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Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. �e abnormal expression of genes is significantly related 
to the occurrence of HCC. �e aim of this study was to explore the differentially expressed genes (DEGs) of HCC and to provide 
bioinformatics basis for the occurrence, prevention and treatment of HCC. �e DEGs of HCC and normal tissues in GSE102079, 
GSE121248, GSE84402 and GSE60502 were obtained using R language. �e GO function analysis and KEGG pathway enrichment 
analysis of DEGs were carried out using the DAVID database. �en, the protein–protein interaction (PPI) network was constructed 
using the STRING database. Hub genes were screened using Cytoscape so�ware and verified using the GEPIA, UALCAN, and 
Oncomine database. We used HPA database to exhibit the differences in protein level of hub genes and used LinkedOmics to 
reveal the relationship between candidate genes and tumor clinical features. Finally, we obtained transcription factor (TF) of hub 
genes using NetworkAnalyst online tool. A total of 591 overlapping up-regulated genes were identified. �ese genes were related 
to cell cycle, DNA replication, pyrimidine metabolism, and p53 signaling pathway. Additionally, the GEPIA database showed 
that the CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 were associated with the poor survival of 
HCC patients. UALCAN, Oncomine, and HPA databases and qRT-PCR confirmed that these genes were highly expressed in HCC 
tissues. LinkedOmics database indicated these genes were correlated with overall survival, pathologic stage, pathology T stage, race, 
and the age of onset. TF analysis showed that MYBL2, KDM5B, MYC, SOX2, and E2F4 were regulators to these nine hub genes. 
Overexpression of CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 in tumor tissues predicted poor 
survival in HCC. �ey may be potential therapeutic targets for HCC.

1. Introduction

Currently, liver cancer is the fi�h most common malignancy 
and the second most common cause of cancer death [1, 2]. 
Hepatocellular carcinoma (HCC) accounts for more than 90% 
of primary liver cancer, killing about 750,000 people world-
wide each year [3]. In particular, the vast majority of cases 
(83%) have occurred in less developed regions of the world, 
causing a major health crisis in Asia [4]. Because 80–90% of 
liver cancer cannot be completely resected, and its’ prognosis 
is very poor, it seriously threatens people’s physical and mental 
health. According to the epidemiological investigation, it may 

be related to viral hepatitis [5], and drinking, moldy food, 
toxicants and genetic factors [6]. At present, more and more 
studies believe that the occurrence and poor prognosis of HCC 
are related to the abnormal expression of genes [7, 8]. However, 
since multiple genes are o�en involved in the process of cell 
carcinogenesis, and these genes can interact with each other 
and function through the regulatory network [9], the specific 
pathogenesis of HCC is still unclear. Although great efforts 
have been made to search for biomarkers of tumor prognosis 
or diagnosis, it is estimated that less than 1% of biomarkers 
are used in clinical practice [10]. �erefore, it is especially 
important to assess the relationship between biomarkers and 
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diseases at the genetic level, protein levels and clinical 
factors.

In recent years, gene chip technology has played an impor-
tant role in studying tumor gene expression profiles and 
searching for tumor key genes [11]. �is study aims to provide 
bioinformatics basis for further research on the molecular 
mechanism of HCC, and provide a new way to carry out indi-
vidualized treatment on genes level.

2. Materials and Methods

2.1. Microarray Data. In this study, the gene expression profile 
datasets (GSE102079, GSE121248, GSE84402, and GSE60502) 
were obtained from the Gene Expression Omnibus (GEO, 
https://www.ncbi.nlm.nih.gov/geo/) of NCBI. �e microarray 
data from GSE102079, GSE121248, and GSE84402 were based 
on GPL570 (HG-U133_Plus_2) Affymetrix Human Genome 
U133 Plus 2.0 Array. �e GSE102079 profile was composed 
of 152 HCC tissues and 91 nontumorous tissues. GSE121248 
included 70 chronic hepatitis B-induced HCC tissues and 
39 adjacent normal tissues. GSE84402 included 14 pairs of 
HCC tissues and corresponding nontumorous tissues. Totally, 
18 pairs of HCC tissues and adjacent nontumorous tissues 
were enrolled in GSE60502 which was based on GPL96[HG-
U133A] Affymetrix Human Genome U133A Array.

2.2. Screening Overlapping Up-Regulated DEGs in HCC. We 
used R so�ware to analyze GSE102079, GSE121248, GSE84402, 
and GSE60502 raw data of the CEL file for identifying DEGs. 
RMA package was used for data normalization processing. 
Affy package was used for quality assessment of samples 
in each GEO dataset. �e Limma package was used to 
identify DEGs. �e criterion for selection of DEGs was set 
as |log2FC| > 1 and � value <0.05 for each GEO dataset. To 
identify shared up-regulated DEGs among GSE102079, 
GSE121248, GSE84402 and GSE60502, we used R so�ware 
to generate a Venn diagram.

2.3. Function and Pathway Enrichment Analyses of Common Up-
Regulated DEGs. To investigate the function of 591 common 
up-regulated DEGs, we used the Database for Annotation, 
Visualization and Integrated Discovery (DAVID, http://
david.abcc.ncifcrf.gov/) online tool to perform functional and 
pathway enrichment analysis. Gene ontology (GO) analysis, 
including the biological process (BP), cellular component (CC), 
and molecular function (MF), and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis were conducted 
for the selected common up-regulated DEGs using DAVID. 
�푃 < 0.05 was regarded as statistical significance. Subsequently, 
the shared up-regulated DEGs enriched in top ten KEGG 
pathways/GO functions were determined for the Venn diagram 
using R so�ware.

2.4. Protein–Protein Interaction (PPI) Network Construction 
and Hub Genes Selection. We used the Search Tool for the 
Retrieval of Interacting Genes (STRING, https://string-db.
org/) online database to construct PPI network. CytoHubba 
was used to get the top 10 hub genes with the highest degree 
in the PPI network in Cytoscape so�ware.

2.5. Validation of the Hub Genes. We used Gene Expression 
Profiling Interactive Analysis (GEPIA, http://gepia.cancer-
pku.cn) to identify potential candidate biomarkers for 
overall survival (OS) and disease-free survival (DFS) in liver 
hepatocellular carcinoma (LIHC) patients. Genes that are 
significantly associated with OS and DFS were considered as 

Table 1: List of primers.

Primer Sequence

CDK1
Forward: 5′-CCCTTTAGCGCGGATCTACC-3′
Reverse: 5′-CATGGCTACCACTTGACCTGT-3′

CCNB1
Forward: 5′-AATGGGAAGGGAGTGAGTGC-3′

Reverse: 5′-GCATTAATTTTCGAGTTCCTG-
GTG-3′

CDC20
Forward: 5′-ATGCGCCAGAGGGTTATCAG-3′
Reverse: 5′-AGGATGTCACCAGAGCTTGC-3′

BUB1
Forward: 5′-AGCCCAGACAGTAACAGACTC-3′

Reverse: 5′-GTTGGCAACCTTATGTGT-
TTCAC-3′

MAD2L1
Forward: 5′-CGTGGCCGAGTTCTTCTCATT-3′
Reverse: 5′-TACAAGCAAGGTGAGTCCGT-3′

MCM3
Forward: 5′-GCGACTTTGGTGGAGGTAGT-3′
Reverse: 5′-TTGTTCAGAAGCCTCGTCGT-3′

BUB1B

Forward: 5′-TCTCAGAAACAGAATC-
CACGATCC-3′

Reverse: 5′-TGCTAAATCTGCTATACCAAA-
CAGG-3′

MCM2
Forward: 5′-GGTACTGCTATGGCGGAAT-

CATC-3′
Reverse: 5′-AAATGGTGGAAGGTCACGGC-3′

RFC4
Forward: 5′-AAGTCTCCTGGGCCCGTTAT-3′

Reverse: 5′-CTTGCATGGTACTTCACCCAGT-3′

GAPDH Forward: 5′-AGTGGCAAAGTGGAGATT-3′
Reverse: 5′-GTGGAGTCATACTGGAACA-3′

313

118

151264

156
199

591

139

275

310

287
51

64

240

950

GSE102079

GSE60502

GSE121248

GSE84402

Figure 1:  Identification of common up-regulated genes in gene 
expression datasets (GSE102079, GSE121248, GSE84402, and 
GSE60502).
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potential biomarkers for LIHC prognosis. Furthermore, to 
evaluate mRNA expression of hub genes, we used UALCAN 
(http://ualcan.path.uab.edu/analysis.html) database and 
Oncomine (https://www.oncomine.org/) database to 
differentiate expression of hub genes in LIHC tissues and 
normal tissues.

2.6. Quantitative Real-Time PCR. HCC and adjacent tissues 
were taken from Cuiying center sample library of Lanzhou 
University Second Hospital. �e total RNA was extracted 
by using TRNzol Reagent, and was reverse-transcribed with 

FastKing gDNA Dispelling RT SuperMix (TIANGEN, Beijing, 
China). All qRT-PCR reactions were conducted with Rotor-
Gene 6000 PCR system (Qiagen) and performed with SsoFast 
EvaGreen Supermix (Bio-Rad) in 20 μl volume containing 10 μl 
of 2× SsoFast EvaGreen Supermix, 1 μl of each 10 μM forward 
and reverse primer, 1 μl of cDNA sample, and nuclease-free 
water up to 20 μl. Amplification was carried out according 
to the following conditions: initial denaturation 95°C 5 min, 
followed by 45 cycles of denaturation 95°C 10 s, annealing 
57°C 15 s, extension 72°C 15 s. �e relative expression of the 

Table 2: Enrichment analysis of GO and KEGG pathway of DEGs in HCC.

Category ID Term Count �-Value
BP GO:0051301 Cell division 69 7.33E−33
BP GO:0007062 Sister chromatid cohesion 32 1.74E−21
BP GO:0006260 DNA replication 36 1.34E−19
BP GO:0007067 Mitotic nuclear division 43 2.58E−18
BP GO:0006270 DNA replication initiation 16 2.17E−14
BP GO:0000082 G1/S transition of the mitotic cell cycle 24 2.84E−13
BP GO:0007077 Mitotic nuclear envelope disassembly 15 9.00E−11
BP GO:0031145 Anaphase-promoting complex-dependent catabolic process 18 8.02486E−10
BP GO:0016925 Protein sumoylation 21 1.94799E−09
BP GO:0000070 Mitotic sister chromatid segregation 11 3.5016E−09
CC GO:0005654 Nucleoplasm 244 4.34338E−55
CC GO:0005829 Cytosol 213 2.65555E−26
CC GO:0005634 Nucleus 282 9.30863E−22
CC GO:0005737 Cytoplasm 266 1.12033E−18
CC GO:0016020 Membrane 143 3.98244E−17
CC GO:0000777 Condensed chromosome kinetochore 25 2.062E−16
CC GO:0000776 Kinetochore 24 4.34306E−16
CC GO:0005635 Nuclear envelope 30 2.45558E−14
CC GO:0005730 Nucleolus 68 1.1857E−11
CC GO:0000775 Chromosome, centromeric region 17 1.72914E−11
MF GO:0005515 Protein binding 452 1.69289E−45
MF GO:0044822 poly(A) RNA binding 96 1.64645E−17
MF GO:0005524 ATP binding 107 3.67235E−14
MF GO:0003682 Chromatin binding 38 1.15215E−08
MF GO:0019901 Protein kinase binding 37 1.32909E−08
MF GO:0042393 Histone binding 15 5.49717E−05
MF GO:0004674 Protein serine/threonine kinase activity 29 6.35606E−05
MF GO:0003777 Microtubule motor activity 12 6.59963E−05
MF GO:0051082 Unfolded protein binding 14 7.41926E−05
MF GO:0003678 DNA helicase activity 7 0.000106899
KEGG pathway hsa04110 Cell cycle 35 2.22E−19
KEGG pathway hsa03030 DNA replication 15 6.16E−11
KEGG pathway hsa00240 Pyrimidine metabolism 16 1.70E−05
KEGG pathway hsa03013 RNA transport 21 2.97E−05
KEGG pathway hsa04114 Oocyte meiosis 15 2.00E−04
KEGG pathway hsa04115 p53 signaling pathway 11 4.22E−04
KEGG pathway hsa03420 Nucleotide excision repair 9 6.48E−04
KEGG pathway hsa03040 Spliceosome 15 0.001273995
KEGG pathway hsa03430 Mismatch repair 6 0.002244294
KEGG pathway hsa03022 Basal transcription factors 8 0.002420268

http://ualcan.path.uab.edu/analysis.html
https://www.oncomine.org/
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proteinatlas.org/) database to obtain immunohistochemical 
staining.

2.8. Relationship between Candidate Genes and Clinical 
Features in HCC Patients. To further explore the relationship 
between candidate genes and tumor clinical features, we 

gene was calculated by the 2−ΔΔCt method. �e primers are 
listed in Table 1.

2.7. Evaluation of Immunohistochemical Staining. To verify 
the protein expression level of candidate genes in HCC 
tissues, we used Human Protein Atlas (HPA, https://www.

AURKA BUB1 BUB1 BUB3 CCNA2 CCNB1 CCNB2
CCNE1 CCNE2 CDC2O CDC25C CDC45 CDC6 CDC7
CDK1 CDK4 CDK7 CDKN2A CHEK1 DUT FEN1
MAD2L1 MCM2 MCM3 MCM4 MCM5 MCM6 MCM7
NUP107 NUP133 NUP155 NUP205 NUP37 NUP43 NUP85
NUPL2 PCNA POLA1 POLE2 PTTG1 RAD21 RAN RFC1
RFC3 RFC4 RRM1 RRM2 SMC3 TACC3 TPR XPO1
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Figure 2: Overlapping up-regulated genes in KEGG, CC, BP and MF.

Figure 3: PPI network construction among DEGs and top 10 hub genes. (a) PPI relationships among DEGs. (b) Top 10 hub genes.

(a) (b)

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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analyzed the TCGA clinical data using LinkedOmics (http://
www.linkedomics.org/) database.

2.9. Transcription Factor (TF) and Expression Correlation 
Analyses. TF of hub genes was explored using NetworkAnalyst 
(http://www.networkanalyst.ca). Expression correlation 
analysis based on TCGA samples was conducted in GEPIA.

2.10. Statistical Analysis. Statistical analysis and graphs were 
performed with GraphPad Prism 7.00 sofware. Data were 
presented as the mean ± SD. �e � test was used for comparison 
between the two groups.

3. Results

3.1. Screening Overlapping Up-Regulated DEGs. We 
processed the data of four chips with R language, and set the 
cut-off criteria as |log2FC| > 1, the �-value <0.05 to screen the 
DEGs. A total of 591 overlapping up-regulated genes (2766 

Table 3: Top 10 hub genes with the highest degree in the PPI net-
work.

Gene symbol Gene description Degree
CDK1 Cyclin dependent kinase 1 49
CCNB2 Cyclin B2 48
CCNB1 Cyclin B1 48
CDC20 Cell division cycle 20 45

BUB1 BUB1 mitotic checkpoint serine/
threonine kinase 44

MAD2L1 MAD2 mitotic arrest deficient-like 1 
(yeast) 44

MCM3 Minichromosome maintenance com-
plex component 3 43

BUB1B BUB1 mitotic checkpoint serine/
threonine kinase B 42

MCM2 Minichromosome maintenance com-
plex component 2 42

RFC4 Replication factor C subunit 4 41
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Figure 4: Overall survival validation of LIHC patients grouped by median cutoffs of CDK1, CCNB2, CCNB1, CDC20, BUB1, MAD2L1, 
MCM3, BUB1B, MCM2, and RFC4 in GEPIA.
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cell cycle, DNA replication, pyrimidine metabolism, and p53 
signaling pathway.

Additionally, 104 genes were enriched in KEGG pathways, 
133 genes in biological processes, 500 genes in cellular com-
ponent, and 485 genes in molecular function. Subsequently, 
we generated a Venn diagram for pathways/GO functions and 
obtained 51 overlapping genes. AURKA, BUB1, BUB1B, 
BUB3, CCNA2, CCNB1, CCNB2, CCNE1, CCNE2, CDC20, 
CDC25C, CDC45, CDC6, CDC7, CDK1, CDK4, CDK7, 
CDKN2A, CHEK1, DUT, FEN1, MAD2L1, MCM2, MCM3, 
MCM4, MCM5, MCM6, MCM7, NUP107, NUP133, NUP155, 
NUP205, NUP37, NUP43, NUP85, NUPL2, PCNA, 
POLA1,POLE2, PTTG1, RAD21, RAN, RFC1, RFC3, RFC4, 
RRM1, RRM2, SMC3, TACC3,TPR, and XPO1 were shared 
in the four datasets (Figure 2).

in GSE102079, 2483 in GSE121248, 2448 in GSE84402, and 
3284 in GSE60502) were identified using a Venn diagram 
(Figure 1).

3.2. Functions and Pathways of Up-Regulated Genes. We 
presented the top ten pathways/GO functions in this study 
(Table 2). DEGs were mainly involved in biological processes 
such as cell division, sister chromatid cohesion, DNA 
replication, mitotic nuclear division, and G1/S transition of 
the mitotic cell cycle. Cytological composition analysis showed 
that most of these genes were involved in the composition 
of nucleoplasm, cytosol, nucleus, cytoplasm and membrane. 
�e molecular functions were mainly concentrated in protein 
binding, poly (A) RNA binding, and ATP binding. KEGG 
pathway showed that the DEGs were mainly involved in the 
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Figure 5: Disease-free survival validation of LIHC patients grouped by median cutoffs of CDK1, CCNB2, CCNB1, CDC20, BUB1, MAD2L1, 
MCM3, BUB1B, MCM2, and RFC4 in GEPIA.
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poor OS; there was no statistical difference between CCNB2 
expression and OS in LIHC patients (Figure 4). Similarly, 
compared with the low expression of these 10 genes, 
overexpression of CDK1, CCNB2, CCNB1, CDC20, BUB1, 
MAD2L1, MCM3, BUB1B, MCM2, and RFC4 in tumors was 
significantly associated with DFS in LIHC patients (Figure 5). 
�erefore, CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, 
BUB1B, MCM2, and RFC4 were considered as potential 
biomarkers.

3.5. Validation of Selected Up-Regulated Genes in 
HCC. Using the TCGA data in UALCAN online tool, we 
analyzed the expression of the nine selected up-regulated 
genes in LIHC tissues (371 cases) and normal tissues (50 
cases). The results showed that the CDK1, CCNB1, CDC20, 
BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 were 

3.3. PPI Network Construction and Hub Genes Selection. We 
constructed the PPI network for 51 overlapping up-regulated 
genes among KEGG pathway and GO analysis. �e PPI 
included 51 nodes and 836 edges (Figure 3(a)). We used 
cytoHubba to get the top 10 hub genes with the highest 
degree of connectivity in the PPI network, and the top 10 
hub genes included CDK1, CCNB2, CCNB1, CDC20, BUB1, 
MAD2L1, MCM3, BUB1B, MCM2, and RFC4 (Figure 3(b)). 
�e connectivity degree of top 10 hub genes is shown in 
Table 3.

3.4. Survival Analysis of Top Ten Up-Regulated Genes. We used 
GEPIA database to get the survival curves of 182 pairs of HCC 
tissues with high expression and low expression of hub genes. 
LIHC patients with high CDK1, CCNB1, CDC20, BUB1, 
MAD2L1, MCM3, BUB1B, MCM2, and RFC4 experienced 

Normal
(n = 50)

Normal
(n = 50)

Normal
(n = 50)

TCGA samplesTCGA samplesTCGA samples

Expression of CDK1 in LIHC based on sample types Expression of CCNB1 in LIHC based on sample types Expression of CDC20 in LIHC based on sample types

Expression of MCM3 in LIHC based on sample types

Expression of RFC4 in LIHC based on sample typesExpression of MCM2 in LIHC based on sample typesExpression of BUB1B in LIHC based on sample types

Expression of MAD2L1 in LIHC based on sample typesExpression of BUB1 in LIHC based on sample types

TCGA samples

TCGA samples

TCGA samples

TCGA samples

Tr
an

sc
rip

t p
er

 m
ill

io
n

Primary tumor
(n = 371)

Normal
(n = 50)

Primary tumor
(n = 371)

Normal
(n = 50)

0

5

–5

15

10

20

25

50

40

30

20

10

0

–10

50

40

30

20

10

0

–10

4

6

8

–2

2

0

10 50

40

30

20

10

0

–10

50

60

40

30

20

10

0

–10

50

60

40

30

20

10

0

–10

12.5

10

7.5

5

2.5

0

100

80

60

40

20

–20

0

–2.5

Primary tumor
(n = 371)

Normal
(n = 50)

Primary tumor
(n = 371)

TCGA samples

Normal
(n = 50)

Primary tumor
(n = 371)

TCGA samples

Normal
(n = 50)

Primary tumor
(n = 371)

Normal
(n = 50)

Primary tumor
(n = 371)

Primary tumor
(n = 371)

Primary tumor
(n = 371)

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Tr
an

sc
rip

t p
er

 m
ill

io
n

Figure 6: Validation of the expression of candidate genes in HCC tissues and normal tissues in UALCAN.
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CCNB1, CDC20, MAD2L1, MCM3, MCM2, and RFC4. 
The results showed the immunohistochemical staining of 
CDK1, CCNB1, CDC20, MAD2L1, MCM3, MCM2, and 
RFC4 was negative staining in normal tissues and positive 
in HCC tissues, demonstrating that these genes were 
significantly expressed in HCC tissues than in normal liver 
tissues. The immunohistochemical staining is displayed 
in Figure 9.

3.7. Expression of Selected Up-Regulated Genes and Its 
Clinical Significance in LIHC Patients. Downloading the 
TCGA clinical data in LinkedOmics online tool, we analyzed 
the relationship between selected up-regulated genes and 
clinical features in LIHC patients. �e results showed that all 
9 candidate genes were significantly correlated with overall 
survival, pathologic stage, and pathology T stage, indicating 
that high expression of candidate genes predicted poor 
survival and tumor progression. �e CDK1, CCNB1, CDC20, 
MCM3, BUB1B, MCM2, and RFC4 in LIHC patients were 
significantly correlated with race, which were significantly 
higher in Asian, Black, or African American and White than 

highly expressed in LIHC tissues, and the differences 
were statistically significant (Figure 6). Similarly, we also 
investigated the transcriptional levels of these genes in 
liver cancer and normal samples by using the Oncomine 
database. The mRNA expression levels of these genes 
were significantly up-regulated in liver cancer tissues 
compared with normal tissues in several datasets (Table 4). 
Furthermore, these 9 genes were also highly expressed in 
various grades of HCC compared with the normal group. 
In addition, overexpression of these 9 genes was also related 
to advanced tumor grade (Figure 7).

To further validate the data mining results, we performed 
qRT-PCR with paired tumor and adjacent tissues borrowed 
from the Cuiying center sample library of Lanzhou University 
Second Hospital. Although the sample was limited, except for 
CNB1, the other 8 candidate genes were highly expressed in 
tumor tissues (Figure 8).

3.6. Differences of Selected Up-Regulated Genes in Protein 
Level between HCC and Normal Tissues. We used the HPA 
database to exhibit the differences in protein level of CDK1, 

Table 4: Significant changes of candidate genes expression in transcription level in HCC.

Gene ID Types of liver cancer versus normal �-value �-test Fold change References

CDK1

Hepatocellular carcinoma vs. normal 6.41E−29 13.87 4.148 Chen Liver [12]
Hepatocellular carcinoma vs. normal 1.05E−84 28.109 5.573 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 5.74E−10 7.891 8.68 Wurmbach Liver [14]
Hepatocellular carcinoma vs. normal 9.36E−10 9.077 5.808 Roessler Liver [13]

CCNB1
Hepatocellular carcinoma vs. normal 6.06E−14 10.729 10.827 Wurmbach Liver [14]
Hepatocellular carcinoma vs. normal 3.45E−88 30.468 5.783 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 5.31E−08 7.428 3.901 Roessler Liver [13]

CDC20
Hepatocellular carcinoma vs. normal 5.17E−09 7.377 5.143 Wurmbach Liver [14]
Hepatocellular carcinoma vs. normal 1.15E−64 22.985 3.814 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 6.16E−08 7.171 3.661 Roessler Liver [13]

BUB1

Hepatocellular carcinoma vs. normal 1.57E−08 7.113 4.186 Wurmbach Liver [14]
Hepatocellular carcinoma vs. normal 2.37E−15 8.643 2.808 Chen Liver [12]
Hepatocellular carcinoma vs. normal 5.27E−07 6.531 2.046 Roessler Liver [13]
Hepatocellular Carcinoma vs. Normal 1.35E−46 17.257 2 Roessler Liver 2 [13]

MAD2L1

Hepatocellular carcinoma vs. normal 6.77E−20 10.263 2.43 Chen Liver [12]
Hepatocellular carcinoma vs. normal 3.63E−56 20.301 2.884 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 2.40E−07 6.715 2.548 Roessler Liver [13]
Hepatocellular carcinoma vs. normal 3.52E−06 5.131 3.669 Wurmbach Liver [14]

MCM3
Hepatocellular carcinoma vs. normal 5.67E−72 23.777 3.023 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 1.45E−08 7.55 2.953 Roessler Liver [13]

BUB1B

Hepatocellular Carcinoma vs. Normal 1.29E−11 8.907 6.747 Wurmbach Liver [14]
Hepatocellular carcinoma vs. normal 4.52E−10 9.2 4.407 Roessler Liver [13]
Hepatocellular carcinoma vs. normal 4.23E−64 22.98 3.34 Roessler Liver 2 [13]
Hepatocellular Carcinoma vs. Normal 1.94E−08 5.795 2.55 Chen Liver [12]

MCM2
Hepatocellular carcinoma vs. normal 2.68E−64 21.853 3.144 Roessler Liver 2 [13]
Hepatocellular Carcinoma vs. Normal 3.00E−08 7.289 3.252 Roessler Liver [13]

RFC4
Hepatocellular carcinoma vs. normal 1.15E−88 28.334 4.6 Roessler Liver 2 [13]
Hepatocellular carcinoma vs. normal 5.28E−19 9.909 2.031 Chen Liver [12]
Hepatocellular carcinoma vs. normal 4.58E−08 7.428 3.315 Roessler Liver [13]
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4. Discussion

�e occurrence of HCC is a complex biological process. In 
recent years, a large number of biomarkers have been used in 
the early diagnosis of HCC [15]. Many anti-HCC mechanisms 
have also been discovered [16]. However, there is still very 
little study at the multiple gene levels. �e researches at the 
multi-gene levels can contribute to explore the pathogenesis 
of cancer. In this study, the data of four gene chips in HCC 
were analyzed by bioinformatics method. Finally, it was found 
that CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, 
BUB1B, MCM2, and RFC4 were related to the poor survival 
of HCC patients and the advanced tumor grade. A study had 
similar results [17]. �e difference was that this study was 
validated at the transcriptional level and protein level. In addi-
tion, the study also analyzed the relationship between clinical 
features and biomarkers: these genes were correlated with 
overall survival, pathologic stage, pathology T stage, race and 
the age of onset. To explore the molecular mechanism of HCC, 

in American Indian or Alaska native, while BUB1, MAD2L1 
were not significantly different in race. �ere was a significant 
correlation between CDK1, MCM3, BUB1B, RFC4 and the 
age of onset. �e expression levels of the 9 genes in pathology 
N stage, pathology M stage, histological type, ethnicity, 
residual tumor, radiation therapy, and tumor purity were not 
statistically different (Table 5).

3.8. TF Analysis for Selected Up-Regulated Genes. We further 
investigated the molecular that can regulate CDK1, CCNB1, 
CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4. 
We used NetworkAnalyst tool to predict the TFs that can 
regulate the expression of these nine genes. We found five TFs, 
MYBL2, KDM5B, MYC, SOX2, and E2F4, that can regulate 
these nine hub genes expression (Figure 10(a)). Correlation 
analysis showed MYBL2, KDM5B, SOX2, and E2F4 were 
positively correlated with these nine genes expressions. MYC 
was positively correlated with CCNB1, BUB1, MAD2L1, 
MCM3, and BUB1B expressions (Figure 10(b)).
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Figure 7: Validation of the expression of candidate genes in various grades of HCC tissues and normal tissues in UALCAN.
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of CCNB1 was closely associated with poor prognosis in 
HCC patients. �is conclusion is further confirmed by a 
study that knockdown of CCNB1 regulated by 
microRNA-144 significantly inhibited cell proliferation, 
migration, and invasion in HCC [25]. In this study, the 
KEGG pathway showed that the DEGs were mainly involved 
in the cell cycle and DNA replication. Previous study [26] 
has shown that CCNB1/CDK1-mediated phosphorylation 
provides cells with efficient bioenergy for G2/M transition 
and shortens the overall cell-cycle time. �erefore, CCNB1/
CDK1 plays an important role in the cell cycle and cell 
proliferation.

Overexpression of cell division cycle 20 (CDC20) is asso-
ciated with poor prognosis of prostate cancer [27], breast can-
cer [28], and colon cancer [29]. However, the expression of 
CDC20 in HCC still lacks sufficient experimental data. In 
cutaneous squamous cell carcinoma, CDC20 promotes cell 
proliferation and migration through the Wnt/�-catenin sign-
aling pathway [30]. CDC20 can contribute to cardiac hyper-
trophy by promoting LC3 degradation and inhibiting 
autophagy [31]. High expression of BUB1B can increase 

TF-hub genes regulatory network was also constructed. We 
identified 5 TFs, MYBL2, KDM5B, MYC, SOX2, and E2F4, all 
of which can regulate the expression of these 9 hub genes and 
provide more evidences for the elucidation of the mechanism 
of HCC progression.

Cyclin-dependent kinase 1 (CDK1) belongs to serine/
threonine protein kinase family. A recent study has found 
that metformin can significantly inhibit the proliferation of 
HCC cells by inducing G2/M arrest and can effectively 
reduce the expression of CDK1 [18]. �is result suggested 
that CDK1 may be involved in the process of cell prolifera-
tion in the cell cycle of HCC. Another study showed the 
miR-582-5p regulated the progression of HCC through 
directly inhibiting the expression of CDK1 and AKT3, and 
indirectly inhibiting the expression of cyclinD1 [19], and 
supported this theory. In addition, CDK1 is also expressed 
in other tumors. Studies have shown that CDK1 is active in 
the cell cycle of several tumor-regulating cell adhesion [20] 
and can be used as  clinical prognostic biomarkers for non-
small cell lung cancer [21], colon cancer [22], breast cancer 
[23], and ovarian cancer [24]. In this study, high expression 
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Figure 8: Relative mRNA expression of 9 candidate genes in HCC and adjacent tissues detected by qRT-PCR.
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cell carcinoma [35], melanoma [36], glioma [37] and colon 
cancer [38]. Replication factor C (RFC) plays an important 
role in DNA repair activities following DNA damage [39]. 
Targeted therapy of RFC3 can inhibit the proliferation and 
survival of HCC cells [40].

In this study, we identified DEGs in HCC by bioinfor-
matics analysis and found that overexpression of CDK1, 
CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, 
and RFC4 in tumor tissues predicted poor survival in HCC. 

proliferation, migration, and invasion of prostate cancer cells 
[32]. MiR-200c-5p inhibits the proliferation, migration, and 
invasion of HCC cells by down-regulating MAD2L1 [33], 
which suggested that the expression of MAD2L1 is signifi-
cantly higher in HCC and related to the poor prognosis of 
HCC. Moreover, it also indicated that MAD2L1 can be used 
as a prognostic and therapeutic target in HCC patients. �e 
minichromosome maintenance (MCM) participates in DNA 
synthesis [34] and can be used as a biomarker of oral squamous 

Normal

Normal

Tumor

Tumor

CDK1 CCNB1 CDC20 MAD21.1
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Figure 9: Immunohistochemical staining of candidate genes in HCC tissues and normal tissues in the HPA database.
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qRT-PCR, explored the relationship between candidate 
genes and clinical factors, and constructed TF-hub genes 
regulatory network. Therefore, there are some advantages 
in this study.

We hypothesized that CDK1, CCNB1, CDC20, BUB1, 
MAD2L1, MCM3, BUB1B, MCM2, and RFC4 may be 
potential therapeutic targets for HCC. We analyzed these 
genes at the transcriptional and protein levels, verified with 
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Figure 10: Association of TFs and selected up-regulated genes (CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and 
RFC4). (a) �e network of TFs and selected up-regulated genes. (b) Correlation between TFs and CDK1 expressions.
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