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The marine dinoflagellate Cochlodinium polykrikoides is responsible for harmful algal blooms in aquatic environments and has
spread into the world’s oceans. As a microeukaryote, it seems to have distinct genomic characteristics, like gene structure
and regulation. In the present study, we characterized heat shock protein (HSP) 70/90 of C. polykrikoides and evaluated their
transcriptional responses to environmental stresses. Both HSPs contained the conserved motif patterns, showing the highest
homology with those of other dinoflagellates. Genomic analysis showed that the CpHSP70 had no intron but was encoded by
tandem arrangement manner with separation of intergenic spacers. However, CpHSP90 had one intron in the coding genomic
regions, and no intergenic region was found. Phylogenetic analyses of separate HSPs showed that CpHSP70 was closely related with
the dinoflagellate Crypthecodinium cohnii and CpHSP90 with other Gymnodiniales in dinoflagellates. Gene expression analyses
showed that both HSP genes were upregulated by the treatments of separate algicides CuSO

4
and NaOCl; however, they displayed

downregulation pattern with PCB treatment. The transcription of CpHSP90 and CpHSP70 showed similar expression patterns
under the same toxicant treatment, suggesting that both genes might have cooperative functions for the toxicant induced gene
regulation in the dinoflagellate.

1. Introduction

Dinoflagellate algae are a eukaryotic protist and are the
most important primary producer in aquatic environments.
Some species (e.g., Alexandrium tamarense, Amphidinium
carterae, Akashiwo sanguinea, Cochlodinium polykrikoides,
Gymnodinium, and Karlodinium micrum) are responsible
for harmful algal blooms (HABs), affecting fisheries and
creating associated economic loss in aquaculture industries
[1].The ichthyotoxic Cochlodinium polykrikoides is one of the
most common dinoflagellates that cause HABs, and it has
expanded oceanic regions worldwide [2, 3]. Thus, its bloom
can cause severe environmental impacts and huge economic
losses, due to lots of fish mortalities in aquaculture [4–6].
In the last three decades, the causative organism has been
extensively studied in terms of environmental survey, bloom-
forming mechanisms, and/or mitigation measures [7–11];

nevertheless, some issues, like toxic mechanisms and cellular
gene response, still remained unclear. Molecular study is very
useful and crucial for understanding regulation mechanism
and molecular characteristics of the causative organism.
However, molecular studies of C. polykrikoides especially in
terms of toxicogenomics and gene regulation are limited so
far.

Heat shock proteins (HSPs) are remarkably evolutionary
conserved molecular chaperones and are present in all the
prokaryotic and eukaryotic organisms. They are distributed
into smallHSP,HSP60,HSP70,HSP90, andHSP100, depend-
ing on their molecular weight and sequence similarity [12].
HSPs havemultiple roles, includingmembrane translocation,
protein degradation, protein folding, and repair misfolded
proteins, in regulation of protein homeostasis in normal and
stressed cells for regulating protein homeostasis in normal
and stressed cells [12, 13]. Hence, HSPs are one of the major
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genes that can be induced and respond to various stressors,
and, of them, HSP70 may be firstly induced under stress
conditions rather than other HSPs [12]. Moreover, HSP70
and HSP90 are the most conserved and abundant HSPs
and are widely involved in the environmental stressors, such
as thermal shock, heavy metal, oxidative damage, hypoxia,
and xenobiotic chemicals [12, 14–16]. For this reason, either
HSP90 orHSP70 is considered as biomarker for environmen-
tal monitoring [17, 18]. Furthermore, HSP90 and HSP70 may
interact with each other, as well as cooperate with other HSPs
or chaperone to regulate multisignal transduction pathway
[19–21].

In cases of the dinoflagellates, several of HSP90 and
HSP70 genes have been identified, but majority of researches
have focused on phylogenetic relationships or spliced leader
sequence analyses in dinoflagellates [22–25]. Only few studies
have investigated the responses of HSP90 and/or HSP70
under environmental stress conditions [26–28]. For example,
we reportedHSP70/90 from the dinoflagellates Prorocentrum
minimum, suggesting that both genes play diverse roles
in physiological responses of the dinoflagellate [27, 28].
So, it is necessary to discover more molecular information
for understanding gene regulation mechanisms in adaptive,
survival strategies of dinoflagellates, as well as gene and
genomic structures. In the present study, we determined full
length sequences of HSP90 and HSP70 of the dinoflagellate
C. polykrikoides and characterized their gene and genomic
features. These included analysis of genomic DNA, deduced
protein sequences, phylogenetic relationships, and their gene
regulation under metal and nonmetal stress conditions as
well.

2. Materials and Methods

2.1. Cell Culture. C. polykrikoides was obtained from the
National Fisheries Research and Development Institute
(NFRDI), Korea. The C. polykrikoides cells were cultured in
f/2 medium at 20∘C in 12:12 h light-dark cycle, with a photon
flux density of about 65 𝜇mol photons m−2 s−1.

2.2. RNA Extraction, cDNA Synthesis, and DNA Extraction.
C. polykrikoides cultures were harvested by centrifugation
at 1,000 g for 10min, frozen immediately in liquid nitro-
gen and stored at −80∘C until RNA extraction. Preserved
cells were physically broken by freeze-thawing in liquid
nitrogen and further homogenized by a Mini-Beadbeater
(BioSpec Products Inc., Bartlesville, OK) with zirconium
beads (diameter 0.1mm). Total RNA was isolated using the
TRIzol (Invitrogen, Carlsbad, CA) and purified by Mini Spin
Columns of RNeasy Mini Kit (Qiagen, Valencia, CA). For
the first strand cDNA, 2 different cDNA synthesis kits were
employed: one was SuperScript III First-Strand Synthesis
System (Invitrogen, Carlsbad, CA) for the gene cloning of
CpHSP70 and CpHSP90; the other was aMaxime RT PreMix
Kit with random primers (iNtRON, Seongnam, Republic of
Korea) for gene expression study. Then, the 1st strand cDNA
templates were diluted 1 : 10 with nuclease-free water for use
in subsequent analyses. Total genomic DNA was extracted

from C. polykrikoides following cetyltrimethylammonium
bromide (CTAB) [29].

2.3. Gene Sequences Determination. Full length of CpHSP70
and CpHSP90 sequences was determined by rapid ampli-
fication of cDNA ends (RACE). Partial gene sequences of
CpHSP70 and CpHSP90 were taken from C. polykrikoides
EST database (GenBank accession number SRR1917383)
determined by 454 pyrosequencing (GS-FLX Titanium; 454
Life Sciences, Roche, Branford, CT). CpHSP70 and CpHSP90
EST sequences were used for primer design for full length
amplification (Table 1). The 3󸀠- and 5󸀠-untranslated regions
(UTR) of these genes were determined by using the 3󸀠-
and 5󸀠-RACE, respectively. For the RACE, nest PCRs were
employed, and the primers used in each PCR were listed in
Table 1. Reaction conditions for the primary and secondary
PCRs were as follows: predenaturation at 96∘C for 10min; 35
cycles of 95∘C for 30 s, 52∘C/54∘C for 30 s, 72∘C for 100 s, and
extension at 72∘C for 10min, respectively. Positive core PCR
products were purified, cloned into pMD20-T vector (Takara,
Shiga, Japan), transformed into E. coli competent cells, and
subjected to sequencing. The full length of the CpHSP70
and CpHSP90 was validated by PCR with specific primers
(Table 1). The primers used in the CpHSP70 and CpHSP90
genomic sequence determination were designed according to
cDNA sequence (Table 1).

2.4. CpHSP70 and CpHSP90 Characterization and Phylo-
genetic Analysis. Protein motifs and conserved domains
of CpHSP70 and CpHSP90 protein were analyzed with
the online servers and public database, including the
PROSITE (http://prosite.expasy.org/), Compute pI/Mw tool
(http://web.expasy.org/compute pi/), and NCBI Conserved
Domain Database (http://www.ncbi.nlm.nih.gov/Structure/
cdd/wrpsb.cgi).

Phylogenetic analysis was performed in MEGA5 [30],
using the neighbor-joiningmethod [31]. Bootstrap consensus
tree inferred from 1,000 replicates was taken to represent the
evolutionary history of the taxa analyzed [32]. The tree is
drawn to scale, with branch lengths in the same units as those
of the evolutionary distances used to infer the phylogenetic
tree. The evolutionary distances were computed using the
JTT matrix-based method [33] and were in the units of the
number of amino acid substitutions per site. In the sequences
analysis, all positions containing gaps and missing data were
eliminated. It involved 28 amino acid sequences and had a
total of 489 positions in the final HSP90s dataset. In the case
of HSP70s, it involved 23 amino acid sequences.There were a
total of 586 positions in the final HSP70s dataset.

2.5. Toxicant Treatments, Gene Expression, and Statistical
Analysis. Exponential phase cells were used for toxicant
treatments. Typical toxicants CuSO

4
(Cat. number C1297,

Sigma, MO), NaOCl (Cat. number 425044, Sigma, MO), and
Aroclor 1016 (48701, Sigma, a type of PCBs) were employed
in the present study. To test the doses effect of toxicants on
CpHSP70 and CpHSP90 transcriptional expression, a series
of concentrations of each toxicant were added in the C.
polykrikoides cultures (with final concentration of CuSO

4
: 1,
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Table 1: The primers used in the present study.

Gene Primer Remark Nucleotide sequence (5󸀠 → 3󸀠)
CpHSP90 CpH90F1 RT-PCR GTTCGACACCTCACTGCTCACC
CpHSP90 CpH90R1 RT-PCR AGGCCGAGCTTGATCATGC
CpHSP70 CpH70F1 RT-PCR GGGCAGACCTTCACGACGTATG
CpHSP70 CpH70R1 RT-PCR AATGCCGTCCAAGTGGAACTTC
Cp18S Cp18S-F RT-PCR GGAGTATGGTCGCAAGGCTGAAAC
Cp18S Cp18S-R RT-PCR CCTCGTGTTGAGTCAAATTAAGCC
CpHSP90 CpHSP90-3F2 3󸀠-RACE TGCTCACCTCCGGCTTCAAC
CpHSP90 CpHSP90-3F3 3󸀠-RACE CCACCGCATGATCAAGCTC
CpHSP90 CpHSP90-5R2 5󸀠-RACE ATGCGGCTGCTGATGATG
CpHSP90 CpHSP90-5R3 5󸀠-RACE ACCTTCTCCACCTTGTCGC
CpHSP90 CpHSP90-SR1 Full length GTGTCCAAGTCTTGTGATCGAC
CpHSP90 CpHSP90-SR2 Full length AGCACTAGCGCCGGTCATGT
CpHSP90 5-SL 5󸀠-RACE/full length CGTAGCCATTTTGGCTCAAG
CpHSP70 CpHSP70-3F1 3󸀠-RACE CGCTGCAGGAGGAGAAGTTG
CpHSP70 CpHSP70-3F2 3󸀠-RACE TGGAGGGCGTTGTCAATC
CpHSP70 CpHSP70-SF1 Full length TTTCTCGGGGGTTTTGCTTCG
CpHSP70 CpHSP70-SF2 Full length CATGGCGAAAAAGACGGCTGTT
CpHSP70 CpHSP70-SR1 Full length TGGGACAGTCTGGGGTTGCT
CpHSP70 CpHSP70-SR2 Full length ACACTCGGCGAATCCTCAG

B26 3󸀠-RACE GACTCTAGACGACATCGA(T)18
B25 3󸀠-RACE GACTCTAGACGACATCGA

CpHSP70 CpHSP70-DF1 Genomic DNA TGTCAGTCATCCCCTATTTGTC
CpHSP70 CpHSP70-DR1 Genomic DNA GACAGTCTGGGGTTGCTGAATT
CpHSP90 CpHSP90-DF1 Genomic DNA TGGGAAACCATTTTTGAGCATTG
CpHSP90 CpHSP90-DR1 Genomic DNA TGCAGGTGTGAACCACTCAGC
CpHSP70 CpHSP70-IF1 Intergenic DNA GAGGGCGTTGTCAATCCCATG
CpHSP70 CpHSP70-IR1 Intergenic DNA AATGCCGTCCAAGTGGAACTTC

5, and 8mg L−1; NaClO
3
: 0.02, 0.1, 0.3, and 0.5mg L−1; PCB:

0.05, 0.1, 0.2, and 0.5mg L−1). The treated and untreated cul-
tures were harvested for gene expression analysis at indicated
time points. RNA extraction and cDNA were prepared with
the same manner described previously. Gene expression and
statistical analysis were followed by Guo et al. [27].

3. Results and Discussion

3.1. CpHSP90Characteristics and Phylogeny. CpHSP90 (Gen-
Bank number KP010829) was 2,316 bp in length, coding 709
amino acids (aa) with theoretical isoelectric point (pI) 4.9
and molecular weight (Mw) 81.7 kDa. Its deduced protein
shared the highest sequence similarity (681 identities in 709
amino acids) with those of the dinoflagellate Prorocentrum
minimum (HSP90, GenBank number AFD34191), followed
by Karlodinium veneficum with 665 identities in 709 aa
(HSP90; ABI14419). Generally, the HSP90 contains five con-
served motifs defined as HSP90 signature motif [34]; these
five signature motifs NKEIFLRELISNASDALDKIRY, LGTI-
AKSGT, IGQFGVGFYSAYLV, IKLYVRRVFI, and VVDS-
EDLPLNISRE were identified by comparison with other
HSP90s (Figure 1(a)). Furthermore, the conserved MEEVD
was identified in theC-terminus of deducedCpHSP90, which

indicated that CpHSP90 protein belongs to the cytosolic
HSP90 family [35].

Phylogenetic analysis was performed using CpHSP90
protein and other dinoflagellate HSP90 proteins
(Figure 1(b)). A resultant tree showed C. polykrikoides
with Gymnodinium fuscum and Lepidodinium chlorophorum
was clustered into one clade, of which taxon position
belonged to the order Gymnodiniales. Furthermore, other
dinoflagellate orders like Perdiniales were spited into two
clades as well. These results suggested that the dinoflagellate
HSP90s explosive scattered in morphology and diversity
[24].

3.2. CpHSP70 Characteristics and Phylogeny. In addition,
full ORF of CpHSP70 (GenBank number KP010828) was
1,944 bp in length, coding 648 aa with theoretical pI 5.12 and
Mw 70.8 kDa. CpHSP70 aa showed 94% maximum identity
with those of the dinoflagellates Crypthecodinium cohnii
(GenBank number AAM02973) and Prorocentrumminimum
(ABI14407), followed by 88% identity with Perkinsus marinus
(XP 002780413). We identified three HSP70 motifs, IDL-
GTTYS, IYDMGGGTFDVSLL, and VVLVGGSTRIPKVQS,
in this protein (Figure 2(a)). In addition, the EEVD motif
was identified in the CpHSP70 protein C-terminus, which
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Figure 1: Continued.
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Figure 1: The cDNA and its predicted amino acid sequences of CpHSP90 and neighbor-joining tree of dinoflagellate HSP90s. (a) The cDNA
and its predicted amino acid sequences: the conserved amino acids domains were marked in grey; the end domain “MEEVD” was boxed;
(b) a neighbor-joining tree of dinoflagellate HSP90s. The phylogenetic tree was constructed in the MEGA 5 (bootstrap method with 1,000
replicates). The scale bar represents the number of amino acid substitutions per site. C. polykrikoides HSP90 was determined in the present
study and marked in a box. Other dinoflagellate HSP90s and outgroup were obtained from NCBI database.

indicated that the CpHSP70 located in the cytoplasm of the
cell [36].

A neighbor-joining tree was constructed using dinoflag-
ellates HSP70 and other eukaryotic HSP70s (Figure 2(b)). As
expected, all the dinoflagellate HSP70s were clustered into
one clade, which showed closest relationship with Perkinsea,
followed by Apicomplexa. All the analyzed dinoflagellates,
Perkinsea, and Apicomplexa were grouped into one clade
belonging to Alveolata.

3.3. The Genomic Coding Structures of CpHSP70 and
CpHSP90. Genomic regions of eachCpHSP70 andCpHSP90
were amplified by PCR. As a result, we found that no intron
was presented in the CpHSP70 (KP010830) coding genome.
In addition, the gene was encoded in tandem arrangement
manner with the separation of intergenic spacers (Figures
3(a) and 3(b)), which was 397 bp in length, and was found
in CpHSP70 genome sequence.This result was similar to that
of Amphidinium carterae [37]. On the other hand, interest-
ingly, we found one intron as in CpHSP90 coding genome
(KP010831) (Figure 3(c)), which was 454 bp in length, but
no intergenic region was found, as judged by PCR. This

structure was different from that of A. carterae HSP90
genomic sequence (25 introns), and A. carterae HSP90 gene
was encoded in tandem arrangement. Although A. carterae
HSP90 and CpHSP90 proteins showed highly homologous
phylogenic relationships, their genomic DNA represented
quite different characteristics.These results suggested that the
same gene in different dinoflagellates displayed differential
genome arrangement.

3.4. Effect of Algicide on CpHSP70 and CpHSP90 Transcrip-
tion. Algicide chemical treatments are one of the powerful
tools to remove HABs, and the physiological effects of
individual algicides on the HABs have been widely investi-
gated [38]. For example, the algicides oxidizing NaOCl and
nonoxidizing CuSO

4
can cause considerable decreases of C.

polykrikoides cell numbers and pigment contents and also
affect their chlorophyll autofluorescence [38]. Nevertheless,
there is no report about the CuSO

4
and NaOCl effect on the

C. polykrikoides at molecular level, especially in terms of gene
transcription.

In general, effects of the CuSO
4
on aquatic organisms

are relative to the formation of reactive oxygen species
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Figure 2: The cDNA and its predicted amino acid sequences of CpHSP70 and neighbor-joining tree of dinoflagellate HSP70s. (a)The cDNA
and its predicted amino acid sequences: the conserved amino acids domains were marked in grey; the end domain “EEVD” was boxed; (b)
the phylogenetic tree was constructed in the MEGA 5 (bootstrap method with 1,000 replicates), and the scale bar represents the number of
amino acid substitutions per site. CpHSP70 was determined in the present study and marked in a box. Other dinoflagellates HSP70s and
outgroup were obtained from NCBI database.
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Figure 4: The gene expression profile of CpHSP70 and CpHSP90 after CuSO
4
and NaOCl treatment, respectively. (a, b) Total RNA was

extracted from C. polykrikoides at 24 h after treatment with 1mg L−1, 5mg L−1, and 8mg L−1 of CuSO
4
, respectively. (c, d) Total RNA was

extracted from C. polykrikoides after treatment with 0.02mg L−1, 0.10mg L−1, 0.3mg/L, and 0.5mg L−1 NaOCl, respectively. The 18S rRNA
gene was used as the internal control to normalize the amount of templates in qRT-PCR. Results are given as the means of triplicate ±SD.
The significant differences between the treated group and the control group are highlighted by one-way ANOVA; ∗𝑃 < 0.05, ∗∗𝑃 < 0.01,
∗∗∗
𝑃 < 0.001.

(ROS) and can regulate the photosynthesis related gene
expression and increase the antioxidant enzyme activity
in the algae [39, 40]. In the present study, the transcrip-
tional expression of CpHSP90 and CpHSP70 showed similar
expression pattern after CuSO

4
treatment (Figure 4). The

transcriptional expression level of these two genes was first
upregulated and then decreased with increased concentra-
tion of CuSO

4
. The CpHSP90 transcription showed similar

expression pattern under 1.0mg L−1 and 5.0mg L−1 CuSO
4

treatments with 5.1- and 4.7-fold changes compared to that
of control, respectively. These expression patterns were also
displayed by CpHSP70, showing 3.7- and 3.1-fold changes

under 1.0mg L−1 and 5.0mg L−1 CuSO
4
treatments compared

to that of control. EitherCpHSP90 orCpHSP70was distinctly
decreased compared to those of 1.0mg L−1 or 5.0mg L−1
CuSO

4
treatment (Figures 4(a) and 4(b)). This result sug-

gested that the CpHSP90 and CpHSP70 may be involved
in CuSO

4
induced gene regulation in C. polykrikoides. This

result was congruent with our previous results, showing that
both genes were considerably induced by exposure of CuSO

4

in the dinoflagellate P. minimum [27, 28]. However, we found
that the expression patterns of HSP70 genes were different
between C. polykrikoides and P. minimum (Pm) exposed to
the same CuSO

4
. The CpHSP70 expression was increased
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Figure 5: Gene expression profile of CpHSP70 (a) and CpHSP90 (b) after PCB treatment, respectively. Total RNA was extracted from C.
polykrikoides at 24 h after treatment with 0.05mg L−1, 0.1mg L−1, 0.2mg L−1, and 0.5mg L−1 of PCB, respectively.The 18S rRNA gene was used
as the internal control to normalize the amount of templates in qRT-PCR. Results are given as the means of triplicate ±SD. The significant
differences between the treated group and the control group are highlighted by one-way ANOVA; ∗∗𝑃 < 0.01, ∗∗∗𝑃 < 0.001.

gradually till high dose (8.0mg L−1 of CuSO
4
), whereas the

PmHSP70 expression was the highest level at 1.0mg L−1 and
then decreased, possibly due to cell deaths. According to
these results, we predicted that the HSP90 and HSP70 are
commonly involved in metal CuSO

4
induced gene regulation

in the dinoflagellates, but their expression patterns may
depend on exposed doses and testing species.

Oxidizing chlorine is one of biocides that are commonly
used in controlling the quality of the water. It can damage
the cell by producing ROS. Hypochlorites may have primary
deleterious effect on the DNA synthesis or progress oxidation
of thiol groups and further effect on the cell wall and protein
[41]. In the present study, the expression pattern showed
response of CpHSP90 and CpHSP70 depending on the doses
of the NaOCl. Interestingly, CpHSP90 and CpHSP70 were
not induced by lower concentration (0.02mg L−1) of NaOCl
but significantly upregulated by relatively high concentra-
tions (0.1, 0.3, and 0.5mg L−1) of NaOCl (Figures 4(c) and
4(d)). Both CpHSP90 and CpHSP70 in 0.3mg L−1 NaOCl
treated cells showed 8.5- and 13.4-fold changes compared
to that of control, which were highest expression level
among NaOCl treated cells. The chlorine-based disinfectants
induced HSP70 gene expression was also found in the C.
parvum oocysts [42].

3.5. Effect of PCB on CpHSP70 and CpHSP90 Transcription.
There are many of chemicals that presented in the aquatic
system by industry or agriculture sewerage. PCBs are used in
the industry and commonly present in aquatic ecosystems.
They are one of the endocrine disturbing chemicals (EDCs)

and have toxic effect to various organisms [43]. According
to our previous work [44], EDCs, including PCB, were very
toxic to microalgae, potentially affecting the photosystem II
energy flow, of which results suggested their toxic effect on
the dinoflagellates.

In this study, we examined the gene expressional response
of CpHSP70 and CpHSP90 in C. polykrikoides exposed
to PCB. The transcriptional expressions of CpHSP70 and
CpHSP90 were gradually decreased with increasing PCB
concentration (Figure 5), with lowest expression level of
0.42- and 0.23-fold under 0.5mg L−1 PCB exposure com-
pared to untreated cultures. However, neither PmHSP90 nor
PmHSP70 was up- or downregulated by the PCB exposure in
the dinoflagellate Prorocentrum minimums [27, 28]. Accord-
ing to these results, we speculated that the PCB may have
a differential effect on the dinoflagellates among species.
The aroclor 1016, which is one of dioxin-like PCBs, was
employed. It is clear that the aryl hydrocarbon receptor
(Ahr) mediated pathway is involved in the dioxin-like PCBs
adverse effect mechanism [45, 46]. A dimer of HSP90 is
essential compound that binds to the inactive Ahr protein
in the cytoplasm and needs to be released from Ahr protein
complex when Ahr is activated [47–50]. According to these
findings, we predict that the CpHSP90 may bind to Ahr and
express at a high level in the normal conditions.TheCpHSP90
may be released, and then the protein may be activated
to participate in the signal transduction of the cells, when
C. polykrikoides is exposed to PCB. The essential CpHSP90
amount was decreased with increasing concentration of PCB
in the C. polykrikoides. At present, it was not clear; thus we
needed more experiments to clarify these gene responses
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in the dinoflagellate, by using additional EDCs and testing
species in future.

In addition to this, the CpHSP70 and CpHSP90 showed
similar expression patterns under the same PCB treat-
ment (Figures 4 and 5). Similar results were found in the
benzo[a]pyrene treated clam Ruditapes philippinarum [51].
Both CpHSP90 and CpHSP70 proteins contain EEVD motif,
which is tetratricopeptide repeat domain binding site at the
C-terminus, and some proteins can bind with HSP90 and
HSP70 to assemble as protein complex to play function
such as in the triage of damaged and aberrant proteins
for degradation process [16, 52]. The gene transcription
pattern of CpHSP90 and CpHSP70 results implied these two
genes may have cooperative function in the C. polykrikoides
toxicant induced gene regulation [16, 52].

In conclusion, this study firstly determined full length
cDNAs of two HSPs (HSP70/90) from the harmful dinoflag-
ellate C. polykrikoides and characterized molecular features
such as conserved motifs, coding genomic region, and
phylogenetic relatedness to other eukaryotes. CpHSP70 had
quite similar cDNA and genomic coding structures (e.g.,
no intron and tandem arrangement) to those in the other
dinoflagellates; however, CpHSP90 was different from those
of other dinoflagellate HSP90s in coding genomic structure
(one intron and no intergenic region). These suggested their
homologous functions with difference of genomic DNA evo-
lutionary events. In addition, both CpHSP90 and CpHSP70
may be involved in responding to the CuSO

4
, NaOCl, and

PCB caused stress.
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