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Abstract: Sesamol is a compound reported to have anti-melanogenesis and anti-melanoma actions.
Sesamol, however, has low intracellular drug concentration and fast excretion, which can limit its
benefits in the clinic. To overcome this drawback and increase intracellular delivery of sesamol into
the target melanoma, research has focused on L-type amino acid transporter 1 (LAT1)-mediated
prodrug delivery into melanoma cells. The sesamol prodrug was designed by conjugating sesamol
with L-phenylalanine at the para position with a carbamate bond. LAT1 targeting was evaluated
vis-à-vis a competitive [14C]-leucine uptake inhibition. The sesamol prodrug has a higher [14C]-
leucine uptake inhibition than sesamol in human LAT1-transfected HEK293 cells. Moreover, the
sesamol prodrug was taken up by LAT1-mediated transport into SK-MEL-2 cells more effectively
than sesamol. The sesamol prodrug underwent complete hydrolysis, releasing the active sesamol at
72 h, which significantly exerted its cytotoxicity (IC50 of 29.3 µM) against SK-MEL-cells more than
sesamol alone. Taken together, the strategy for LAT1-mediated prodrug delivery has utility for the
selective uptake of sesamol, thereby increasing its intracellular concentration and antiproliferation
activity, targeting melanoma SK-MEL-2 cells that overexpress the LAT1 protein. The sesamol prodrug
thus warrants further evaluation in an in vivo model.

Keywords: sesamol; sesamol prodrug; L-phenylalanine; LAT1-mediated drug delivery; melanoma;
LAT1 prodrug

1. Introduction

Sesamol is an herbal medicine made from Sesame indicum Linn. Sesamol can induce
apoptotic cell death in various cancer cell types, including colon cancer [1], adenocarci-
noma lung cancer [2], malignant melanoma [3], and hepatocellular carcinoma [4]. Sesamol
possesses selective antiproliferation in colon cancer [1], non-small cell lung cancer [5], and
malignant melanoma [6] compared to non-cancerous Vero cells. Sesamol is considered as
a chemotherapeutic molecule; however, the somewhat high solubility, low lipophilicity,
and fast release of sesamol limits its transport across the cell membrane [6], requiring
a high concentration in the extracellular compartment in order to exert its intracellular
bioactivity [7]. This inefficiency occurs because sesamol has a low intracellular distribution
in the target cells (i.e., malignant melanoma), and the intracellular concentration of sesamol
is correlated with its antiproliferative activity [7,8]. It thus needed a higher concentration
in the extracellular compartment to achieve antiproliferative activity and an inhibition
concentration of 50% (IC50) [1,5,6]. Consequently, to overcome the low intracellular con-
centration of sesamol, permeation-enhancing approaches targeting cancer cells should be
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utilized. In addition, sesamol has been found to form a dimer during the oxidation process
of oils [9]. Sesamol dimers have various low antioxidants, which can hinder sesamol’s
bioactivities [10]. Preventing unwanted dimerization before intracellular delivery into the
target cells is also important for sesamol to exert its bioactivity.

Malignant melanoma is one of the diseases that responds to sesamol treatment [3,6,11].
Sesamol has shown a role in anti-melanogenesis [12,13], antiproliferation against malignant
melanoma [3,6,11], and skin protection [14]. Sesamol was found to induce apoptotic pro-
teins (i.e., Bcl-2 and Bax) that are effective against malignant melanoma [3]. Sesamol uptake
is associated with the L-type amino acid transporter 1 (LAT1), which is overexpressed in
malignant melanoma [6]. Malignant melanoma has multiple mutations on several onco-
genes that are associated with cell proliferation (viz., BRAF, NRAS, p53, CDK4, and PI3K
genes) [15] and have been shown to have high nutrient transporter expression, includ-
ing LAT1 and ASCT2 amino acid transporter [16] and GLUT1 glucose transporter [17].
Among the overexpressed transporters, the LAT1 protein has the highest overexpression in
primary melanoma and malignant melanoma cell lines, including SK-MEL-2 [6], C8161,
and 451Lu [18]. LAT1 is associated with disease progression and severity of malignant
melanoma, which underscores the central role of LAT1 in melanoma cell growth [19]. LAT1
has lower expression in non-cancerous cells than in cancer cells [6,20]. The overexpression
of LAT1 in melanoma cells over non-cancerous cells is useful for the targeted delivery of
xenobiotic compounds into the melanoma cells or other high LAT1-expressing cancer cells.

The LAT1 targeting delivery system has been developed using a prodrug approach to
transport several drug molecules into LAT1-overexpressed cells (i.e., blood–brain barrier or
blood–retina barrier, or cancer cells) [20]. The prodrug approach is a chemical modification
that makes the drug molecules inactive in non-target environments but activates the
molecules in the target site through enzymatically catalyzed mechanism(s) [21]. Gabapentin
and L-dopa are examples of molecules that use LAT1 to cross the blood–brain barrier [22].
Melphalan and acivicin are chemotherapeutic agents known to be transported via the LAT1
protein [20]. Chlorambucil conjugated with L-tyrosine is a successful example of prodrug
development that targeted LAT1 to increase intracellular uptake and selectively transport
it into cancer cells [23]. Thus, LAT1-mediated prodrug delivery is a promising mechanism
to enhance both intracellular uptake and the antiproliferation effect. To date, there has
been no report on using the prodrug approach for LAT1-mediated delivery of melanoma
treatment molecules; hence, this study aimed to demonstrate and apply the LAT1-mediated
delivery prodrug approach to improve intracellular sesamol uptake and, as a consequence,
antiproliferation against melanoma cells.

LAT1-targeted prodrugs can be formed using hydrolysable bonds, such as ester,
carbamate, and amide bonds [23–25]. Compared to the ester bond, the amide bond is more
stable for chlorambucil conjugated with L-tyrosine [23]. Carbamate bonds (urethanes) have
also provided good chemical stability for prodrug molecules [26]. Carbamate bonds bypass
the first-pass effect, allowing prodrug distribution from circulation to the target site where
the prodrug undergoes systemic hydrolysis to release the active drug [27]. In general,
carbamate is an ester–amide combination, providing proteolytic stability as it serves as
a peptide bond surrogate for several molecules and offering permeation through the cell
membrane. The carbamate bond in LAT1-mediated delivery of dopamine has good stability
in the systemic circulatory system [25]. Based on the sesamol structure having hydroxyl
groups, sesamol can form a carbamate bond with LAT1 substrates.

In the current study, L-phenylalanine was coupled to sesamol, as it is a natural LAT1
substrate that provides a high susceptibility to the LAT1 transporter protein and is regarded
as safe in the physiological system. L-phenylalanine is one of several compounds that
possesses a high LAT1 susceptibility that inhibits [3H] gabapentin uptake by human LAT1
(hLAT1)-transfected HEK293 cells (IC50 of 69 ± 29 µM) [28]. Previous studies showed
that substitution at the para position of the phenyl ring of L-phenylalanine provided a
high susceptibility to the LAT1 protein. For example, para-OH-L-phenylalanine inhibited
[3H]-gabapentin uptake in hLAT1-HEK293 cells (IC50 of 68 µM) [28], and para-valproic
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acid conjugated with L-phenylalanine inhibited [14C]-leucine in breast cancer (IC50 of
40 µM) [24]. In the present study, the carbamate linker formed at the para position of
L-phenylalanine with the hydroxyl group of sesamol. The LAT1 susceptibility of sesamol
coupled with L-phenylalanine or the sesamol prodrug was evaluated by competitive [14C]-
leucine uptake inhibition in hLAT1-HEK293 cells. Since the human malignant melanoma
SK-MEL-2 cells are a considerably more clinically relevant model because they express
high levels of the LAT1 protein [6], cellular uptake, metabolic conversion, and cytotoxicity
of the sesamol prodrug were compared with sesamol.

2. Results
2.1. Synthesis Reaction and Chemical Characterization

Figures 1 and S1–S6 present the chemical synthesis and the chemical elucidation of the
sesamol prodrug. The synthesis of 4-sesamol carbamate-L-phenylalanine prodrug (labelled
as sesamol prodrug) was done within four reactions, as shown in Figure 1. The chemical
elucidation was done by 1H-, 13C-, COSY-, HSQC-NMR, and ESI-MS positive (Figures S2–S6,
respectively). The sesamol prodrug structure is illustrated in reaction D of Figure 1 and
Figure S1. The chemical purity as analyzed by quantitative HNMR was 98.66%.
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Figure 1. Synthesis diagram of 4-sesamol carbamate-L-phenylalanine prodrug with four multi-step
reactions. Reagent and conditions: (A) Palladium, methanol, H2 gas, overnight; (B) triphosgene,
triethylamine, anhydrous DCM, 1 h; (C) sesamol, triethylamine, tetrahydrofuran, overnight; and
(D) trifluoracetic acid, anhydrous DCM, 4 h.

2.2. [14C]-Leucine Uptake Inhibition

The competitive [14C]-leucine uptake inhibition of the compounds (prodrug, sesamol,
and L-phenylalanine) was tested in the hLAT1-HEK293 cells (Figure 2). The hLAT1-HEK293
cells were used in competitive [14C]-leucine uptake inhibition testing because they provide the
selective expression of the LAT1 transporter compared to other cell types that may have several
influx transporters expressed in the cell membrane [29]. We found that the sesamol prodrug
had a significantly lower IC50 value (631.3 ± 38.0 µM) than L-phenylalanine (96.8 ± 11.5 µM)
but a significantly higher IC50 value than sesamol itself (4755.4 ± 218.8 µM) (Table 1). This
result suggests that the sesamol prodrug can inhibit LAT1 in transfected human cells stronger
than sesamol but weaker than its natural substrate.
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Table 1. Half-maximal inhibitory concentration (IC50) of test compounds on [14C] L-leucine in
hLAT1-HEK293 cells.

Compound IC50 (µM)

L-Phenylalanine 96.8 ± 11.5
Sesamol 4755.4 ± 218.8

Sesamol prodrug 631.3 ± 38.0

2.3. Cellular Uptake in Melanoma Cells

In order to evaluate the intracellular delivery of the sesamol prodrug in target cells,
the cellular uptake of the sesamol prodrug and sesamol in melanoma SK-MEL-2 cells
was determined. The results showed that the sesamol prodrug and sesamol were taken
up via both saturated (carrier-mediated transport) and non-saturated (passive transport)
mechanisms (Figure 3). The uptake parameters of the sesamol prodrug and sesamol
in saturated (carrier-mediated) and non-saturated (passive) transport are presented in
Table 2. The maximum carrier-mediated transport uptake velocity (Vmax) of the sesamol
prodrug was 1.3 ± 0.2 nmol/mg protein/10 min, which was 6.5 times greater than the
Vmax of sesamol (0.2 ± 0.1 nmol/mg protein/10 min) (p < 0.05). These results suggest
that the prodrug has a higher carrier-mediated uptake rate than sesamol. The compound
concentration that causes half of Vmax (Km) of the sesamol prodrug was 1.0 ± 0.7 µM,
comparable with the Km of sesamol (1.1 ± 0.5 µM). The Km value indicates the compound
concentration at the half maximum velocity. A lower Km indicates a higher susceptibility of
the compound to carrier-mediated transport. Our result suggests that the sesamol prodrug
has a susceptibility to carrier-mediated transport similar to sesamol. The passive transport
uptake rate (Pd) of the sesamol prodrug was 9.8 ± 0.7 µL/mg protein/10 min, which was
24.5 times greater than that of sesamol (1.3 ± 0.6 µL/mg protein/10 min) (p < 0.05). The
results suggest that the sesamol prodrug also has higher passive transport than the sesamol.
The higher passive transports of the sesamol product may came from the uptake mechanism
of the sesamol prodrug by the LAT1 carrier-mediated transporter. The LAT1 transporter
is the facilitated diffusion or passive transport transporter [30]; thereby, we can observe a
combination of carrier-mediated transport and passive transport of the sesamol prodrug.
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Table 2. Uptake kinetic values of sesamol and sesamol prodrug in melanoma cells.

Compound Vmax
(nmol/mg Protein/10 min)

Km
(µM)

Pd
(µL/mg Protein/10 min)

Sesamol 0.2 ± 0.1 1.1 ± 0.6 1.3 ± 0.6
Sesamol prodrug 1.3 ± 0.2 1.0 ± 0.7 9.8 ± 0.7

Sesamol prodrug + 1 mM BCH 0.4 ± 0.1 1.7 ± 1.4 2.8 ± 0.7

In general, the LAT1 protein is a solute carrier that facilitates the transport of its sub-
strates into the cells without energy consumption [31]. The LAT1 substrates (i.e., gabapentin
or pregabalin) have both carrier-mediated transport and passive transport [32,33]. The
physicochemical properties of sesamol conjugated with L-phenylalanine also changed from
the sesamol alone. Sesamol has a lipophilicity (logP and logD7.4) equal to 1.29, and a polar
surface area (PSA) of 38.7, whereas sesamol conjugated with L-phenylalanine had a logP
of 2.22, a logD7.4 of −0.05, and a PSA of 120.11 (calculated by MarvinSketch version 20.19,
ChemAxon, Budapest, Hungary). The low logD7.4 of the sesamol prodrug indicates the low
possibility of the compound to be taken up by membrane passive transports. However, our
result shows the high passive transports from the sesamol prodrug, which indicates that
the compound has been facilitated by the LAT1-facilitated diffusion transport. The total
cellular uptake of the sesamol prodrug could, therefore, result from both carrier-mediated
and passive transport of the LAT1 protein in melanoma cells.

When the sesamol prodrug was co-incubated with 1 mM BCH (LAT1 inhibitor)
(Figure 3), the Vmax of the prodrug with BCH was 3.3 times less than the prodrug alone
(Vmax = 0.4 ± 0.1 nmol/mg protein/10 min). The Km of the prodrug with BCH was
1.7 times greater than the prodrug alone (Km = 1.7 ± 1.4 µM), a non-significant difference.
The reduction in Vmax and Km when co-incubated with BCH indicates that the sesamol
prodrug was taken up by the LAT1-mediated transport. The Pd of the prodrug with BCH
was also 3.5 times less than the prodrug alone (Pd = 2.8 ± 0.7 µL/mg protein/10 min)
(p < 0.05). The reduction in Pd when co-incubated with the LAT1 inhibitor indicates that
the passive transport of the sesamol prodrug came from the LAT1 protein. The results
demonstrate the role of LAT1 as a solute carrier transport that facilitated substrate uptake
via the concentration gradient. This result confirms that the sesamol prodrug was taken up
via LAT1.
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2.4. In Vitro Stability Testing

In vitro stability of the sesamol prodrug was evaluated under two incubation condi-
tions at 37 ◦C (Figure 4), which were in the SK-MEL-2 lysate in PBS pH 7.4 (Figure 4A) and
PBS pH 7.4 (Figure 4B). At 72 h in PBS pH 7.4, the sesamol prodrug was still intact, with
85.3% remaining, indicating the stability of the sesamol prodrug under pH 7.4 phosphate-
buffered solution. Following the reaction for 75 h, the sesamol prodrug was completely
hydrolyzed into free sesamol at 72 h in the SK-MEL-2 cell lysate, with only 0.4% of the
sesamol prodrug remaining. The result suggests that the sesamol prodrug was activated
in the melanoma cells to release sesamol. Notwithstanding, the fast excretion of sesamol
in an aqueous solution is one of the obstacles that have retarded the use of sesamol in
a clinical setting [34,35]. The fast excretion could be solved because we found that the
sesamol prodrug remained for a long period before being completely hydrolyzed into
the sesamol (72 h). There could be further opportunity to explore whether the systemic
circulation of the sesamol prodrug is improved compared to sesamol alone.
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2.5. Cytotoxicity of Sesamol Prodrug

Cytotoxicity against melanoma cells was evaluated as the pharmacological response
of the sesamol prodrug (Figure 5). The results showed that the sesamol prodrug and
sesamol could reduce the proliferation of melanoma cells in a time- and concentration-
dependent manner (Figure 5A,B). The sesamol prodrug was active at 96 h and showed
cytotoxicity (IC50 of 29.3 ± 0.8 µM), with a maximum effect (Emax) at 29.8 ± 2.0% (Figure 5A
and Table 3). Sesamol started to exert cytotoxicity earlier at 72 h, but with an Emax of
250 µM at 60.6 ± 11.7% (Figure 5B and Table 3). When comparing the cytotoxicity between
the sesamol prodrug and sesamol at 96 h, the cytotoxicity of the sesamol prodrug was
significantly greater at a concentration 100 µM (p < 0.05) (Figure 5A,B). Hence, the sesamol
prodrug is more effective than sesamol, and the prodrug also provides a sustained release
effect. The cytotoxicity of the sesamol prodrug was significantly inhibited by 1 mM BCH
(p < 0.05) (Figure 5C), confirming that the sesamol prodrug was taken up via LAT1 in
melanoma SK-MEL-2. The cytotoxicity of the prodrug against Vero cells was also performed
to demonstrate the safety of the sesamol prodrug in non-cancerous cells (Figure 5D). The
results showed that the sesamol prodrug and sesamol exhibited no significant cytotoxic to
non-cancerous Vero cells at 96 h. This result confirms the safety of the sesamol prodrug
in non-cancerous cells. However, care must be taken when considering other high LAT1-
expressing tissues, such as blood–brain barrier (BBB), placenta, and testis, because the
sesamol prodrug may have effects in those tissues due to the rich LAT1 expression.
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Table 3. Cytotoxicity values of sesamol and sesamol prodrug at 0.5–250 µM in melanoma SK-MEL-2
cells at 96 h.

Compound IC50 (µM) Emax (%)

Sesamol Not detected 60.6 ± 11.7
Sesamol prodrug 29.3 ± 0.8 29.8 ± 2.0

3. Discussion

Herbal medicines are recognized as having advantages for numerous reasons, includ-
ing availability, reasonable price, good efficacy with high selectivity, and low toxicity [36].
Sesamol is a natural compound that possesses several advantages for human health, in-
cluding antioxidation, anti-inflammation, reduction in cholesterol in the bloodstream, skin
protection as anti-aging, and anti-cancer activity against several cancer types with less
damage to non-cancerous cells [37].

Previous studies have shown that the LAT1 protein played a pivotal role in the carrier-
mediated transport of sesamol uptake and its selective cytotoxicity in the high LAT1 mRNA
expression melanoma SK-MEL-2 cells compared to low LAT1 mRNA expression non-
cancerous Vero cells [6]. However, the structure of sesamol does not fully comply to the
LAT1 pocket site. Therefore, it does not provide a significant intracellular concentration
to exert the high cytotoxicity from the sesamol. This study provides a better insight into
the role of LAT1 in the sesamol uptake in the hLAT1-HEK293 cells and also demonstrates
that the chemical modification prodrug strategy of sesamol with a LAT1 substrate could
overcome the low intracellular concentration of sesamol and increase its cellular potency in
melanoma cells.

Previous studies showed that a high sesamol concentration at the extracellular com-
partment was required to achieve the cytotoxic effect. The reported IC50 values of sesamol
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against SK-MEL-2, SK-LU-2, and HCT-116 are 2 – 3 mM [5,6,11], 2.0 mM [2], and 2.6 mM [1].
With a LAT1-mediated delivery system, the IC50 value of the sesamol prodrug in SK-MEL-2
cells was reduced to 29.3 µM, which is 60 times more potent than sesamol alone. This
phenomenon may relate to the intracellular concentration of sesamol (=Vmax/Km + Pd),
which also increased from 1.48 µL/mg protein/10 min to 11.1 µL/mg protein/10 min
(7.5 times higher than sesamol) when it was in a prodrug form. Abdelhamid et al. reported
that encapsulation of sesamol into cadmium sulfide quantum nanoparticle dots exerted an
IC50 of 847.8 µM in MCF-7 cells at 1730 µg/mL [34]. Geetha, Kapila, et al. reported that
sesamol-loaded nanoparticles with 10 to 100 µg of sesamol inhibited ML-60 and Molt-4 cell
lines [38]. Sesamol conjugated with PEG-selenium nanoparticles inhibited HepG2 cells with
an IC50 value of 68.7 µg/mL [39]. The IC50 of the sesamol prodrug was lower compared to
the IC50 of melphalan (IC50 = 0.1 ± 0.0 mM) against melanoma cells [6]. Our data confirm
that sesamol conjugated with L-phenylalanine for LAT1-mediated intracellular uptake has
potential as an efficient strategy. LAT1 targeting by the sesamol prodrug showed very high
cytotoxicity against melanoma cells compared to its cytotoxicity in other cell lines.

The role of carrier-mediated transport and passive transport can be identified using
cellular uptake parameters, which are Vmax, Km, and Pd [32]. The total uptake clearance
of the sesamol prodrug by carrier-mediated transport (Vmax/Km) was 1.3 mL/mg pro-
tein/10 min, and by passive transport (Pd) was 9.8 µL/mg protein/10 min or 0.0098 mL/mg
protein/10 min. Thus, the total uptake clearance of passive transport was 132.7 times lower
than carrier-mediated transport of the sesamol prodrug. This difference can be confirmed
by using the inhibition concentration at 50% (IC50) of the sesamol prodrug in melanoma
to calculate the total uptake velocity for each transportation route. At an IC50 (29.3 µM),
the carrier-mediated transport velocity (=Vmax × [S])/(Km + [S]) will be 1.3 nmol/mg
protein/10 min, and the passive transport velocity (Pd × [S]) will be 0.29 nmol/mg pro-
tein/10 min, which is 4.5 times lower than carrier-mediated transport. This evidence
suggests that carrier-mediated transport of the prodrug has a higher role in prodrug up-
take than passive transport. The sesamol prodrug’s [14C]-leucine uptake inhibition in
hLAT1-HEK293 cells and the reduction in cellular uptake and cytotoxicity of the prodrug
in the presence of BCH (a LAT1 inhibitor) confirm that LAT1-mediated transport of the
sesamol prodrug governs the uptake transportation route of the sesamol prodrug across
the cell membrane.

The conjugation with L-phenylalanine via carbamate linkage provided a sustained
release of sesamol from the prodrug. The sesamol prodrug was completely cleaved after
72 h in SK-MEL-2 lysate, which is correlated to the prodrug’s cytotoxicity being exerted
after completing 96 h of treatment. The onset of cytotoxicity activity of the prodrug was
reasonably associated with the hydrolysis of the carbamate linkage with a 24 h time gap
between the prodrug hydrolysis and its activity being exerted. Since the sesamol prodrug
was still intact in the aqueous system without cellular enzymes (PBS pH 7.4) after 72 h, it is
evident that the release of sesamol from the prodrug occurred via enzymatic hydrolysis in
the cells. The carbamate linkage can be hydrolyzed by plasma cholinesterase, CYP450, and
esterase enzymes [40]. These esterases are found in the plasma, liver, and skin cells [41].
The expression of esterases also affected the pharmacological response of the prodrug
molecules [42]: the latter requires further study to clarify the role of esterases in enzymatic
hydrolysis of the sesamol prodrug. Taken together, the carbamate linkage provides the
ability to prolong the duration of action of sesamol, which can be beneficial for therapeutic
outcomes because of less frequent administration and a lower cost.

4. Materials and Methods
4.1. Materials

Boc-4-nitro-L-phenylalanine (99.77% purity) was obtained from Chem Scene L.S. (Mon-
mouth Junction, NJ, USA). Sesamol (98% purity) and triphosgene (99% purity) were ob-
tained from Acros organics (New York, NY, USA). Palladium on 10% activated charcoal,
L-phenylalanine, and cellite were obtained from Sigma-Aldrich (St. Louis, MO, USA).
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Tetrahydrofuran and triethylamine (99% purity) were obtained from Merck-Schuchardt-
OHG (Hohenbrunn, Germany). Dichloromethane (DCM) (99.9% purity), Acetonitrile (99.9%
purity) and formic acid (98% purity) were obtained from Honeywell Riedel-de-Haën™
(Seelze, Germany). Trifluoracetic acid (99.5% purity) was obtained from Apollo Scientific
Limited (Manchester, UK). The culture media, Dulbecco’s modified Eagle’s medium of
high glucose (DMEM), reagents such as Hank’s balanced salt solution (HBSS) without
Ca2+ and Mg2+ supplement, and penicillin and streptomycin were purchased from GIBCO,
Invitrogen (Grand Island, NY, USA). Fetal bovine serum (FBS) was purchased from G.E.
Life Sciences (Parramatta, Australia).

4.2. General Synthesis Procedure

Thin-layer chromatography (TLC) silica gel 60 F254 (Merck Millipore, Darmstadt,
Germany) was used for monitoring synthesis reactions. Nuclear magnetic resonance (NMR)
spectra were measured by a Bruker AscendTM 600 MHz spectrometer (Bruker, Fällanden,
Switzerland). The NMR measurements for 1H and 13C were made using 600.18 MHz and
150.91 MHz, respectively, with tetramethylsilane as an internal standard. The intermediate
product was purified with flash chromatography (Buchi), while the final product was
purified by preparative high-performance liquid chromatography (HPLC) with the resin-
based SupelcogelTM ODP-50 (25 cm × 21.2 mm, 5 µm) from Sigma-Aldrich (St. Louis, MO,
USA). The purity of the final product was calculated by quantitative 1H NMR using maleic
acid as an internal standard. Mass spectra were measured by a FinniganTM LTQTM Mass
spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).

4.3. Synthesis of Sesamol Phenylalanine Carbamate Prodrug
4.3.1. Boc-4-Amino-L-Phenylalanine Synthesis (A)

Boc-4-nitro-L-phenylalanine (3.52 g) and palladium (0.1 g) were carefully dissolved in
methanol. The reaction mixture was filled with hydrogen gas (4 bar) and stirred overnight.
The reaction mixture was filtered through cellite and dried under reduced pressure, yielding
the solid orange product of Boc-4-amino-L-phenylalanine (3.01 g, 90.2% yield). 1H NMR
(CDCl3, 600.18 MHz) δ ppm: 1.42 (s, 9H), 3.02 (s, 2H), 4.48 (s, 4.9H), 4.96 (d, 1H, J = 6.97 Hz),
6.62–6.64 (d, 2H, J = 6.85 Hz), 6.95–6.97 (d, 2H, J = 8.19 Hz). The product was used without
further purification.

4.3.2. Carbamic Chloride Formation of Boc-4-Amino-L-Phenylalanine (B)

Triphosgene (0.62 g) was dissolved in cold anhydrous DCM. Boc-4-amino-L-phenyla-
lanine (1.52 g) and triethylamine (1.5 mL) were dissolved in anhydrous DCM, added drop-
wise into triphosgene solution, and stirred for 40 min on ice. The temperature was increased
to room temperature, and the reaction was stirred for 2 h. The reaction was monitored using
TLC (methanol/DCM). Then, the reaction mixture was evaporated and dried under re-
duced pressure to obtain a yellow mixture product of Boc-4-chloroformate-L-phenylalanine.
1H NMR (CDCl3, 600.18 MHz) δ ppm: 1.4 (s, 41H), 3.11 (s, 18H), 4.54 (d, 1H, J = 6.70 Hz),
4.97 (d, 1H, J = 8.08 Hz), 7.0 (d, 2H, J = 8.00 Hz), 7.14 (d, 2H, J = 8.35 Hz,), 11.8 (s, 3H). The
product was used without further purification.

4.3.3. Sesamol Conjugation (C)

Boc-4-carbamate-L-phenylalanine was dissolved in cold tetrahydrofuran. Sesamol
(0.72 g) and triethylamine (1.5 mL) were dissolved in THF and added dropwise into the
Boc-4-carbamate-L-phenylalanine solution and stirred for 40 min on ice. The tempera-
ture was increased to room temperature and incubated overnight. Then, the reaction
mixture was evaporated and purified twice by 40 g silica flash chromatography (round
1: gradient elution of methanol and dichloromethane; round 2: gradient elution of ethyl
acetate and petroleum ether) to obtain a white solid product—Boc-4-sesamol carbamate-
L-phenylalanine (0.4 g, 16.7% yield). 1H NMR (CDCl3, 600.18 MHz) δ ppm: 1.43 (s, 10H),
3.12 (s, 3H), 3.78 (s, 1H), 4.58 (s, 1H), 4.94 (s, 1H), 5.98 (s, 2H), 6.60 (dd, 1H, J = 8.41 Hz),
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6.69 (d, 1H, J = 2.31 Hz), 6.76 (d, 1H, J = 8.41 Hz), 7.12 (d, 2H, J = 8.45 Hz), 7.39 (d, 2H,
J = 6.75 Hz). The product was used without further purification

4.3.4. Hydrolysis of Boc Protection Group (D)

Boc-4-sesamol carbamate-L-phenylalanine (340 mg) was dissolved in cold DCM. Tri-
fluoroacetic acid (TFA) solution (1 mL) was added dropwise and stirred for 30 min on ice.
The temperature was increased to room temperature and stirred for 4 h. Then, the reaction
mixture was evaporated under an evaporator and high vacuum. The DCM was added and
evaporated again until it was completely dried to obtain a white solid product of 4-sesamol
carbamate-L-phenylalanine (280 mg). Then, the product was purified using preparative
UV-HPLC with the resin-based SupelcogelTM ODP-50 (25 cm × 21.2 mm, 5 µm) column
and the isocratic 20% acetonitrile in 0.1% formic acid as the mobile phase (10 mL/min).
The sesamol prodrug was eluted at 17 min with the dry weight of 68.3 mg (26.1 % yield).
The purity of the product was 98.66% (determined using quantitative proton NMR). 1H
NMR (MeOD-d4, 600.18 MHz) δ ppm: 3.13–3.31 (m, 2H), 4.24 (dd, 1H, J = 5.42, 7.61 Hz),
6.00 (s, 2H), 6.63–6.65 (dd, 1H, J = 2.37, 8.42 Hz), 6.73–6.74 (d, 1H, J = 2.23 Hz), 6.82–6.83
(d, 1H, J = 8.48 Hz), 7.27–7.28 (d, 2H, J = 8.97 Hz), 7.51–7.52 (d, 2H, J = 8.97 Hz); and 13C
NMR (MeOD-d4, 150.91 MHz): 35.30 (1 × C), 48.16 (1 × C), 53.71 (1 × C), 101.72 (1 × C),
103.50 (1 × C), 107.35 (1 × C), 113.87 (1 × C), 119.16 (2 × C), 128.96 (1 × C), 129.65 (2 × C),
138.15 (1 × C), 145.18 (1 × C), 145.30 (1 × C), 148.03 (1 × C), 153.09 (1 × C), 169.80 (1 × C).
MS (m/z): [M]+ calculated for C17H16N2O6 344.32, found 344.95 in 0.1% formic acid in
methanol with positive mode electron spray ionization (ESI).

4.4. Cell Culture

Human LAT1 (SLC7A5) transfected in Flp-In™-293 human embryonic kidney (HEK293)
cells (R750-07, Invitrogen, CA, USA), African green monkey kidney epithelial Vero cell
(ATCC#CCL-81), and human melanoma SK-MEL-2 cells (CLS-Cell lines Service, Eppel-
heim, Germany) were maintained in DMEM with 10% FBS, 100 unit/mL of penicillin, and
100 µg/mL of streptomycin at 37 ◦C in 5% CO2 atmosphere. L-Glutamine (2 mM) and
Hygromycin B (12 µg/mL) were added for maintaining the hLAT1-HEK293 cells.

4.5. [14C]-Leucine Uptake Inhibition

The hLAT1-HEK293 cells (1 × 105 cells/well) were incubated in a 24-well plate at
37 ◦C for 48 h. The cells were washed with pre-warm HBSS, co-incubated with the test
compounds (0.1–1000 µM), and radiolabeled L-leucine for 10 min. The ice-cold HBSS was
added to stop the reaction. The cells were washed twice with ice-cold HBSS and lysed in
0.1 M NaOH for 1 h. The liquid scintillation cocktail (Ultima Gold, Perkin Elmer, Waltham,
MA, USA) was added, and the radiolabeled L-leucine was quantified using a scintillation
counter (Wallac 1450 MicroBeta; Wallac Oy, Finland).

4.6. Cellular Uptake

The SK-MEL-2 cells (2 × 105 cells/well) were incubated (37 ◦C) for 48 h in a 24-well
plate. Then, the medium was removed, and the cells were pre-incubated with HBSS for
10 min. The cells were treated with compound (1–100 µM) for another 10 min. The ice-cold
PBS was added, and the cells were washed twice with ice-cold PBS and solubilized in
acetonitrile. Protein was removed by centrifugation at 2400× g at 4 ◦C for 20 min. The
precipitated protein was re-solubilized by 0.1 M NaOH before protein determination. The
compound was quantified using HPLC analysis 4.7. The uptake rates were fitted using
a nonlinear least-squares kinetics model that allowed estimation of Vmax, Km, and Pd
values [8].

4.7. HPLC Analysis

Quantitative analysis of sesamol and sesamol prodrug were performed using a Shi-
madzu HPLC (LC-2030C-3D) with UV photodiode array detector (Kyoto, Japan). The
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analysis was performed using a BDS Hypersil C-18 column (4.6 × 250 mm, 5 µm, Thermo
Fisher Scientific, Waltham, MA, USA) with 30 ◦C column temperature and 0.8 mL/min
flow rate. The mobile phase for sesamol was 70% acetonitrile in water, while the sesamol
prodrug was 20% acetonitrile and 0.1% formic acid in water. The detection wavelength
and elution time for the sesamol and sesamol prodrug were 292 nm and 240 nm, and 3.8
and 18.0 min, respectively. For metabolic stability, the mobile phase was 20% acetonitrile
and 0.1% formic acid in water with detection wavelength at 292 nm. The HPLC analysis
of sesamol was validated and optimized following the previous report [7]. The HPLC
method for the sesamol prodrug was validated and yielded reliable analytical parameters
with a limit of detection of 0.05 µM and a limit of quantification of 0.15 µM. The HPLC
chromatograms are shown in supplementary Figure S7.

4.8. In Vitro Stability of Sesamol Prodrug

The sesamol prodrug (final concentration was 10 µM) was separately subjected to
(1) PBS pH 7.4 and (2) SK-MEL-2 (4.5 × 106 cells) homogenized cell lysate in PBS. The
reaction was stirred (200 rpm) and incubated (37 ◦C) for 72 h. At each time point, the
solution was pipetted out and injected into HPLC analysis. The HPLC analysis condition
was used as described in the HPLC analysis 4.7.

4.9. Cytotoxicity of Sesamol and Sesamol Prodrug

The SK-MEL-2 and Vero cells were separately seeded into 96-well plates (5 × 104 cells/well)
for 48 h. The cells were incubated with 0.1–250 µM compound solution for another 48 h. Then, a
neutral red solution (50 µg/mL) was added and incubated for 2 h. The cells were washed using
PBS and lysed with 0.33% HCl in isopropanol. The absorbance of neutral red was measured at
540 nm using a UV-microplate reader (Perkin Elmer, Waltham, MA, USA). The % cell viability
was calculated with respect to the control.

4.10. Statistical Analysis

All experimental results were expressed as means with a standard deviation of three
replications. The nonlinear least-squares were performed using Datagraph 4.5 (Visual
data tools Inc., Chapel Hill, NC, USA). The difference between samples of independent
observations was analyzed using a Kruskal–Wallis nonparametric statistic in SPSS 24.0
(SPSS Inc., Chicago, IL, USA) and R software 4.2.1. The differences between samples with
p-values less than 0.05 were considered statistically significant.

5. Conclusions

In summary, we report the strategy to improve sesamol intracellular uptake by using a
LAT1-mediated prodrug delivery system. The hydroxyl group of sesamol was conjugated
with L-phenylalanine at the para position via a carbamate bond. This sesamol prodrug
has a high susceptibility to the LAT1 protein in hLAT1-HEK293 cells compared to sesamol
alone. The sesamol prodrug was mostly taken up via the LAT1 protein and less so via
passive transport. The LAT1 protein has a role in the selective cytotoxic effect of the sesamol
prodrug by enhancing its cytotoxicity against the SK-MEL-2 cells, leading to its being non-
cytotoxic to normal cells (Vero cells). The novel sesamol prodrug molecule has the potential
to be an effective in vivo cytotoxic agent or clinically relevant in melanoma models. It may
also be effective in other LAT1-overexpressed cancer cell types.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23158446/s1.
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