdivides the parent-domain family based on yeast 
phenotype.

Likewise, the discovery of physical associations between protein interaction interfaces and chemical com-
pounds is useful information for identifying potential drug targets and for understanding the action of drugs in 
associated functions and phenotypes31–33. We attempted to determine whether a DMI subfamily could assist in 
identifying the interfaces influenced by chemical compound binding. From simple protein-chemical compound 
relationships, we tried to infer the associations between domain interaction interfaces and chemical compounds. 
We constructed a DMI-chemical compound network (DCN) composed of DMI subfamily and compound inter-
actions (DC interactions) defined as enrichment tests relying on protein-compound relationships (Fig. 4c; hyper-
geometric test, corrected P < 0.01). The DC interactions identified the associations between domain interaction 
interfaces and chemical compounds. The DCN is provided in Supplementary Table S7 (see Methods).

As a result, we collected 88 significant adjacent relationships between domain interaction interfaces and 
chemical compounds within 3D structures as the reference-DC interactions (Fig. S9; structural distance < 10 Å, 
permutation test Z < −1.65). The values and structure information for the reference-DC interactions are sum-
marized in Supplementary Table S8. The statistically more stringent DC interactions showed shorter distances in 
protein structures (Fig. 4d; R = −0.27, P < 0.05). This suggests that the DMI subfamily may be useful in under-
standing which particular region of a protein mediates the protein-drug interaction and in identifying potential 
drug targets such as proteins and protein interactions. For example, the Inhibitor_I9/Petidase_S8-tetraethylene 
glycol interaction had a structural distance (D) of 3.99 Å and an enrichment p-value (PE) of 0. The Transkey_pyr/
Transketolase_N-5-o-phosphono-α-d-ribofuranose interaction had D = 2.60 Å and PE = 0.0002 (Fig. 4d, black 
arrows, and Fig. S10). Interestingly, we found a domain that possessed multiple interfaces for interacting with dif-
ferent domains and found that these interfaces associated with distinct chemical compounds. The distinct inter-
faces on Metallophos domain to interact with HEAT_2 domain and B56 domain were close to di(hydroxyethyl)
ether (D = 3.00 Å, PE = 1.35 × 10−6) and methyl l-leucineate (D = 7.23 Å, PE = 5.79 × 10−22), respectively (Fig. 4d, 
blue arrows, and Fig. 4e). Additionally, the interfaces on Ras domain to interact with RhoGAP domain and 
PBD domain were close to tetrafluoroaluminate ion (D = 2.62 Å, PE = 3.61 × 10−11) and sulfate ion (D = 2.66 Å, 
PE = 0.27), respectively (Fig. 4d, purple arrows, and Fig. 4f).

Discussion
We systematically identified DMI subfamilies and confirmed that they subcategorized their parent-domain fam-
ilies in individual species with respect to biological processes and phenotypic outcomes (Figs. 1 and 2). It is plau-
sible that DMI subfamilies are the evolutionary consequence of functional divergence emerged from interaction 
rewiring. It has previously been suggested that altering partners of a conserved domain would facilitate func-
tional innovation during evolution17,34. Indeed, even proteins harboring the same domain, such as kinases, have 
recruited various other proteins as interacting neighbors and have evolved to carry out distinct molecular func-
tions and biological processes12. Furthermore, although DMI subfamilies and evolutionary groups of kinases were 
consistent within a species, the two sets do not match exactly (Figs. 3 and S7). This indicates that even though the 
region used for phosphorylating substrates in kinases is highly conserved, kinases utilize distinct DMIs in differ-
ent species. Taken together, our results suggest that DMI information provides insights into the species-specific 
diversification of protein families by inferring the interacting partners in a species.

Combinations of domains within a protein have been regarded as the functional building blocks of proteins. 
Similarly, we have confirmed that domain-mediated interaction information is utilized as a boundary to subdi-
vide a protein family. Conceptually, when a protein has multiple domains (i.e., the domain combination), this 
protein may belong to several parent-domain families. From each parent-domain family, we identified DMI sub-
families by considering only the interacting domain of the corresponding domain. In other words, DMI subfam-
ilies within different parent-domain families were detected irrespective of the domain architecture of individual 
proteins. Thus, DMI subfamilies may contain both single-domain and multiple-domain proteins.

Although we focused on the diversified functions of a domain by examining its neighbors, we also observed 
that proteins were often categorized into multiple DMI subfamilies, which may be indicative of the pleiotropic 
nature of a protein. Interestingly, recent studies of disease etiology have shown that protein interactions are often 
more precise functional units for a disease phenotype than a protein itself35. For instance, site-directed mutagene-
sis studies have confirmed that the disruption of a particular interaction can result in a specific phenotype, which 
is one of many phenotypes associated with a protein36. Recently, hypotheses based on this link-centric approach 
have provided more precise interpretations of genotype-phenotype relationships than gene-centric studies37–39. 
In our dataset, proteins show a positive correlation between the numbers of associated DMIs and the numbers 
of annotated functions (Fig. S3). This indicates that domain-mediated interactions may be the functional units 
of proteins. Thus, we expect that our approach will provide insights into expanding protein annotations using a 
link-centric point of view.

Domain-mediated interactions contain both domain-domain interactions (DDIs) and domain-linear motif 
interactions (DLIs). In particular, DLIs are crucial for fine regulation of signaling pathways and for connecting 
two different functional modules21. Although DLIs are critical for understanding biological processes, we con-
sider only DDIs because of limitations in the accuracy of DLI datasets and linear motif annotations. Thus, we 
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expect that in the near future, the DMI approach will be applied to the subcategorization of domain families with 
advanced DLI and linear motif annotations.

Incorporating a large dataset of protein-chemical interactions, we inferred the associations between DMI 
interfaces and chemical compounds, which were strongly supported by three-dimensional structures (Fig. 4). 
Notably, the discoveries of druggable PPIs and interfaces are crucial in utilizing non-enzyme proteins involved 
in signaling pathways, chaperoning, and other critical functions to improve drug responses and reduce adverse 

Figure 4.  Associations between DMI subfamily and chemical compounds. (a,b) Phenotypic relevance of 
members within the same DMI subfamily in yeast. Diamonds indicate mean; lines on boxplot indicate the 
median of distributions. The p-values were calculated by Wilcoxon signed-rank test. (a) Phenotypic similarity 
between members with kappa scores. (b) The number of enriched phenotypes. The relationship between DMI 
subfamily and phenotype with a corrected p-value under 0.01 was selected. A hypergeometric test was used 
to perform enrichment test; p-values were corrected with Bonferroni correction. (c) DMI subfamily-chemical 
compound network. As one application of DMI subfamily, the interaction between domain interaction interface 
and the chemical compound was suggested by enrichment test between DMI subfamily and compound-protein 
interaction. Dark gray and gray circles indicate DMI subfamily and chemical compounds, respectively. Link 
shows the significantly enriched association between DMI subfamily and compound (DC interactions). Blue 
and purple links show examples. (d) Correlation between the structural distances of DC interactions and 
enrichment significance for DC interactions within reference set. (e,f) Examples of DC interactions with three-
dimensional structures. Thick links are described by the 3D-structure view. (e) The DC interactions mediated 
by Metallophos domain. (f) The DC interactions mediated by Ras domain.
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effects40. Because structural information between PPI interfaces and small molecules is often lacking, various 
approaches including molecular docking41, homology modeling42, machine learning43, and co-evolution-based 
statistical modeling44 have been used in attempts to infer the druggable interfaces45. Our approach provides a 
large collection of DMI-compound associations (Supplementary Table S7) and relevant biological functions 
(Supplementary Table S3), which would be useful for the discovery of novel druggable PPIs.

The DMI approach to identifying biological subdivisions of a protein family depends on protein interaction 
networks and domain interaction networks. Thus we considered two kinds of prediction-based networks such as 
STRING and BIOGRID and three less biased networks based on experiments such as AP-MS46, co-fractionation47, 
and yeast two-hybrid48. We have confirmed, in all of the 15 given networks, that DMI information functionally 
subdivides protein families based on domain annotation. However, the prediction-based networks provide con-
siderably more DMI subfamilies than the less biased networks (Supplementary Table S2). This suggests that the 
enhancement of networks in coverage and accuracy will promote the novelty of the DMI approach in detecting 
more and better groups of biologically relevant proteins.

Methods
Data collection.  Protein interaction networks.  The STR > 0.7 and STR_EXP networks are functional 
STRING networks consisting of links with a combined score greater than 0.7 and with an experimental score 
greater than zero, respectively. All STRING networks were retrieved in August 2019 from the STRING database 
(https://string-db.org/cgi/download.pl)49. The BIOGRID networks consist of links with experimental evidence 
such as “Affinity Capture-Luminescence”, “Affinity Capture-MS”, “Affinity Capture-RNA”, “Affinity Capture-
Western”, “Co-fractionation”, “Co-localization”, “Co-purification”, “FRET”, “PCA”, “Two-hybrid”, “Biochemical 
Activity”, “Co-crystal Structure”, “Far Western”, “Protein-peptide”, “Protein-RNA”, and “Reconstituted Complex”. 
We retrieved BIODGRID networks (v3.5.175) in August 2019 from the BIOGRID database (https://downloads.
thebiogrid.org/Bio-GRID/Release-Archive/BIOGRID-3.5.175/)50. We retrieved human protein interaction net-
works from the corresponding research based on experiments such as AP-MS46, co-fractionation47, and yeast 
two-hybrid48.

Domain annotations.  Domain annotations (Pfam-A51) were retrieved in August 2019 from Ensembl Biomart. 
For human (H. sapiens) and fly (D. melanogaster) domains, we used “Ensembl Genes 97-GRCh38.p12” and 
“Ensembl Genes 97-BDGP6.22” to access species-specific annotations, respectively. For yeast domains (S. cerevi-
siae), we used “Ensembl Fungi Genes 44-R64-1-1” in “Ensembl Fungi”. For plant domains (A. thaliana), we used 
“Ensembl Plants Genes 44-TAIR10” in “Ensembl Plants”.

Domain-domain interaction.  This dataset is based on the DOMINE database (https://manticore.niehs.nih.gov/
cgi-bin/Domine). Domain-domain interactions were selected by re-evaluating each predictor in that database21,52.

Gene ontology.  Gene Ontology annotations were retrieved in August 2019 from Gene Ontology Consortium 
(http://current.geneontology.org/products/pages/downloads.html)15. We selected gene-function terms with 
experimental evidence codes such as “Inferred from Experiment” (EXP) and “Inferred from High Throughput 
Experiment” (HTP). Independently, we also constructed another set of gene-function annotations excluding the 
annotation “Inferred from Physical Interaction” (IPI), involved in the “EXP” evidence category, to test whether 
the IPI code affects the results.

KEGG pathways.  Protein-KEGG pathway associations were retrieved in August 2019 from Ensembl Biomart53. 
This dataset was also retrieved following the above procedures (i.e. domain annotation).

Disease phenotypes.  We downloaded the curated gene-disease associations (DisGeNET version 5.0, May 2017) 
including datasets from UNIPROT, CTD (human subset), PsyGeNET, Orphanet, and HPO from the DisGeNET 
database (http://www.disgenet.org/downloads)54.

Kinase classification.  We estimated similarities between kinase groups based on DMI profiles, sequence identi-
ties, and structural similarity. The kinase classifications were retrieved in August 2019 from the Uniprot database 
(https://www.uniprot.org/docs/pkinfam.txt)55. This classification is based on the human kinome (http://kinase.
com)27.

Human protein sequences.  Protein sequences were retrieved in August 2019 from the Uniprot database (http://
ftp.ebi.ac.uk/pub/databases/reference_proteomes/QfO/Eukaryota/ UP000005640_9606.fasta.gz)55.

Human protein structures.  To map protein-protein structure associations, we downloaded pdbtosp.txt in August 
2019 from the Uniprot database (https://www.uniprot.org/docs/pdbtosp)55.

Yeast phenotypes.  We used datasets from the HaploInsufficiency and Homozygous Profiling (HIPHOP) data-
base(http://chemogenomics.pharmacy.ubc.ca/hiphop/)56. This database provides novel correlations between 
single-gene deletions and chemical environments. Briefly, we mapped gene-condition relationships for relation-
ships having a fitness defect score (FD) >3.5. The FD score reflects the sensitivity of a single-gene deletion strain 
for a particular chemical compound. Although the direct relationships between genes and chemical environ-
ments are not explicit, the phenotypic effects of single-gene deletions and chemicals are correlated. We retrieved 
5,888 genes, 3,354 chemicals, and 163,798 gene-to-chemical relationships from the database.
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STITCH database.  From the STITCH database (http://stitch.embl.de/cgi/download.pl)57, we downloaded 4932.
actions.v5.0.tsv for yeast and identified protein-chemical compound relationships with a combined score greater 
than 0.7. We mapped chemical compound IDs (single compounds (CIDs) and merged compounds (CIDm)) to 
SMILES strings (simplified molecular-input line-entry system) using chemicals.v5.0.tsv.

Subfamily detection.  Construction of domain-mediated PPI networks.  Before detecting DMI subfamilies, 
we built up the domain-mediated PPI networks using three types of information: domain annotations, refer-
ence domain-domain interactions, and protein interaction networks. First, we mapped Pfam-A domains from 
gene-domain annotations. Second, we prepared the dataset for interacting domain pairs as adopted in our pre-
vious work21. Finally, from each PPI network, to construct the domain-resolved PPI networks, we selected PPIs 
connecting two proteins with at least one pair of interacting domains.

Detection of parent-domain families.  Before applying protein interaction networks, we defined parent-domain 
families by using domain annotations in each species. This approach has been used to analyze groups of proteins 
sharing the same domain58. Because DMI subfamilies have particular criteria such as a size greater than two, a 
parent-domain family must contain at least four proteins and one DMI subfamily.

Detection of DMI subfamilies.  From the domain-mediated PPI network, we detected DMI subfamilies, which 
consist of proteins sharing the same DMI. Each DMI subfamily contains at least three proteins and includes 
fewer members than the parent-domain family. However, DMI subfamily members may interact with different 
proteins, even if those proteins belong to the same DMI subfamily. Thus, we also classified DMI subfamilies with 
single-shared PPI partners or with multiple-shared PPI partners and investigated the biological relevance of their 
members.

Kinase group analysis.  To investigate the overlap between kinase groups and DMI subfamilies, we used 
well-defined kinase classifications. We calculated the overlap ratio by dividing the number of shared members 
between a DMI subfamily and a kinase group by the total number of members of the DMI subfamily. The p-value 
for the overlap ratio is measured by determining the number of random values that are higher than the observed 
value, out of 10,000 random values from size-preserved subsets of the parent-domain family.

Clustering and dendrograms.  A dendrogram is a powerful visualization method for trees based on dis-
tances between genes or proteins11,59,60. Each protein has a particular profile consisting of 0 (not associated with 
a DMI) or 1 (associated with a DMI). Using a pair of DMI profiles, proteins were clustered by the Ward variance 
minimization algorithm, which defines the distance between clusters as how much the sum of squares increases 
when the clusters are merged61. We made clusters using the scipy.cluster.hierarchy.linkage function in Python 
(method = “ward”). Then we converted the hierarchy to Newick tree format and drew a dendrogram using the 
ETE toolkit62 in Python.

Sequence identity.  We calculated sequence identity with the following equation:

=Sequence identity n identical peptide
len A len B

( )
min( ( ), ( )) (1)A B,

When A and B are sequences, len(A) and len(B) are the length of those sequences. We found identical peptides 
using the pairwise2.align.globalxx() code of Biopython63, which is a Python module.

Structural distance and similarity.  We calculated structural distances and similarity between proteins 
using the TM-score tool64. This tool provides the root-mean-square deviation (RMSD) of atomic positions as 
structural distance and the probability of two proteins having the same fold (TM-score) as a structural similarity. 
When a protein had multiple structures, we estimated distance and similarity for all possible structure pairs from 
each protein without an identical structure. Finally, we averaged values in order to determine the structural dis-
tance or structural similarity of a protein pair.

Function and phenotype analyses.  To analyze the biological relevance of DMI subfamily members, we 
prepared protein-centric annotations such as protein-function, protein-human disease, protein-yeast pheno-
type, and protein-chemical compound. To reduce errors introduced by the enrichment tests, we discarded DMI 
subfamily-enriched term relationships when fewer than three members were associated with a term.

Calculation of kappa scores.  We adopted Cohen’s kappa as a functional similarity between genes65. To calculate 
kappa scores for pairs of subfamily members, we first established the integrative function annotations including 
gene-ontology (GO) - biological process (BP), GO-molecular function (MF), GO-cellular component (CC), and 
KEGG. We constructed a matrix consisting of the relationship between genes (rows) and terms (columns), and 
we compared the annotation profiles of genes, which were combinations of 1 s (known) and 0 s (unknown)24. Note 
that a cell of the matrix contains 1 or 0, when a gene is annotated with a term or not, respectively. Higher scores 
indicate that two proteins are more functionally similar or more relevant. In the annotation profile for gene A and 
gene B, when a and d are the numbers of agreements (1/1 and 0/0), and b and c are the numbers of disagreements 
(1/0 and 0/1), respectively, then the observed proportionate agreement is:
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Statistical enrichment test.  We adopted a hypergeometric test to implement enrichment tests by using the stats.
hypergeom.sf() function in the Python SciPy package (www.scipy.org) to calculate enrichment p-values for all 
enrichment tests. The p-values were corrected with Bonferroni correction66.

Chemical compound analysis.  Construction of DMI subfamily-chemical compound networks.  When a 
DMI subfamily member was associated with at least one compound, we performed an enrichment test with the 
hypergeometric test to construct the unfiltered DCN (corrected P < 0.01). Then we filtered out DC interactions 
generated by only one DMI subfamily member.

Collecting 3D structures including DMIs and chemicals.  We curated 3D structures of DMIs from a database 
of three-dimensional interacting domains (3DID)67. Then we collected 165 non-redundant structures with 
DMI-chemical associations that were composed of 61 DMIs and 85 chemicals. LigandExpo (http://ligand-expo.
rcsb.org/index.html) in RCSB was used to map the chemical identifiers in PDB files into SMILE ID (DB and 
chemical component identifier correspondences: cc-to-pdb.tdd, SMILES and chemical component identifier 
mappings: *.smi files). PyMOL (http://pymol.org) was used for visualizing the interface of protein 3D structures 
and chemicals.

Calculating minimum distances between interfacial residues of DMIs and chemicals.  We selected the minimum 
value from the calculated distances of each interfacial residue with chemicals. To calculate the distance between 
a residue and a chemical, distances between the Cα atom of the amino acid and all atoms of the chemical were 
calculated and the minimum was chosen. The interfacial residues of DMIs were retrieved from the 3did_inter-
face_flat.gz file of the 3DID database. This file contained the residue accessibilities as calculated by NACCESS68. 
We performed permutation tests to investigate the significance of structural distances. We randomly assigned 
interfacial residues and calculated structural distances 10,000 times to construct a random distribution of such 
distances for each domain interaction interface and chemical compound relationship. Next, we counted the num-
ber of cases (n) in which random values were shorter than the observed values among 10,000 random values. 
Then we calculated the p-value for the significance of the observed distance as p = n/10,000. Finally, we converted 
the p-value to a z-score. Because 10 Å was already adopted as a threshold in other research69,70, we selected, from 
the 165 structures, the 88 relationships which had a distance < 10 Å and z < −1.65. These 88 relationships were 
used as our reference-DC interactions.

Statistics.  Comparison of distributions.  To compare the non-normal distributions of the values (e.g., kappa 
score) between DMI subfamilies and random sets, we adopted a Wilcoxon signed-rank test, because a DMI can 
have an observed value and a random value. The p-value of this test indicates the significance of the difference 
between the rank distributions from DMI and rDMI.

Data availability
All data generated or analyzed during this study are provided in this published article and Supplementary 
Information Files.
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