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Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that
contains two CARD domains, an RNA helicase domain, and a C-terminal domain. RIG-I
initiates antiviral innate immunity by recognizing exogenous viral RNAs/DNAs. However,
some studies have reported that RIG-I activation leads to damage in various organs and
tissues in diverse circumstances. Recent studies have shown that RIG-I is involved in
cancer, lupus nephritis, immunoglobulin A nephropathy, Crohn’s disease, and
atherosclerosis. These reports indicate that RIG-I not only participates in antiviral
signaling pathways but also exerts an influence on non-viral infectious diseases. RIG-I
is widely expressed in immune and non-immune cells including smooth muscle cells,
endothelial cells, and cardiomyocytes. A succinct overview of RIG-I and its signaling
pathways, with respect to the cardiovascular system, will aid in the development of novel
therapeutics for cardiovascular diseases. In this review, we summarize the structure,
activation, signaling pathways, and role of RIG-I in cardiovascular diseases.

Keywords: RIG-I, activators, signal pathway, inflammation, cardiovascular diseases
INTRODUCTION

The innate immune response serves as the first line of defense against pathogens and transfers
signals to activate the adaptive immune system to eliminate invading pathogens (1). Short-term
activation of the innate immune system is beneficial for the elimination of pathogenic
microorganisms, and tissue repair. However, sustained or excessive innate immune activation is
unfavorable and detrimental to organs (2–4). Pattern recognition receptors (PRRs) expressed in the
innate immune cells mediate innate immune responses (5) and accelerate inflammation. PRRs are
divided into four groups: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), NOD-like
receptors (NLRs), and C-type lectin receptors (CLRs) (6). RLRs play a crucial role in recognizing
viruses and triggering inflammation (7).
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RLRs include MDA5 (melanoma differentiation-associated
factor 5), LGP2 (laboratory of genetics and physiology 2), and
RIG-I (retinoic acid-inducible gene I) (8). RIG-I is the first identified
RLR and is induced by all-trans retinoic acid in acute promyelocytic
leukemia cells (9). Thus far, RIG-I has been of interest and explored;
it can detect RNA virus infection and induce production of
interferon (IFN), inflammatory cytokines, and chemokines (10)
via stimulation of transcriptional factors, including interferon
regulatory factor (IRF), nuclear factor-kB (NF-kB), and activator
protein-1 (AP-1). To date, the structure, activation, signaling
pathways, and function of RIG-I in innate immunity have been
well documented (11). However, many new insights into the other
biological functions of RIG-I have emerged to extend the role of
RIG-I as a PRR. Accumulating evidence has shown that RIG-I
participates in cellular damage and the occurrence and development
of many diseases, such as acute myeloid leukemia (AML),
hepatocellular carcinoma, lupus nephritis, immunoglobulin A
nephropathy, Crohn’s disease, rheumatoid arthritis, and
cardiovascular diseases (CVD) (12–18).

CVD is one of the main causes of death worldwide and
imposes a heavy economic burden on families and society (19).
The pathogenesis of CVD is complex. It involves many
pathological processes including endothelial cell dysfunction,
proliferation and migration of vascular smooth muscle cells
(VSMCs), apoptosis, cardiomyocyte hypertrophy, fibrosis, and
heightened inflammatory response. Experimental studies have
focused on the effect of RIG-I-mediated inflammation in the
development and complications of human cardiovascular
diseases (20), indicating the potential of RIG-I as a therapeutic
target in the treatment of cardiovascular diseases. This review
elucidates the role of RIG-I in the etiology of cardiovascular
dysfunction and the pathogenesis of cardiovascular disease.
THE STRUCTURE OF RIG-I

Human RIG-I is encoded by DDX58, which maps to
chromosome9p21.1 and comprises 18 exons. RIG-I is a cytosolic
protein containing 925 amino acids and the length of its mRNA is
2775 bp (21). It is a member of the RLR family and contains two N-
terminal caspase active recruitment domains (CARDs), a catalytic
helicase core consisting of two RecA-like domains (Hel1 and Hel2),
and a C-terminal domain (CTD) (22, 23). The two N-terminal
CARDs are essential for initiating downstream antiviral signaling
molecular transduction by binding to the mitochondrial antiviral
signaling protein (MAVS). The catalytic helicase core has ATPase
and translocase activities, which are essential for binding RNA and
catalyzing ATP hydrolysis. The C-terminal domain (CTD), also
known as the repressor regulatory domain (RD), is necessary for
RNA-terminus recognition (24–26).
THE ACTIVATION OF RIG-I

As a key intracellular viral RNA sensor, RIG-I is activated by
short (<300bp) double-strand RNA and 5’-triphosphate single-
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strand RNA to promote the formation of interferons that trigger
and mediate antiviral responses (27–29). RIG-I can specifically
distinguish cytosolic viral dsRNAs from self-RNAs, with its
ATPase activity playing a crucial role in this discrimination
(30). Self RNAs do not activate RIG-I signaling because their
5’ppp is capped by 2’O-methylation (31, 32). Moreover,
deficiencies in these aspects cause autoimmune disease via self-
RNAs that activate RIG-I signaling (33, 34). Other studies have
shown that RIG-I can detect single-strand RNA (ssRNA) viruses
to mediate antiviral responses during infection (28, 35, 36). Saito
et al. found that the hepatitis C virus could also be detected by
RIG-I via binding to the A/U-rich motif in the 3′-untranslated
region of the genome (37). In addition to viral RNAs, many
analogs of double-stranded RNA, including poly(I: C) and poly
(A: U) are specifically recognized by RIG-I (38). A recent study
reported that mitochondrial RNA triggers a RIG-I-MAVS-
dependent immune response (39).

Several DNA sensors including TLR9, AIM2, and cGAS have
been identified (40–42). RIG-I, a cytosolic RNA receptor, also
recognizes cytosolic DNA to selectively activate the expression of
type I IFN genes (43). Furthermore, studies have shown that
apart from RNA/DNA, lipopolysaccharide (LPS) (44),
interferon-gamma (45), interleukin (IL)-1b (46), and TNF-a
(47) also activate RIG-I signaling to mediate the inflammatory
response. Furthermore, RIG-I mediates LPS- or IFN-g-induced
inflammation in endothelial cells and vascular smooth muscle
cells, indicating that RIG-I is crucial in non-antiviral
inflammation-related diseases. Considering the pathogenic
roles of these new RIG-I activators in the elderly, patients in
ICU, patients with organ transplantation, and patients with
immune deficiency (48–51), targeting RIG-I could be a
therapeutic option for these patients.These activators of RIG-I
are summarized in Table 1. The above-mentioned studies
indicate the pleiotropic functions of RIG-I.

The Antiviral Signaling Pathway of RIG-I
Studies on virus infection provide fundamental information on
the RIG-I signaling pathway. RIG-I is an auto-regulated protein
that exhibits auto-inhibition of the interaction between the CTD
and CARD domains. During viral infection, viral dsRNA binds
to the CTD domain and the N-terminal CARD is exposed for
downstream signaling (23). RIG-I then interacts with the adaptor
protein MAVS through a CARD-CARD interaction. MAVS is
also known as a virus-induced signaling adaptor (VISA), CARD
adaptor inducing IFN-b (Cardif), and IFN-b promoter
stimulator (IPS-1). MAVS is located in the mitochondrial
outer membrane via its C-terminal transmembrane (TM)
domain (52). It interacts with RIG-I via CARD-CARD
domains (53).

The RIG-I/MAVS signaling pathway is divided into two
branches, with one branch inducing the production of type I
interferons and other inducing the production of pro-
inflammatory cytokines. During the production of type I
interferons, MAVS recruits TANK-binding kinase 1(TBK1)
and inhibitor of kB kinase (IKKϵ) to phosphorylate the
transcription factors, interferon regulatory factors IRF-3 and
IRF-7, to phosph-IRF3 and phosph-IRF7, respectively. The
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phosphorylated factors translocate to the nucleus and induce the
production of type I interferons (54). On the other branch,
MAVS recruits IKKa, IKKb, and IKKg to induce the
phosphorylation and destruction of IkBs for the activation of
nuclear factor ‘kappa-light-chain-enhancer’(NF-kB), which
promotes the expression of pro-inflammatory cytokines (55).

Unlike the RNA-RIG-I pathway, the DNA-RIG-I pathway
can interact directly with DNAs or an RNA intermediate derived
from DNA through RNA polymerase III transcription (43, 56).
The recognition of DNAs or DNA-derived RNA intermediate
depends on the type of cell line and the structure of the DNA and
DNA-derived RNA. The RNA-RIG-I pathway can activate IRF3/
7 and NF-kB for inducing production of type I interferons and
pro-inflammatory cytokines, respectively; whereas, the DNA-
RIG-I pathway primarily activates the transcription factor IRF3
to generate type I IFNs. These results indicate the diverse role of
RIG-I in the response to RNA- or DNA-containing pathogens.
The RIG-I antiviral signaling pathway is shown in Figure 1.

RIG-I in Regulating the Function of
Cardiovascular Cells and Macrophages
It is known that both the injury of the cardiovascular cells and
the activation of inflammatory cells contribute to the
pathophysiology of cardiovascular system. During the
occurrence and development of cardiovascular diseases, RIG-I
Frontiers in Immunology | www.frontiersin.org 3
in cardiovascular cells and macrophages was reported to be of
importance in the disease pathology.

RIG-I in Endothelial Cell Dysfunction
The endothelium, which lines the interior surface of blood
vessels plays an important role in controlling vascular
permeability. Vascular endothelial cells have an essential
function in restraining inflammation and avoiding thrombosis
(57). Thus, they play a critical role in acute and chronic
inflammation (58, 59). Vascular endothelial cells participate in
immune and inflammatory reactions by inducing the expression
of various cytokines and adhesion molecules. Additionally, the
inflammatory response of endothelial cells leads to a pro-
thrombotic state (coagulopathy, increased vascular
permeability, arterial hypotension, and organ dysfunction) and
increases the risk of cardiovascular diseases (60).

Studies have shown that RIG-I activates innate immunity and
inflammation to promote endothelial cell (EC) dysfunction.
Dengue virus (DENV) induces RIG-I activation in
microvascular endothelial cells to increase the production of
type I IFN, ICAM-1, and other pro-inflammatory cytokines,
resulting in endothelial injury (61). In porcine circovirus disease
(PCVD), porcine circovirus type 2 (PCV2) upregulates the
production of inflammatory factors in arterial endothelial cells
via the RIG-I signaling pathway, which eventually leads to
endothelial dysfunction and vascular system disorders (62). In
addition, RIG-I activation by RIG-ligand 3p-RNA induces
endothelial damage by enhancing reactive oxygen species
(ROS) formation and pro-inflammatory cytokine release,
contributing to atherogenesis (63). Poly (I:C), an analog of
double-stranded RNA, impairs sodium nitroprusside (SNP)-
induced rat superior mesenteric artery relaxation by activating
the RIG-I/NF-kB/iNOS pathway (64). The above studies suggest
FIGURE 1 | The signaling pathway of RIG-I. RIG-I distinguishes and binds to RNA/DNA via the CTD, subsequently exposing CARDs and catalyzing ATP hydrolysis.
RIG-I interacts with its downstream adaptor molecule, MAVS, and activates two cytosolic protein kinase complexes, TBK1 and IKK. The TBK1 complex
phosphorylates IRF-3/7 and induces type I interferon production, whereas the IKK complex activates NF-kB and promotes the production of
proinflammatory cytokines.
TABLE 1 | Activators of RIG-I.

Categories Activators

RNA dsRNAs; 5'-triphosphate single-stranded RNA; poly I:C; poly(rU):
poly(rU) RNA; mitochondrial RNA

DNA DNA
Others LPS; IFN-g; IL-1b; TNF-a
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that the antiviral process mediated by RIG-I signaling could be
accompanied by inflammatory injury in endothelial cells. Thus, it
is imperative to consider targeting RIG-I as a therapeutic strategy
for the treatment of virus-related diseases.

As mentioned previously, RIG-I activation by viral RNA or
RNA analogs induces endothelial damage. RIG-I activation by
non-viral ligands also plays an important role in mediating
endothelial injury. For example, LPS induces the expression of
RIG-I in endothelial cells, and RIG-I overexpression selectively
upregulates the expression of COX-2, which participates in
inflammation and vascular injury (44). Moreover, LPS activates
RIG-I to upregulate the expression of proinflammatory molecules
in endothelial cells to mediate sepsis (65, 66). In addition,
Imaizumi et al. observed that IFN-g induced RIG-I expression,
which mediated immunological reactions and inflammatory
responses in HUVECs, leading to endothelial damage (45).
Furthermore, Wang et al. showed that 25-hydroxycholesterol
promoted inflammation in HUVECs via the IRF1/RIG-I axis,
which contributed to atherosclerosis (20). These results indicated
that activation of RIG-I by non-viral ligands promotes endothelial
damage by enhancing the inflammatory response. Moreover, in
addition to the effect of RIG-I on inflammation-mediated
endothelial dysfunction, a study demonstrated the effect of RIG-
I on the pro-thrombotic state. They found that dsDNA poly(dA:
dT) and hepatitis B virus induced the expression of prothrombotic
proteins in vascular endothelial cells, which accelerated
microvascular thrombus formation in vivo and promoted
upregulation of von Willebrand factor (vWF) and platelet
tethering via RIG-I signaling (67).

Taken together, these studies demonstrate that RIG-I
activation leads to endothelial cell injury and dysfunction by
enhancing inflammation and thrombosis. Blockade of RIG-I
signaling in non-viral diseases associated with inflammatory
injury of endothelial cells might be beneficial for maintaining
the integrity of the endothelium.

RIG-I in Vascular Smooth Muscle
Cell Dysfunction
Smooth muscle cells (SMCs) are one of the major components of
the vascular wall and involved in vascular disorders such as
vasospasm, hypertension, and atherosclerosis. Proliferation,
migration, dedifferentiation, and apoptosis of vascular SMCs
contribute to the pathogenesis of vascular diseases (68). A
recent report showed that IFN-g induced RIG-I expression in
SMCs in vivo and in vitro (69). A previous study also found that
G3BP1 interacts with RIG-I and further activates MAVS to act
on aortic SMCs and drive aortic calcification. Accordingly, a
G3BP antagonist downregulated RIG-I-stimulated G3BP1
methylation; hence, RIG-I and MAVS deficiency reduced
osteogenic signals in VSMCs, attenuating arteriosclerosis (70).
Another study showed that lncRNA growth-arrest-specific
transcript 5 (GAS5) induced SMC apoptosis and subsequent
abdominal aortic aneurysm (AAA) by activating the zeste
homolog 2 (EZH2)-mediated RIG-I signaling pathway in
angiotensin II-induced AAA mouse models (71). These
evidences highlight that RIG-I activation contributes to SMC
dysfunction and vascular diseases, including aortic calcification
Frontiers in Immunology | www.frontiersin.org 4
and abdominal aortic aneurysms. Further research on the
detailed mechanisms of RIG-I in SMC dysfunction and related
diseases is required.

RIG-I in Cardiac Cell Pathology
Cell death including apoptosis, necrosis, and pyroptosis, are well-
documented in heart disease (72). A previous study showed that
RIG-I activator TNF-a upregulated the expression of RIP3,
which was sufficient to induce necroptosis of cardiomyocytes
during myocardial infarction (73). However, another study
reported that TNF-a played a protective role in the early-stage
of myocardial infarction in line with the regulation of autophagy
and apoptosis (74). As for the role of another RIG-I activator
IFN-g in cardiomyocyte death is unclear. Considering the
importance of cardiomyocyte death under various insults and
the established role of IFN-g in cell death (75), it would be
worthwhile to further explore the role of RIG-I in IFN-g
associated-cardiomyocyte death. In cardiac fibroblasts,
stimulation of RIG-I promoted the production of pro-
inflammatory cytokines such as IL-6 and IL-8, contributing to
heart injury and cardiomyopathy (76). This evidence suggests a
pathogenic role for RIG-I in heart disease. However, in a pressure
overload-induced cardiac hypertrophy and heart failure model,
the RIG-I signaling pathway mediated the protective role of
ADRB3 depletion by enhancing the innate immune response in
the heart (77). Another study demonstrated the remodeling of
scar fibroblasts into cardiomyocytes and thereby defined the
protective role of RIG-I in heart repair. Hu et al. observed that a
stabilized RNA, ICR2, increased the level of cardiomyocyte-
specific genes in reprogrammed “fibroblasts” and enhanced
their ability to differentiate into cardiomyocytes via the RIG-I
and TLR3 pathways (78). In addition to the discrepancy in the
above findings, the role of RIG-I in cell senescence is also
controversial. Some studies have reported that RIG-I mediates
senescence-associated inflammation (79, 80), while another
study suggested that RIG-I inhibited cellular senescence by
negatively regulating the integrin b3/p38 MAPK pathway (81).
Therefore, the role of RIG-I in cardiac cell senescence requires
further investigation. Overall, these controversial findings related
to the role of RIG-I in cardiac cells under pathological conditions
could be due to heterogeneity in the experimental settings and
pathological conditions. Further studies are required to better
define the function and underlying mechanisms of RIG-I in
cardiac cell injuries.

RIG-I in Macrophage Activation
Macrophage activation is not only involved in the innate
immune system but also in immune-related cardiovascular
diseases. RIG-I plays an important role in the antiviral innate
immune response by inducing the production of type I IFN and
pro-inflammatory cytokines in macrophages, as previously
described. Imaizumi et al. found that RIG-I was expressed in
macrophages of human atherosclerotic lesions, indicating that
RIG-I may play a role in the differentiation and activation of
macrophages in atherosclerosis (16). Another study found that
RIG-I was significantly upregulated in LPS-stimulated primary
human monocytes infected with dengue virus (DENV), resulting
May 2022 | Volume 13 | Article 893204
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in vascular injury (82). These studies demonstrate that RIG-I
expressed in macrophages participates in vascular injury and
atherosclerosis. However, the function and related mechanism of
RIG-I in macrophage activation-mediated cardiovascular
diseases remain unclear and need to be explored.

RIG-I in Cardiovascular Diseases
It is well known that inflammation plays a critical role in
eliminating viruses and repairing damaged tissues. However,
chronic inflammation often induces organ injury and triggers
the onset of various diseases, including cardiovascular disease.
Emerging studies have shown that RIG-I is involved in the
pathogenesis of cardiovascular diseases.

RIG-I in Atherosclerosis
Atherosclerosis is a progressive inflammatory disorder of the
arterial wall that underlies hypertension, heart attack, and stroke
(83). The study by Imaizumi et al. revealed RIG-I expression in
foamy macrophages within atherosclerotic lesions, as well as
IFN-gamma-induced RIG-I expression in macrophages, thereby
suggesting the effect of RIG-I on the regulation of differentiation
and activation of macrophages and induction of atherosclerosis
(16). Another study showed that enhanced expression of RIG-I
correlated with augmented lesions in atherosclerosis induced by
organic pollutants (84).Wang’s study further revealed that 25-
hydroxycholesterol induced higher expression of RIG-I in
endothelial cells and macrophages, thereby contributing to
atherosclerotic inflammation (20). RIG-I or MAVS deficiency
reduced osteogenic signals in aortic vascular smooth muscle
(VSM). Moreover, Blockage of RIG-I/MAVS signaling
decreased aortic calcium accumulation in MAVS-deficient
LDLR-/- mice (70). These results provide new insights into the
role of RIG-I in the pathogenesis of atherosclerosis and its
therapeutic potential.

RIG-I in Abdominal Aortic Aneurysm
Abdominal aortic aneurysm (AAA) is an inflammatory
vascular disease that is common in the elderly. AAA is
characterized by an inflammatory immune response and
abdominal aorta dilation (85). The RIG-I gene expression in
the aortic wall and blood of patients with AAA has been
investigated. A previous study reported that RIG-I mRNA
levels were enhanced in the circulation of patients with AAA
compared with that in healthy subjects. RIG-I appears to be a
promising biomarker for diagnosis and disease progression of
AAA (86). Evidence from Ang II-induced AAA mouse models
also revealed elevated RIG-I mRNA and protein levels.
Moreover, animal experiments have shown that RIG-I
overexpression by a lentivirus expression system resulted in
the apoptosis of SMCs, which promoted AAA progression (71).
The above studies suggest that RIG-I could serve as a promising
biomarker for predicting the disease progression of AAA.
Inhibition of this pathogenic signaling might be beneficial in
retarding the progression of AAA.6
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RIG-I in Cardiac Dysfunction
Heart failure (HF) is one of the leading causes of death worldwide.
Hypertensive heart disease, dilated cardiomyopathy, ischemic
heart disease, and chronic obstructive pulmonary disease are the
main causes of HF. Cardiac hypertrophy is the primary
pathological change in hypertensive heart disease, however, its
underlying molecular mechanisms remain unknown. Using an
animal model with transverse aortic constriction (TAC), the
authors observed that enhanced expression of RIG-I mediated
the protective role of ADRB3 depletion in cardiac hypertrophy
and heart failure (77). Such protection can be mediated by the
enhancement of the innate immune response. In dilated
cardiomyopathy, in vitro cell experiments showed that activation
of RIG-I leads to higher production of pro-inflammatory
cytokines such as IL-6 and IL-8, in human cardiac fibroblasts
(76). This suggests the inflammatory function of RIG-I in the
progression of dilated cardiomyopathy. Another study showed
that ICR2 (a stabilized RNA) enhanced the ability of cardiac
fibroblasts to reprogram into cardiomyocytes via the RIG-I
pathway without inducing inflammatory events (78). These
results reveal the controversial role of RIG-I in cardiac
dysfunction caused by different stimuli and requires further
research to validate the phenotypes and underlying mechanisms.
RIG-I in Other Cardiovascular Diseases
Coronary artery disease (CAD) is a heart disease with a high
morbidity rate. A study aimed at identifying potential
biomarkers of CAD progression showed that genes enriched in
the RIG-I-like receptor signaling pathway were possible
candidates (87), and may be involved in the pathology of
CAD. Although direct evidence of the role of RIG-I in
hypertension is absent, RIG-I-like receptors might be involved
in the pathological process of Ang II-induced hypertension (88).
Considering the importance of inflammation in cardiovascular
injury and the established role of RIG-I in inflammation, it
would be worthwhile to further explore the role of RIG-I in CAD,
hypertension, and other cardiovascular diseases.

In summary, these results indicate that RIG-I plays diverse
roles in cardiovascular diseases by inducing endothelial injury,
SMC apoptosis, reprogramming of heart fibroblasts, and
macrophage activation (Figure 2).
CONCLUSION AND FUTURE
PERSPECTIVE

Accumulating evidence highlights the critical role of RIG-I in the
innate immune and inflammatory responses involved in the
pathogenesis of cardiovascular disease and this review adds
substantial knowledge to existing literature. The role of RIG-I
in the pathogenesis of cardiovascular disease, and the potential of
RIG-I signaling as a biomarker for predicting the occurrence and
progression of cardiovascular diseases has been established.
However, more studies are required to validate the phenotypes
May 2022 | Volume 13 | Article 893204
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of RIG-I in different cardiovascular diseases, as well as the
underlying mechanisms. The development and application of
RIG-I agonists and inhibitors could provide novel therapeutics
that target the RIG-I signaling pathway for the treatment of
cardiovascular diseases.
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