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Abstract Viral variants that arise in the global influenza population begin as de novo mutations

in single infected hosts, but the evolutionary dynamics that transform within-host variation to

global genetic diversity are poorly understood. Here, we demonstrate that influenza evolution

within infected humans recapitulates many evolutionary dynamics observed at the global scale. We

deep-sequence longitudinal samples from four immunocompromised patients with long-term H3N2

influenza infections. We find parallel evolution across three scales: within individual patients, in

different patients in our study, and in the global influenza population. In hemagglutinin, a small set

of mutations arises independently in multiple patients. These same mutations emerge repeatedly

within single patients and compete with one another, providing a vivid clinical example of clonal

interference. Many of these recurrent within-host mutations also reach a high global frequency in

the decade following the patient infections. Our results demonstrate surprising concordance in

evolutionary dynamics across multiple spatiotemporal scales.

DOI: 10.7554/eLife.26875.001

Introduction
Viruses rapidly acquire de novo mutations as they replicate within infected hosts (Andino and Domi-

ngo, 2015), but only a small fraction of these variants transmit between hosts and eventually fix on a

global scale. Within hosts, a mutation’s impact on viral replication and immunogenicity affect

whether it increases in frequency. At larger scales of space and time, transmission bottlenecks

(Varble et al., 2014; Poon et al., 2016) and host heterogeneity also shape viral genetic diversity.

The selective pressures at these various scales reflect complex molecular, immunological, and epide-

miological constraints (Grenfell et al., 2004; Pybus and Rambaut, 2009; Luksza and Lässig, 2014;

Neher et al., 2016), which have formed the basis of recent efforts to forecast influenza evolution

(Luksza and Lässig, 2014; Neher et al., 2016, Neher et al., 2014; Lässig et al., 2017).

Influenza’s rapid global evolution has been the subject of intense study (Ghedin et al., 2005;

Rambaut et al., 2008), but the origins of this variation within single infected hosts are still poorly

understood. Recent deep-sequencing studies of human clinical samples suggest that influenza accu-

mulates relatively limited genetic diversity within hosts during most acute infections (Dinis et al.,

2016; Poon et al., 2016; Sobel Leonard et al., 2016; Debbink et al., 2017), in line with earlier

studies in dogs and horses (Murcia et al., 2010; Hoelzer et al., 2010). Some within-host mutations

may confer novel antigenic properties (Dinis et al., 2016), but most lack clear functional
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interpretation. Altogether, it remains unclear how influenza’s within-host diversity is transformed into

global evolution.

Influenza infections usually last less than a week and provide limited opportunity for longitudinal

study. But among some immunocompromised patients, infections can last weeks or months

(Nichols et al., 2004; Memoli et al., 2014), making it possible to examine longer-term within-host

evolutionary dynamics (Rocha et al., 1991; McMinn et al., 1999; Rogers et al., 2015). Here, we use

deep-sequencing to characterize the evolutionary dynamics of influenza within immunocompromised

hosts. We identify a small set of mutations that arise repeatedly within individual patients, across

multiple patients in our study, and at the global scale, revealing surprising similarities in evolutionary

dynamics across multiple spatiotemporal scales.

Results

The same mutations often arise in multiple patients
We deep-sequenced 37 viral samples collected longitudinally from four immunocompromised

patients with long-term H3N2 influenza infections in the 2005–2006 and 2006–2007 seasons (Fig-

ure 1). These patients developed influenza infections in the months after receiving hematopoietic

cell transplantations when immune cell counts were still low, and nasal wash samples were collected

approximately every week. All patients were treated with the neuraminidase inhibitor oseltamivir for

at least some duration of their infections (Campbell et al., 2015) (Figure 1, Figure 1—figure sup-

plement 1).

We sequenced the full viral genome to high coverage directly from patient nasal wash samples

by using influenza-specific reverse transcription and PCR (Hoffmann et al., 2001) to enrich for viral

genetic material (Figure 2—figure supplement 1). To limit the impact of library preparation and

sequencing errors on estimates of variant frequency (McCrone and Lauring, 2016), we prepared

sequencing libraries in duplicate for each sample, beginning from separate reverse-transcription

eLife digest Influenza or flu viruses change fast to escape the body’s defenses. While a single

course of vaccines will protect someone against polio or measles for their whole life, people need a

new flu shot every year to be protected against influenza. Also, some years the flu vaccine is not as

effective as hoped because the virus has changed in an unpredictable way.

All of the change that happens in flu viruses around the world ultimately begins in individual

infections, as random mistakes or mutations in the virus’s genetic material that arise as the viruses

replicate. Mutations that help the virus aid in its ability to spread from person to person, and

eventually spread around the world. As such, understanding flu’s evolution within individual people

may help scientists to understand and eventually predict how it changes worldwide. Yet, unlike

some viral infections that last months or years, flu infections are usually short and over in a few days.

This makes it harder to measure how the viruses change over time in a single infection.

To get around this issue, Xue et al. analyzed flu samples taken over several weeks from four

cancer patients who had longer-than-average flu infections because of their weaker immune

systems. In some cases, the exact same mutations were seen in viruses from two or more of the

patients. Also, some of the mutations that happened within the patients were the same mutations

that later went on to spread around the world. These findings show that the flu virus can change in a

single person in some of the same ways that it has been seen to change around the world.

Xue et al. studied how flu changes in people with weak immune systems, who are infected for

longer periods of time. Further studies are needed to reveal more about how flu viruses evolve in

the more typical, shorter infections in otherwise healthy people. This kind of investigation is

becoming easier because new methods are making it possible to examine the genetic material from

many viruses at once. It is hoped that eventually, detecting mutations in individual infections could

help predict how viruses will change worldwide, which might help researchers to design vaccines

that will be more effective each year.

DOI: 10.7554/eLife.26875.002
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reactions. We excluded from downstream analyses eight low-quality samples for which sequencing

coverage was low or variant frequencies differed greatly between replicates (Figure 2—figure sup-

plement 1).

Across the influenza genome, de novo mutations arise most commonly in the surface proteins

hemagglutinin (HA) and neuraminidase (NA) (Figure 2A), which undergo rapid global evolution

(Bhatt et al., 2011). These mutations fluctuate in frequency but rarely fix, showing that complex evo-

lutionary dynamics can emerge within single infected individuals (Figure 2B, Figure 2—figure sup-

plements 2–5). We focused on within-host mutations that reached a frequency of at least 5% in two

independent sequencing replicates from any patient sample. Many nonsynonymous mutations occur

at sites that affect the antigenicity of HA (Koel et al., 2013) and the antiviral sensitivity of NA

(Baz et al., 2006; van der Vries et al., 2013) (Figure 2—figure supplement 6). In NA in particular,

we observe the emergence and persistence of mutations T242I and R292K, which are known to be

associated with oseltamivir resistance (Baz et al., 2006; van der Vries et al., 2013), a phenomenon

of strong clinical importance (Renaud et al., 2011) (Figure 2—figure supplements 2–5).

In several cases, the same mutations arise independently and reach high frequency in multiple

patients (Figure 2C). We identified nine sites in the influenza genome where parallel mutations arose

in two or more patients in our study: five in HA, three in NA, and one in the nonstructural (NS) seg-

ment (Figure 2C, Figure 2—figure supplement 7; HA: p<0.001; NA: p<0.01; permutation test). In

subsequent analyses, we focused primarily on HA because of its prominent role in antigenic evolu-

tion (Koel et al., 2013).

Recurrent mutations drive clonal interference within individual patients
Although the same HA mutations arise in multiple patients, we found that evolutionary outcomes

sometimes diverge. For instance, A138S arises in patients W and Z, but it fixes only in patient Z. In

three patients, N225D reaches a detectable frequency, but it fixes only in patient X (Figure 2C).

Figure 1. Long-term H3N2 influenza infections in four immunocompromised patients. (A) Phylogenetic relationship between initial patient consensus

sequences and 63 unique circulating influenza strains collected in the USA from 2004 to 2007, as inferred from the HA gene. (B) Overview of patient

influenza infections and treatments. Periods of oseltamivir treatment are shown in orange. Dates of sequenced nasal wash samples are calculated

relative to the first influenza-positive nasal wash. Low-quality samples are not shown here and were excluded from downstream analysis. Materials and

methods and Figure 1—figure supplement 1 give full clinical histories.

DOI: 10.7554/eLife.26875.003

The following figure supplement is available for figure 1:

Figure supplement 1. Summary of patient infections.

DOI: 10.7554/eLife.26875.004
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Figure 2. Within-host influenza variants. (A) Number of nonsynonymous (orange) and synonymous (green) variants in each influenza gene. We identified

within-host viral mutations that reached a frequency of at least 5% in two independent sequencing replicates from any patient sample. (B) Frequencies

over time for all HA mutations in patient W. Each subplot represents a site in HA and is labeled by codon number. Ancestral identities are colored in

gray and mutant ones in orange. (C) Maximum frequencies reached by all nonsynonymous (orange) and synonymous (green) mutations in each patient.

Mutations circled in black emerged independently in multiple patients and are labeled by codon number. The dotted line indicates the minimum

frequency threshold of 5%. Materials and methods and Figure 2—figure supplement 1 describe procedures used for variant calling and quality

control. Figure 2—figure supplements 2–5 give full frequency trajectories for all mutations in all patients. Figure 2—figure supplement 6 shows

mutations in HA and NA on their respective crystal structures. Figure 2—figure supplement 7 describes permutation tests that assess the significance

of the observed parallelism between patients.

DOI: 10.7554/eLife.26875.005

The following source data and figure supplements are available for figure 2:

Source data 1. Primers used for viral deep sequencing.

DOI: 10.7554/eLife.26875.006

Figure supplement 1. Sample quality controls.

DOI: 10.7554/eLife.26875.007

Figure 2 continued on next page
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We suspected that the complex dynamics of these within-host mutations might arise from compe-

tition among mutant lineages. The influenza genome consists of eight linear segments that freely re-

assort with one another but do not recombine (Boni et al., 2008), meaning that each segment

evolves clonally. In the absence of homologous recombination, lineages carrying beneficial muta-

tions rise and fall in frequency as they compete with one another, making it harder for any one vari-

ant to fix. This phenomenon, known as clonal interference, has been characterized extensively in

experimental evolution (Hegreness et al., 2006; Kao and Sherlock, 2008; Lang et al., 2013;

Neher, 2013) and affects influenza’s global evolution (Strelkowa and Lässig, 2012).

We examined clonal dynamics within individual patients by analyzing patterns of linkage among

within-host mutations. We identified read pairs that spanned multiple variable sites to infer linkage,

and we summarized these relationships as haplotypes: for instance, ‘0000’ represents ancestral resi-

dues at four variable sites, and ‘1100’ represents a double-mutant at the first two sites (Figure 3A).

In several instances, the same mutations arise in parallel on distinct genetic backgrounds within

the same patient—echoing our observation that these same mutations arise in parallel in multiple

patients in our study. In patient X, lineages carrying S193Y and N225D initially compete, but a dou-

ble-mutant carrying both mutations eventually fixes (Figure 3B). The A138S and F193Y mutations

also arise multiple times in parallel in patient W: once on the ancestral haplotype ‘0000’ to form the

single-mutant ‘1000’ and ‘0100’ lineages; once on these single-mutant lineages to form the double-

mutant ‘1100’; and once on the double-mutant ‘0011’ to form the triple-mutant ‘1011’ and ‘0111’

lineages (Figure 3C). These recurrent mutations also contribute to the large number of clonal line-

ages present. Several weeks into patient W’s infection, we observe at least five distinct HA lineages

at a frequency of at least 5%, and the lineages differ from each other by one to three nonsynony-

mous mutations (Figure 3C). Eventually, all lineages that carry A138S, V223I, and N225D are out-

competed by a lineage that carries F193Y.

Our analysis shows that in large, clonally evolving influenza populations within hosts, a small set

of beneficial mutations repeatedly arise and compete against one another in various combinations.

Although many of these beneficial mutations are selected in parallel in multiple patients, the unpre-

dictability of clonal competition determines which mutations eventually fix.

Within-host variants often arise at sites that are polymorphic in
influenza globally
We compared viral mutations that arose within our patients and at the global scale. Strikingly, many

of the HA mutations that arise in parallel in multiple patients in our study also reach a high global

frequency, which may reflect concordant antigenic selection at the within-host and global scales. We

identified all variants that reached a frequency of at least 10% in any given year after 2000 in the

GISAID database of global influenza sequences (Bogner et al., 2006) and compared them to var-

iants that we identified in the patients in our study.

In HA, most sites that varied within hosts also varied in the global influenza population, compared

to about a quarter of such sites in the other influenza genes (Figure 4). We tested whether this over-

lap between sites of variation within patients and globally was greater than expected by chance for

HA, NA, and the rest of the viral genome combined. We calculated the expected overlap when the

Figure 2 continued

Figure supplement 2. Within-host variants in patient W.

DOI: 10.7554/eLife.26875.008

Figure supplement 3. Within-host variants in patient X.

DOI: 10.7554/eLife.26875.009

Figure supplement 4. Within-host variants in patient Y.

DOI: 10.7554/eLife.26875.010

Figure supplement 5. Within-host variants in patient Z.

DOI: 10.7554/eLife.26875.011

Figure supplement 6. Sites of within-host mutation.

DOI: 10.7554/eLife.26875.012

Figure supplement 7. Permutation tests for parallel evolution between patients.

DOI: 10.7554/eLife.26875.013
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Figure 3. Parallel emergence of the same mutations within single infected hosts. (A) Method for inferring partial haplotypes from short-read

sequencing data. We identified paired-end reads that spanned multiple sites of interest along a gene and determined whether the read carried the

ancestral or derived allele at each site. (B) Frequencies of haplotypes at HA sites 193 and 225 in patient X. Evolutionary paths from the ancestral to

double-mutant state are shown, with haplotypes colored according to their maximum frequency during the infection. Solid black lines connect pairs of

haplotypes that are both present at a frequency of above 1% and that unambiguously occurred through the indicated mutation. Dashed lines indicate

that multiple mutations could have produced a particular haplotype. Gray lines indicate that a mutation did not arise at a detectable frequency on a

particular haplotype background. (C) Frequencies of haplotypes at HA sites 138, 193, 223, and 225 in patient W. Figure 3—figure supplement 1

estimates the rate of PCR recombination as described in Materials and methods. Figure 3—figure supplement 2 and 3 show the number of paired-

end reads that spanned the mutations in the haplotypes in patients X and W.

DOI: 10.7554/eLife.26875.014

The following figure supplements are available for figure 3:

Figure supplement 1. Estimate of PCR recombination rate.

DOI: 10.7554/eLife.26875.015

Figure supplement 2. Number of paired-end reads used to infer haplotype dynamics in patient X.

DOI: 10.7554/eLife.26875.016

Figure supplement 3. Number of paired-end reads used to infer haplotype dynamics in patient W.

DOI: 10.7554/eLife.26875.017
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Figure 4. Parallel mutations at within-host and global scales. (A) Sites of parallel within-host mutation plotted on an HA crystal structure (PDB 4HMG

[Weis et al., 1990]). (B) Overlap of within-host (orange) and global (green) variable sites in HA, NA, and all other influenza genes. Sites at which

mutations arise in more than one patient are indicated in solid orange. We defined global variable sites as those at which a variant reached a frequency

of at least 10% in a given year after 2000 in the GISAID database of global influenza sequences (Bogner et al., 2006). Numbers of within-host and

global mutations are given in Figure 4—source data 1. (C) Mutation frequencies over time within individual patients for parallel within-host

mutations in HA. Ancestral identities are colored in gray and mutant ones in orange. (D) Global variant frequencies between 2000 and 2015 in H3N2

influenza at sites of parallel within-host mutation in HA. The approximate timing of the patient infections (2006–2007) is indicated by a white arrow.

Figure 4—figure supplement 1 displays variant frequencies for all sites of parallel mutation at the within-host and global scales. Figure 4—figure

supplement 2 describes permutation tests that assess the significance of the overlap in mutations at the within-host and global scales.

DOI: 10.7554/eLife.26875.018

The following source data and figure supplements are available for figure 4:

Source data 1. Overlap of mutations at the within-host and global scales.

Figure 4 continued on next page
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observed number of within-host and global variants were drawn at random from each gene (Fig-

ure 4—figure supplements 1–2). Not all sites are expected to tolerate mutation, so we also per-

formed simulations where we only considered sites for which there was variation in human H3N2

influenza globally between 2000 and 2015: for instance, in HA about 25% of codon sites show no

variation within the GISAID database. We found significant parallelism in HA (p<0.01), but not in NA

or in the rest of the genome (p>0.05) when we consider all sites of global variation. This parallelism

in HA evolution remains statistically significant at a 0.05 threshold until we assume that less than

50% of HA codon sites tolerate variation.

The parallelism is especially striking at the sites of HA mutations found in multiple patients in our

study. In particular, four of the five sites of recurrent within-host mutation in HA are also sites of

global influenza variation (Figure 4, Figure 4—source data 1). The V223I and N225D mutations

arise in multiple patients, and then fix globally in the decade after the patient infections (Figure 4D).

Mutations also reach high global frequencies at sites 138 and 193, although the F193 and S193 var-

iants that spread globally differ from the Y193 variant that arises within our patients. However, the

concordance is incomplete. Mutation L427F reaches a frequency of >75% in three patients but is

rare or nonexistent in influenza globally (Figure 4D), suggesting that this mutation may have within-

host benefits that are not reflected in global evolution. But overall across hemagglutinin, within-host

variants tend to arise at sites that vary on the global scale.

Discussion
It is remarkable that influenza evolution shows such extensive parallelism at these disparate spatio-

temporal scales despite heterogeneity in host immunity, viral genetic background, and the severity

and duration of infection. In particular, the immunocompromised patients in our study had complex

underlying conditions and diverse immune histories. Notably, the four HA sites that displayed paral-

lel within-host and global evolution in our study (138, 193, 223, and 225) also gave rise to mutations

in another study that used Sanger sequencing to analyze laboratory-passaged influenza isolated lon-

gitudinally from an immunocompromised child (Baz et al., 2006). Another previous study used hem-

agglutination inhibition assays to show that antigenic drift of influenza within an

immunocompromised patient resembled global antigenic change (McMinn et al., 1999). These simi-

larities further support our finding that influenza evolution shows parallelism across diverse patients.

The parallel evolution that we observe in influenza at the within-host and global scales contrasts

with HIV, where similar mutations can arise within hosts that share an HLA type, but tend to revert

upon transmission to recipients with different HLA types (Leslie et al., 2004; Herbeck et al., 2006;

Lemey et al., 2006; Zanini et al., 2015). Part of the difference may be that immune epitopes in

influenza are broadly similar among individuals, with some exceptions (Li et al., 2013;

Linderman et al., 2014), whereas the targets of anti-HIV immunity vary more widely due to patient-

specific factors like HLA type.

We suggest that parallelism in HA evolution may emerge from the confluence of several evolu-

tionary conditions (Lässig et al., 2017). First, if selection acts concordantly across environments, it

will favor a common set of beneficial mutations. Second, in a constrained evolutionary landscape,

this set of beneficial mutations will be relatively small. Finally, given sufficiently large population

sizes, high mutation rates, and time, these beneficial mutations will emerge and be selected to

detectable frequencies. Our observation that similar mutations arise repeatedly within single

patients, within multiple different patients, and at the global scale, suggests that at least some of

these conditions may hold true.

The parallelism and extensive evolution that we observe in long-term influenza infections con-

trasts with the limited within-host variation found in prior studies, which sample from acute infections

Figure 4 continued

DOI: 10.7554/eLife.26875.019

Figure supplement 1. Parallel mutations at within-host and global scales.

DOI: 10.7554/eLife.26875.020

Figure supplement 2. Permutation tests for parallel evolution across within-host and global scales.

DOI: 10.7554/eLife.26875.021
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of immunocompetent hosts (Murcia et al., 2010; Hoelzer et al., 2010; Dinis et al., 2016;

Debbink et al., 2017; Sobel Leonard et al., 2016; Poon et al., 2016). For instance, one recent

study deep-sequenced HA from several hundred patients but only found a small number of antigenic

variants, and mostly at low frequencies (Dinis et al., 2016). But our study suggests that influenza

may experience many of the same selective pressures within acute infections as it does globally,

even if the short durations of these infections make it difficult for selected mutations to reach fre-

quencies that are detectable with current methods. We suggest that within-host viral diversity may

act as a noisy early measurement of global viral evolution, shaped by some of the same immunologi-

cal and evolutionary constraints. As high-throughput sequencing continues to improve, detailed

characterization of within-host variation will be increasingly valuable for understanding how molecu-

lar, immunological, and epidemiological forces interact to shape viral evolution.

Materials and methods

Patient material
Samples were prospectively collected during a surveillance study for respiratory viruses performed in

allogeneic hematopoietic stem cell transplant (HCT) recipients undergoing transplantation between

December 2005 and February 2010 at Fred Hutchinson Cancer Research Center (Campbell et al.,

2015). Following written informed consent, weekly nasal wash samples (or nasopharyngeal swabs if

nasal wash samples were precluded clinically) and oropharyngeal swab specimens were obtained at

least once before and weekly after HCT up to 100 days. Afterwards, samples were collected as long

as the patients continued to test positive for respiratory viruses, if they developed new symptoms,

or at least every three months until one year post-transplantation. Nasal wash samples were col-

lected using 5 mL of saline per nostril, and combined with oropharyngeal swabs for real-time PCR

testing for a panel of 12 respiratory viruses, including influenza A and B. Samples were considered

positive if the assay’s cycle threshold was less than 40, for a limit of detection of approximately 2000

viral copies/mL. All samples sequenced in this study tested positive for influenza A. The timing of

each sample during an infection was calculated as the number of days since the first influenza-posi-

tive nasal wash for that patient.

Descriptions of individual patients and their clinical courses are summarized below, with detailed

information in Figure 1—figure supplement 1. All patients were severely immunocompromised:

although their influenza infections occurred after transplant engraftment, their lymphocyte counts

remained well below those found in immunocompetent individuals, and they were concurrently

treated with immunosuppressive medications. Influenza sometimes co-occurred with other respira-

tory viruses, and the patients were frequently taking multiple antiviral and antibiotic medications at

any given point in the infection.

Patient W
A female in the 25–44 age group developed upper respiratory symptoms in early 2007, 30 days after

receiving a non-myeloablative HCT for Hodgkin’s disease and 18 days following engraftment. Patient

nasal wash samples repeatedly tested positive for influenza A for the next 80 days until the patient

died of pulmonary failure, with diffuse alveolar damage found on autopsy. The patient received a 12

day course of oseltamivir at 75 mg PO BID approximately 30 days into the infection and was treated

continuously with oseltamivir for the last 26 days of her life, first at 75 mg PO BID and then increas-

ing to 150 mg PO BID. The patient was co-infected with coronavirus for the duration of the influenza

infection and also tested positive for human metapneumovirus for the last 26 days of her life.

Patient X
A male in the 65+ age group developed upper respiratory symptoms in early 2006, 45 days after

receiving a non-myeloablative HCT for Hodgkin’s disease. Patient nasal wash samples repeatedly

tested positive for influenza A for the next 72 days, after which the patient chose to discontinue

study participation. The patient was treated with two courses of oseltamivir: a 5 day course at 75 mg

PO BID following the first positive nasal wash, and an 8 day course at 75 mg PO BID approximately

four weeks into the infection. The patient also tested positive for cytomegalovirus (CMV) and Asper-

gillus early in the influenza infection.
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Patient Y
A male in the 45–64 age group developed upper respiratory symptoms in spring 2006, 62 days after

receiving a non-myeloablative HCT for acute myeloid leukemia (AML) and 52 days after engraftment.

Patient nasal wash samples repeatedly tested positive for influenza A for the next 77 days, after

which the patient began testing negative. The patient was treated with three courses of oseltamivir:

an 8 day course following the first positive nasal wash, a 30 day course beginning approximately two

weeks into the infection, and a second 30 day course starting approximately seven weeks into the

infection, all at 75 mg PO BID. The patient also intermittently tested positive for CMV and coronavi-

rus during the influenza infection.

Patient Z
A male in the 65+ age group developed upper respiratory symptoms in early 2007, 197 days after

receiving a non-myeloablative HCT for AML and 175 days after engraftment. Nasal wash samples

repeatedly tested positive for influenza A over the next 69 days, after which monitoring ceased due

to severe illness, and the patient died 15 days after the last influenza-positive sample from relapsed

AML. The patient was treated with two courses of oseltamivir: a 6 day course at 150 mg PO BID fol-

lowing the first flu-positive nasal wash, and a 66 day course starting approximately two weeks into

the infection that began at 150 mg PO QD and increased to 150 mg PO BID. The patient also

received 30 g of IVIG 46 days into the flu infection. The patient intermittently tested positive for

respiratory syncytial virus over the same period and also experienced Epstein-Barr viremia.

Viral deep sequencing
To deep-sequence viral populations, we extracted bulk RNA from nasal wash samples using the

QIAamp Viral RNA Mini Kit (QIAGEN) according to manufacturer’s instructions. Where possible, we

extracted RNA from 560 mL of sample, the maximum volume recommended for use with the

QIAamp kit, to capture as much viral diversity as possible.

To amplify the influenza genome, we modified the primers designed by Hoffmann et al. (2001)

for full-length amplification of the influenza A genome (Figure 2—source data 1). We performed

reverse transcription using Superscript III First-Strand Reaction Mix (Thermo Fisher) and an equimolar

mix of the 5’-Hoffmann-U12-A4 and 5’-Hoffmann-U12-G4 primers, which bind to the conserved U12

region present on each influenza gene segment. To 6 mL RNA eluent, we added 1 mL annealing

buffer and 1 mL of 2 uM primer mix, then incubated at 65 degrees C for 5 min. We added 10 mL 2X

First-Strand Reaction Mix and 2 mL Superscript III/RNaseOUT Enzyme Mix on ice for a 20 mL total

reaction volume, then incubated at 25 degrees C for 10 min (this initial incubation is designed to

help with the binding of short primers), 50 degrees C for 50 min, and 85 degrees C for 5 min.

We used the entire 20 mL volume of the reverse-transcription reaction as template in a 100 mL

PCR reaction using KOD HotStart Reaction Mix (EMP Millipore) and a 24-primer cocktail as

described in Figure 2—source data 1 at a total concentration of 600 nM. We performed 35 cycles

of PCR amplification with an annealing temperature of 55 degrees C and an extension time of 3 min.

We purified the PCR product using 1X AMPure beads (Beckman Coulter) and prepared libraries

for Illumina sequencing using Nextera XT (Illumina). We sequenced the libraries on a NextSeq 500

platform (Illumina) with 150 bp paired-end reads. We performed library preparation and sequencing

in duplicate, starting from independent reverse-transcription reactions.

Read mapping
We first used bowtie2 (Langmead and Salzberg, 2012) to filter out reads that mapped to the

human genome. Remaining reads are available in the SRA as BioProject PRJNA364676. We used

cutadapt 1.8.3 (Martin, 2011) to trim adapter sequences from the remaining reads, remove bases at

the ends of reads with a Q-score below 25, and filter out reads whose remaining length was shorter

than 20 bases. We locally aligned trimmed reads to the A/Brisbane/10/2007 (H3N2) genome (Gen-

bank accessions CY035022 to CY035029) using bowtie2 (Langmead and Salzberg, 2012) and tallied

the counts of each base at each genome position using custom scripts. We discarded reads with a

mapping score below 20, as well as bases with a Q-score below 20.
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Quality filtering
We calculated average sequencing coverage in 50 bp bins along the viral genome. Because we pre-

pared sequencing libraries using Nextera tagmentation, we expect coverage to be low at the two

ends of the eight viral gene segments, corresponding to 16 bins. We discarded samples with more

than 16 bins with average coverage below 200x (Figure 2—figure supplement 1A). We also identi-

fied sites at which a non-consensus base reached a frequency of at least 1% in both sequencing rep-

licates and compared variant frequencies between replicates. We discarded samples for which the

average difference between variant frequencies in the two replicates exceeded 0.05 (Figure 2—fig-

ure supplement 1B). In total, we excluded eight samples from downstream analyses. The samples

shown in Figure 1B are high-quality samples only.

Variant calling and annotation
For each patient, we identified variable nucleotide sites in the viral genome. We defined these sites

as positions with a sequencing coverage of at least 200x, at which multiple bases are present at a

frequency of at least 5% in both replicate libraries. We used custom scripts to determine each var-

iant’s codon position and whether it created a synonymous or nonsynonymous substitution.

A note on codon numbering and gene annotation
We numbered HA codons according to the H3 numbering system. This HA numbering scheme

assigns 1 to codon 17 of the full HA gene, which is the beginning of the mature HA protein. The

codons for all other genes are numbered sequentially beginning with one at the N-terminal methio-

nine. The M1 and M2 genes have 27 bp of in-frame and 44 bp of out-of-frame overlap, and the NS1

and NEP genes have 30 bp of in-frame and 251 bp of out-of-frame overlap. We annotated variants

separately for each gene if they occurred in these regions of overlap.

Phylogenetic analysis
For each patient in our study, we determined the viral consensus sequence at the first sequenced

time point. We also downloaded the set of 503 sequences in the Global Initiative on Sharing All

Influenza Data (GISAID) EpiFlu database (Bogner et al., 2006) corresponding to all full-length HA

coding regions from human H3N2 influenza A isolates collected in the USA from January 1, 2004 to

December 31, 2007 (GISAID acknowledgement tables provided in Supplementary file 1). We ana-

lyzed only sequences with passage annotation ‘Unpassaged,’ ‘Original’, or ‘P0,’ indicating that the

strains were sequenced directly from the clinical isolates, leaving 63 unique sequences for phyloge-

netic inference. We pairwise aligned each sequence to the A/Brisbane/10/2007 (H3N2) coding

sequence (Genbank accession CY035022) using the program needle from EMBOSS 6.6.0

(Rice et al., 2000), which implements a Needleman-Wunsch alignment. We used RAxML 8.2.3 (Sta-

matakis, 2014) to infer a phylogeny from this alignment using a GTRCAT codon-substitution model

and visualized the tree using the R package ggtree (Yu et al., 2017).

Haplotype inference
We identified paired-end reads that spanned n variable sites of interest within a single gene and

determined which bases were present at each variable site. We summarized this information as an n-

digit binary haplotype, in which each digit represented one variable site, 0 represented the ancestral

base, and 1 represented the derived base. We discarded reads that did not span all sites of interest,

or that contained genotypes other than the most common derived base. We estimated the rate of

PCR recombination as described in Figure 3—figure supplement 1. In Figure 3—figure supple-

ment 2 and Figure 3—figure supplement 3, we show the number of paired-end reads used to infer

the haplotypes in Figure 3.

Analysis of global variation
To identify sites of global variation in influenza, we downloaded all sequences in the Global Initiative

on Sharing All Influenza Data (GISAID) EpiFlu database (Bogner et al., 2006) corresponding to all

full-length influenza coding regions from human H3N2 influenza A isolates collected from January 1,

2000 to December 31, 2015. Acknowledgement tables are provided as Supplementary file 1. We

pairwise aligned each sequence to the A/Brisbane/10/2007 (H3N2) coding sequence (Genbank
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accession CY035022) using the program needle from EMBOSS 6.6.0 (Rice et al., 2000), which imple-

ments a Needleman-Wunsch alignment. We calculated the amino-acid distance of each sequence

from the Brisbane/2007 reference and excluded outliers whose distance deviated significantly from

the other sequences originating from that year, since these sequences may have been misannotated.

We tallied the amino acids present at each codon position in each year, discarding sequences that

contained indels, and we identified sites at which multiple amino acids were present at a frequency

of at least 10% within a single year, or at which the consensus base changed from year to year.

Statistical tests of parallelism
We sought to test the probability that the parallel emergence of mutations across multiple patients

in our study was due to chance. We began with a simple null model in which all sites are equally

likely to mutate, and we drew sites from each gene at random without replacement, matching the

number of mutations observed in each patient. We calculated the number of unique sites of muta-

tion among all four patients in this simulated data set, and we compared this distribution to the

number of unique sites observed in our sequencing data: fewer unique sites of mutation indicates

more parallelism (Figure 2—figure supplement 7A). This null model is overly simplistic, since some

sites in a protein experience more evolutionary constraint. To estimate this constraint, we limited the

number of sites considered mutable to the sites that show at least two instances of nonsynonymous

mutation in the global H3N2 population between 2000 and 2015 (see Analysis of Global Variation)

(Figure 2—figure supplement 7B). The p-values given in the main text are calculated under this

more conservative null model. We also performed permutation tests for a range of possible propor-

tions of mutable sites and calculated the fraction of simulations that matched or exceeded the

amount of parallelism observed in our data (Figure 2—figure supplement 7C).

We used a similar approach to test whether the overlap of mutations observed within patients in

our study and in the global flu population was likely to be due to chance. We drew two independent

sets of sites from each gene at random without replacement, matching the total number of unique

variable sites within all patients and the number of variable sites observed in the global population.

We then calculated the overlap between these two sets of sites. We used the approach above to cal-

culate the overlap under a simple null model in which all sites in the gene are equally like to mutate;

a constrained null model in which the only mutable sites are ones that show nonsynonymous muta-

tion between 2000 and 2015; and across a range of possible constraints (Figure 4—figure supple-

ment 2).

Data and code availability
The FASTQ files are available on the SRA as BioProject PRJNA364676. The computer code that per-

forms the analysis is available at https://github.com/ksxue/parallel-evolution (with a copy archived at

https://github.com/elifesciences-publications/parallel-evolution) and in Supplementary file 2

(Xue, 2017).
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