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Background: T cells play critical roles in the progression of tuberculosis (TB);

however, knowledge regarding these molecular mechanisms remains

inadequate. This study constructed a critical ceRNA network was

constructed to identify the potentially important role of TB activation via

T-cell regulation.

Methods: We performed integrated bioinformatics analysis in a randomly

selected training set from the GSE37250 dataset. After estimating the

abundance of 18 types of T cells using ImmuCellAI, critical T-cell subsets

were determined by their diagnostic accuracy in distinguishing active from

latent TB. We then identified the critical genes associated with T-cell subsets in

TB activation through co-expression analysis and PPI network prediction. Then,

the ceRNA network was constructed based on RNA complementarity detection

on the DIANA-LncBase and mirDIP platform. The gene biomarkers included in

the ceRNA network were lncRNA,miRNA, and targetingmRNA.We then applied

an elastic net regression model to develop a diagnostic classifier to assess the

significance of the gene biomarkers in clinical applications. Internal and external

validations were performed to assess the repeatability and generalizability.

Results:We identified CD4+ T, Tr1, nTreg, iTreg, and Tfh as T cells critical for TB

activation. A ceRNA network mediated by the MIR600HG/hsa-mir-21-5p axis

was constructed, in which the significant gene cluster regulated the critical T

subsets in TB activation. MIR600HG, hsa-mir-21-5p, and five targeting mRNAs

(BCL11B, ETS1, EPHA4, KLF12, and KMT2A) were identified as gene biomarkers.

The elastic net diagnostic classifier accurately distinguished active TB from

latent. The validation analysis confirmed that our findings had high

generalizability in different host background cases.
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Conclusion: The findings of this study provided novel insight into the underlying

mechanisms of TB activation and identifying prospective biomarkers for clinical

applications.
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Introduction

Tuberculosis (TB) is a highly contagious respiratory disease

caused by Mycobacterium tuberculosis (M. tb) infection that

poses a severe threat to public health globally (Cohen et al.,

2019). The interaction between pathogenic virulence and

organismal immunity largely dictates TB progression. After

M. tb infection, a series of complex immune processes, most

cases enter a latent state through the long-term co-existence with

the pathogens.M. tb invasion and consequent organism damage

initiate inflammatory responses in cases of immune dysfunction,

leading the latent state to progress to an active state. Globally,

around 5%–15% of latent TB cases eventually progress to active

disease (Luo et al., 2019), contributing to one of the leading

causes of death worldwide (World Health Organization, 2021).

The in-depth investigation of the underlying mechanisms of TB

progression has been a research priority in recent decades.

The adaptive immune responses mediated by T cells play a

crucial role in the equilibrium of the host against M. tb

(Jasenosky et al., 2015; Chai et al., 2020); these responses

include antigen recognition, inflammatory homeostasis

maintenance, and granuloma formation. Several T-cell

biological processes, such as development, differentiation,

and sensitization, are involved in suppressing TB activity

FIGURE 1
Overview of the study design.
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(Feruglio et al., 2015; Huang et al., 2019). In recent years,

studies based on cohort microarray data analysis have identified

T-cell-related mRNAs, microRNAs (miRNAs), and long non-

coding RNAs (lncRNAs) as critical biomarkers in

distinguishing active from latent states (Walzl et al., 2018;

Sinigaglia et al., 2020; Kundu and Basu, 2021). However,

most of these markers were identified via data-driven

strategies; thus, the regulating mechanisms of these genes in

TB progression remain under-characterized. The results of the

bioinformatics approaches applied in the present study

identified a lncRNA/miRNA axis-mediated competing

endogenous RNA (ceRNA) network that is involved in TB

activation through T-cell regulation.

This study was designed as shown in Figure 1. We used TB

samples from the GSE37250 dataset (Kaforou et al., 2013) and

randomly selected a portion of them for data mining. Using

integrated bioinformatics and statistical approaches, we

constructed a ceRNA network mediated by MIR600HG/hsa-

mir-21-5p axis that may play an important role in TB

activation by regulating some CD4+ T subsets. To assess the

clinical significance of the regulatory genes in this ceRNA

network, we employed an elastic net regression model

(Friedman et al., 2010) to construct a diagnostic classifier

based on MIR600HG, hsa-mir-21-5p, and the targeting

mRNAs. Internal validation confirmed the repeatability and

evaluated the generalizability of these markers in HIV-

negative and HIV-positive sub-groups of patients. As the

external validation should be strictly constrained by the target

population size and implementation criterion, we used

independent datasets with similar scales and execution

strategies to perform this assessment. The results of external

validation showed the high applicability of these markers in

pediatric cases. The results of this study extend our

understanding of the immunological mechanisms involved in

TB activation and provide novel potential diagnostic biomarkers

for clinical applications (Figure 2).

Materials and methods

Data resources

We obtained the GSE37250 dataset from the Gene

Expression Omnibus (GEO) database. This adult cohort

contains 195 active and 167 latent cases of TB in patients

from South Africa and Malawi. These cases were randomly

separated into training and testing sets at a ratio of 6:4. The

training sets contained 116 active and 103 latent cases; among

them, 60 active and 53 latent cases were co-infected with HIV.

The testing sets contained 79 active and 64 latent cases; among

them, 38 active and 31 latent cases were co-infected with HIV.

The GSE39941 (Anderson et al., 2014) dataset was also obtained

for use as the external validation cohort. This pediatric cohort

contains 190 active and 68 latent cases from Africa; among them,

68 active cases were co-infected with HIV, with similar

proportions of the target population and TB status diagnostic

criteria as those in the GSE37250 dataset. Before performing the

bioinformatics and statistical operations in this study, all

microarray expression data were transformed using the base-2

logarithm through normalized data.

FIGURE 2
Proposed scheme for this study.
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Identification of critical T cells

The abundance of 18 types of T cells for each case was

computed using the Immune Cell Abundance Identifier

(ImmuCellAI (Miao et al., 2020)) platform. After comparing

the differences in T-cell abundance between active and latent

cases, T cells with significant differences were assessed by receiver

operating characteristic (ROC) curve analysis. Based on a

threshold of the area under the curve (AUC) of < 0.70, we

identified critical T-cell types after excluding those that showed

poor performance in classification.

Screening differentially expressed genes
and identification of candidate DEmiRNA

The fold-changes (FCs) of each probe in the training sets

were calculated after adjusting the false discovery rate (FDR)

using the Benjamini–Hochberg (BH) algorithm. The

differentially-expressed genes (DEGs) were then filtered out as

criteria based on an adjusted p-value <0.05 and |FC| > 1.5.

DEmiRNAs, DElncRNAs, and DEmRNAs were categorized

according to the GENCODE release 35 annotations. ROC

curves were used to identify candidate DEmiRNAs to

eliminate those probes with an AUC value of <0.7.

Co-expression analysis of differentially
expressed genes

The DElncRNA and DEmRNA expression data were included

in the gene matrix, while the TB states and critical T-cell

abundances were included as the clinical traits. The weighted

gene co-expression network analysis (WGCNA) (Langfelder

and Horvath, 2008) was used to identify the gene module

associated with the clinical traits. After discarding outlier cases,

a hierarchical clustering tree was constructed based on the

topological overlap matrix dissimilarity measure, while the soft-

thresholding power was set as the scale-free R2 accumulated up to

0.8. After merging the similar modules at a threshold of 0.25, the

correlations between eachmodule and clinical trait were calculated

to identify the most significant module. The module membership

(MM) represented the relationship between genes in a given

module, while the gene significance (GS) defined the correlation

between each gene and the clinical traits. The hub gene in the

significant module showed an MM of >0.7 and a GS of >0.3.

Construction of a competing endogenous
RNA regulatory network

The DIANA-LncBase v3 tool (Karagkouni et al., 2020) was

used to predict hub DElncRNAs targeting candidate DEmiRNAs

in the reverse direction. A protein-protein interaction (PPI)

network of hub mRNA was constructed using the STRING

(Szklarczyk et al., 2021) database and visualized in Cytoscape.

In the PPI network, the targeting mRNAs of the critical miRNAs

were determined using the microRNA Data Integration Portal

(mirDIP) (Tokar et al., 2018) with the top 5% confidence class.

The ceRNA regulatory network was obtained after expanding to

the first-level neighbor nodes of the targeting mRNAs. We

enriched for the Gene Ontology biological processes (GOBP)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways in the PPI network and ceRNA regulatory gene

clusters using the Metascape (Zhou et al., 2019) platform. The

critical gene cluster was then identified according to the

functional annotation. The resulting lncRNAs, miRNAs, and

targeting mRNAs were identified as critical gene biomarkers in

TB activation. The correlations between gene biomarkers and the

critical T cells and between critical miRNAs and lncRNAs/

mRNAs were confirmed via Spearman coefficient analyses.

Clinical significance assessment and
validation

The elastic net regression model with a parameter minimum

of λ was used to develop a diagnostic classifier based on the gene

biomarkers expression data after10-fold cross-validation. The

classification accuracy in distinguishing active TB using the gene

biomarkers and scoring system was assessed by ROC curve

analysis. The results were validated in the testing sets to assess

the repeatability of our findings. the validation analysis in the

internal HIV-negative and HIV-positive sub-cohorts provided a

better case for assessing the generalizability in cases with different

immunological backgrounds. The validation results in the

external cohort were used to assess the potential application

of the classifier in pediatric cases.

Statistical tools

R software was used to perform the statistical analysis, using

packages including limma, ggpubr, WGCNA, pROC, caret, and

glmnet. P < 0.05 was considered to indicate statistical

significance.

Results

Critical T cells

A total of 11 types of immune cells showed significantly

different abundance levels between active and latent cases

(Figure 3). These types, including CD4+ T, CD8+ T, naive

CD4+ T, type 1 regulatory T (Tr1), natural regulatory T
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FIGURE 3
Comparisons of T-cell abundance between active and latent TB cases in the training set. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p <
0.0001 by t-test.
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(nTreg), inducible regulatory T (iTreg), T helper 2 (Th2),

follicular helper T cell (Tfh), central memory T (Tcm), γδ T,

and mucosal-associated invariant T (MAIT), showed

significantly lower abundances in active cases. After excluding

the poorly discriminating types based on an AUC threshold

of <0.70, CD4+ T, Tr1, nTreg, iTreg, and Tfh were identified as

the critical T cells, with AUCs of 0.75 [95% CI, 0.68–0.81],

0.74 [95% CI, 0.67–0.80], 0.73 [95% CI, 0.66–0.80], 0.73 [95% CI,

0.66–0.80], and 0.75 [95% CI, 0.68–0.81], respectively

(Supplementary Table S1).

Identification of differentially expressed
genes and candidate DEmiRNA

Comparisons of active and latent TB cases revealed

77 lncRNAs, 17 miRNAs, and 1806 mRNAs as significant.

Among these DEGs, 34 lncRNAs, 10 miRNAs, and

980 mRNAs were up-regulated in active cases. The others

were down-regulated (Supplementary Figure S1). The ROC

analysis revealed two miRNAs as candidate DEmiRNAs

(Supplementary Table S2): hsa-mir-21-5p was up-regulated in

active cases, with an AUC of 0.84 [95% CI, 0.79–0.90], while hsa-

mir-339-5p was down-regulated in active cases, with an AUC of

0.77 [95% CI, 0.71–0.83].

Co-expression analysis and the
identification of hub differentially
expressed genes

TB progression and critical T-cell abundance were well

clustered by the average linkage method based on the DEG

expression data (Figure 4A). A scale-free network was

constructed with a soft-thresholding power β = 6 (Figure 4B).

After excluding the unclustered gray eigengenes, 11 modules

were obtained using the dynamic tree algorithm. After merging

the similar types, sevenmodules were included in the calculations

of their correlations with clinical traits (Figure 4C). The brown

module showed the strongest negative relationship with active

FIGURE 4
WGCNA analysis of DEGs associated with TB active status and critical T-cell abundance. (A) TB active status and T-cell abundance of samples
clustered according to DEG expression. (B) Analysis of the network topology for various soft-threshold powers. The auxiliary line on the longitudinal
axis in the scale-free R2 shows a value of 0.8. (C)Dendrogram of DEGs clustered based on themeasurement of dissimilarity (1-TOM). (D)Heatmap of
the correlations between the module eigengenes and the clinical traits. The numbers represent the correlation coefficients, with the
corresponding p values indicated in brackets.
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FIGURE 5
(A) PPI network of hub genes in the brown module. (B) ceRNA network. The green diamond node represents lncRNA, the red circular node
represents miRNA, the blue square nodes represented the targeting mRNAs of hsa-mir-21-5p, and the turquoise square nodes represent the first-
level neighbors of the targetingmRNA. The grey edges indicate interactions between proteins. The blue dotted edges indicate targeting frommiRNA
to mRNAs. The wavy edges indicate targeting from lncRNA to miRNA. The black circular frame indicates the major gene cluster in the ceRNA
network.
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TB and positive relationship with critical T-cell abundance

(Figure 4D); therefore, it was identified as the significant

module. We screened 197 genes in the brown module as

potential hub genes, including two lncRNAs (MIR600HG,

PP7080) and 195 mRNAs.

Construction of the competing
endogenous RNA regulatory network and
functional enrichment analysis

By predicting the interaction relationships between each

hub mRNA in the STRING database, a PPI network

containing 68 genes was obtained (Figure 5A). MIR600HG

and PP7080 were identified as the hub lncRNAs in the brown

module and were down-regulated in active cases. Due to the

competitive principle in ceRNA networks, up-regulated

miRNAs could be considered potential targets; therefore,

hsa-mir-21-5p was identified. Using the DIANA-LncBase

tool, only MIR600HG was predicted as the targeting lncRNA

of hsa-mir-21-5p, with a significant negative correlation

between them (Spearman R = −0.46, p < 0.01). The

mirDIP filtered seven genes (BCL11B, ETS1, EPHA4,

KLF12, KMT2A, PLEKHA1, and NELL2) in the PPI

network as the targeting mRNAs of hsa-mir-21-

5p. Reserving the first-level neighbor nodes of these

targeting mRNAs, we obtained a ceRNA regulatory

network containing three gene clusters (Figure 5B). The

cluster I gene group clustered 19 genes together, including

five hsa-mir-21-5p targeting mRNAs (BCL11B, ETS1,

EPHA4, KLF12, and KMT2A).

The results of the GOBP enrichment analysis revealed that

T-cell-associated processes were the significant biological

functions in the PPI network (Figure 6A). The KEGG

enrichment analysis (Figure 6B) showed that these genes were

involved in several immune-associated pathways, such as T-cell

differentiation and NF-kappa B, and programmed cell death

protein-1 (PD-1) checkpoints. The enrichment analysis of the

cluster I gene group revealed high functional representativeness

across the entire PPI network (Figures 6C,D). The results of the

Spearman analysis confirmed significant negative correlations

between hsa-mir-21-5p and BCL11B, ETS1, EPHA4, KLF12, and

FIGURE 6
GOBP and KEGG enrichment analysis. (A)GOBP enrichment of the PPI network. (B) KEGG enrichment of the PPI network. (C)GOBP enrichment
of the main gene cluster in the ceRNA network. (D) KEGG enrichment of the main gene cluster in the ceRNA network.
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KMT2A (R = −0.62, −0.57, −0.39, −0.59, and −0.55, respectively,

all p < 0.01).

Clinical significance assessment

A ceRNA network mediated by MIR600HG/hsa-mir-21-5p

axis, which could be involved in TB activation, was constructed.

BCL11B, ETS1, EPHA4, KLF12, and KMT2A were identified as

the critical targeting mRNAs in this ceRNA network. Contrary to

hsa-mir-21-5p, MIR600HG, BCL11B, ETS1, EPHA4, KLF12, and

KMT2A were down-regulated in active cases and were

considered credible diagnostic indicators with high accuracy

(Supplementary Table S3). As the results of the Spearman

analysis showed, the seven gene biomarkers were significantly

correlated with the critical T-cell types (Supplementary Table

S4). Therefore, these genes were used to fit the elastic net

regression model with 10-fold cross-validation. Based on α =

0.1 and λ = 0.0124, a scoring classifier was determined, as follows:

1.07*hsa-mir-21-5p - 0.73*MIR600HG - 0.02*

BCL11B–0.62*ETS1–0.40*EPHA4–0.04*KLF12–0.65*KMT2A.

The scoring classifier provided excellent accuracy in

distinguishing active from latent cases, with an AUC of

0.92 [95% CI, 0.89–0.96] (Figure 7).

Validation analysis

In the testing set, hsa-mir-21-5p expression showed

significant negative correlations with MIR600HG, BCL11B,

ETS1, EPHA4, KLF12, and KMT2A

(R = −0.47, −0.69, −0.62, −0.48, −0.69 and −0.67, respectively,

all p < 0.01). The gene biomarkers significantly correlated with

the critical T cells showed similar trends in the training set

(Supplementary Table S4). CD4+ T, Tr1, nTreg, iTreg, and Tfh

showed significantly lower levels of abundance in active

compared to latent cases (Supplementary Figure S2). The

results of the ROC curve analysis demonstrated the reasonable

accuracy of all critical T cells in diagnosing TB progression

(Supplementary Table S5). The elastic net scoring classifier

showed comparable accuracies between the test and training

sets (Figure 7). However, Delong’s test revealed no significant

differences (p = 0.63). Each gene biomarker showed a similar

expression trend and diagnostic accuracy to that of the training

set (Supplementary Table S6). The high reproducibility and

confidence were confirmed by validation in the testing set.

To assess accuracy in different host background cases, two

internal sub-cohorts and one external independent cohort were

used for validation. The five critical T-cell types showed lower

abundance levels in active cases (Supplementary Figure S3), as

well as reasonable diagnostic accuracy (Supplementary Table

S7). The results of the ROC curve analysis indicated the high

generalizability of the scoring classifier in cases of HIV-negative

adults, HIV-positive adults, and pediatric cases, with AUCs of

0.95 [95% CI, 0.92–0.98], 0.88 [95% CI, 0.83–0.93], and

0.87 [95% CI, 0.83–0.91], respectively (Figure 8). In the three

validation cohorts, every gene biomarker showed similar

expression trends and diagnostic efficiencies, consistent with

the training set (Supplementary Table S8). Based on the

validated results, we believed that the ceRNA network,

mediated by the MIR600HG/hsa-mir-21-5p axis, played an

important role in cases with different backgrounds.

Discussion

CD4+ T cells play a central role in the defense against TB

associated with adaptive immune mechanisms. Investigating the

molecular immune mechanisms in the CD4+ T regulatory TB

process contributes to efforts to individualize TB prevention and

management. Herein, we employed integrated bioinformatics

approaches to construct a ceRNA network. More importantly,

we demonstrated the relationship between this ceRNA network

and some CD4+ T subsets. This study was performed based on

large-scale and widely accepted TB datasets, thus improving the

credibility and representation of the present study. With the

coronavirus disease 2019 (COVID-19) pandemic, the

relationships between COVID-19 and TB have drawn

increasing attention from the immune community. The

influence of CD4+ T subsets on TB and COVID-19 is

complex and multidimensional (Yang and Lu, 2020). Our

results shed new light on further investigation into the

mechanism of COVID-19 and other respiratory infectious

diseases.

The limitations of the data mining strategy in this study were

also apparent in the number of various T cells that were not

FIGURE 7
ROC curves of the elastic net diagnostic classifier in the
training and testing sets.
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directly accessible. Thus, we used the ImmuCellAI platform to

estimate the abundance of T cells based on the gene set signature

method. However, the most practical experience of this platform

was obtained from oncology studies. We calculated the

abundance of peripheral blood T cells in TB cases and

observed lower levels of CD4+ T, Tr1, nTreg, iTreg, and Tfh

in active cases. Some of these results were supported by

circumstantial evidence. The present study performed an

essential attempt to use ImmuCellAI in its investigation of TB

immunological mechanisms, the results of which provided a

theoretical reference for the analysis of the molecular

mechanisms involved in the interactions between pathogens

and the immune system.

The protective role of CD4+ T is among the most critical for

inhibiting TB activity, with the depletion of CD4+ T promoting

TB progression and increasing the risk of death (Foreman et al.,

2016; Santos-Pereira et al., 2021). The number of polyfunctional

M. tb antigen-specific CD4+ T cells in the peripheral blood

demonstrated an inverse relationship with the pathogen

burden in the lungs (Day et al., 2011). Tfh is an important

CD4+ T-cell subset that supports humoral immunity and

facilitates neutralizing antibody responses to control

pathogens (Crotty, 2019). Although the mechanisms remain

unknown, a decrease in peripheral blood Tfh levels in active

cases compared to those in latent cases has been reported (Kumar

et al., 2014). However, the Tregs estimations in this study were

controversial. Previous small-scale studies (Semple et al., 2013;

Stringari et al., 2021) suggested an increasing trend of peripheral

blood Tregs counts in active TB cases compared to the numbers

in latent cases. Due to the methodological limitations of the

studies, the abundance of Tregs mainly represented cell activity

but not necessarily the exact count. As supporting evidence, the

functional enrichment results of genes positively related to Tregs

indicated that the decrease of those genes in active TB probably

suppressed the activation processes of Tregs rather than

proliferation. Tregs attenuate inflammation during chronic

infectious disease, which maintains immune homeostasis

against host damage from excessive inflammation. However,

the adverse effect was that pathogen clearance was suppressed

(Stephen-Victor et al., 2017). Tregs play a complex role duringM.

tb infection; in different stages of TB progression, Tregs are

redistributed between the peripheral blood and local

inflammatory sites; thus, their regulatory effect might be dual

(Boer et al., 2015). The regulatory details of various Treg sub-

types in TB progression were not previously elucidated. Our

results demonstrated the potential possibilities of Treg-related

mechanisms in TB activation and called for larger-scale

investigations with precise designs.

The major cluster (cluster I) genes regulated by the ceRNA

networkwere associatedwith T-cell behaviors in biological processes

and pathways. The enriched genes were down-regulated in active

cases, which indicated their suppressed activation, differentiation,

and development during TB activity, echoing the estimation of

T-cell subset abundance in the present study.We found that the PD-

1 checkpoint was one of the critical pathways in TB activation. PD-1

inhibitors are widely used in patients with tumors. Latent TB

reactivation, as a severe adverse event, has attracted much

attention (Picchi et al., 2018; Anand et al., 2020). The PD-1

pathway plays a critical role in various infectious diseases (Sharpe

et al., 2007). M. tb infection elevates PD-1 expression in peripheral

blood CD4+ T cells, which likely limits the host immune response

against pathogens (Shen et al., 2016). PD-1 inhibition promotes

TNF-α secretion and results in increased M. tb growth. Consistent

with this, the peripheral blood expression of CD4+ T PD-1 declines

(Tezera et al., 2020). However, the mechanisms by which the PD-1

pathway regulates TB progression remain unknown. Therefore, our

findings provide novel insight for further exploration.

This study constructed a ceRNA network mediated by the

MIR600HG/hsa-mir-21-5p axis and included five targeting

mRNAs (BCL11B, ETS1, EPHA4, KLF12, and KMT2A). A

few studies have demonstrated the function of MIR600HG,

which is considered a lncRNA biomarker for predicting the

progression of tumor patients (Song et al., 2018; Cao et al.,

2022). Xiao et al. (2021) reported that MIR600HG, which was

involved in the ceRNA network in the present study, influenced

pancreatic adenocarcinoma progression by regulating immune

cell infiltration. The present study investigated the regulatory role

of MIR600HG in infectious diseases. Our results demonstrated

the great promise of MIR600HG in immunology. hsa-mir-21-5p

is considered a hot-spot miRNA in immune research associated

with TB (Kozomara et al., 2019). However, opposing views

debate the expression difference in active cases. Kleinsteuber

et al. (2013) reported decreased hsa-mir-21 levels in active cases

compared to those in latent cases. However, two independent

studies reported higher hsa-mir-21 expression in active cases

FIGURE 8
ROC curves of the elastic net diagnostic classifier in HIV-
negative/positive sub-cohorts and the external cohort.
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compared to that in healthy controls and patients receiving anti-

TB treatment (Wang et al., 2018; Kathirvel et al., 2020). Previous

studies revealed that hsa-mir-21-5p mitigated inflammatory

responses by regulating macrophages (Zhao et al., 2019).

Carissimi et al. (2014) identified hsa-mir-21 as a negative

modulator of T cells and the T-cell receptor (TCR) as the

critical pathway. Nguyen et al. (2021) confirmed that hsa-mir-

21 regulated the cellular functions and apoptosis of CD4+ T

through the TCR pathway in infectious diseases. The results of

the present study showed revealed an hsa-mir-21-5p regulatory

network presumably linked to the TCR regulating CD4+ T

subsets during TB activation, which supplemented our

understanding of the role of hsa-mir-21-5p in TB progression.

BCL11B, ETS1, EPHA4, KLF12, and KMT2A were down-

regulated in active cases. ROC analysis results confirmed the

diagnostic prospects. Most of these findings are consistent with

those previous independent reports (Jezela-Stanek et al., 2020;

Zhao et al., 2020; De Araujo et al., 2021; Natarajan et al., 2022).

We also confirmed their accuracy in distinguishing active TB and,

more importantly, explored the ceRNA regulatory mechanism and

affected T-cell types. Complementarity prediction and expression

correlated analysis revealed the potential role of theMIR600HG/hsa-

mir-21-5p axis in mediating these genes. The integrated results of the

co-expression analysis, PPI network construction, and enrichment

indicated that the critical CD4+ T subsets likely influenced TB

progression via a functional gene cluster containing these five

genes. BCL11B and ETS1 play key roles in the development of

CD4+ T subsets (Liu et al., 2010; Garrett-Sinha, 2013); as

transcription factors, they are deeply involved in Treg and Tfh

activation and differentiation (Li et al., 2010; Kitagawa et al., 2017;

Kim et al., 2018). EPHA4, as a receptor tyrosine kinase, has been

implicated in the mediation of cell developmental events and is

associated with the maturation and development of CD4+ T cells

(Munoz et al., 2006). KLF12 and KMT2A are gene expression-

regulated transcription factors associated with T cell proliferation

(Peterson et al., 2018; Parrado, 2020). The experimental evidence

presented above theoretically supported our hypothesis, which

proposed that decreased levels of these five mRNA biomarkers

suppress T-cell activity in active TB cases.

Compared to previous data-driven studies (Sweeney et al., 2016;

Singhania et al., 2018; Natarajan et al., 2022), the present study was

driven by immunological mechanisms to screen for gene

biomarkers. In practice, this dual strategy approach provides

more useful information. The elastic net regression model was

used to determine the coefficients of each feature to obtain an

integrated model to assess the compounded accuracy. For revealing

the mechanisms, despite sacrificing some diagnostic accuracy, our

elastic net scoring classifier still showed excellent performance in

distinguishing active cases. The validation results in the testing set

confirmed that our findings were robust and that the classifiermodel

was fitted appropriately. As demonstrated in this study, the

MIR600HG/hsa-mir-21-5p axis ceRNA network regulated TB

activation via some subsets of CD4+ T cells; thus, the

performance of our findings in CD4+ T-cell-deficient populations

should be assessed. In the real-world TB disease spectra, cases with

HIV coinfection are probably the most representative samples with

CD4+ T deficiency. The cases also have a higher prevalence of

hospitalization and mortality compared to HIV-negative cases

(Bruchfeld et al., 2015; Subbarao et al., 2015). The HIV-positive

internal validation confirmed the adequate diagnostic accuracy of

our hypothesis in CD4+ T-cell-deficient cases. Further in-depth

exploration of the effect of HIV on TB activity was not within

the scope of the current study. However, the five critical T-cell

subsets and several gene biomarkers identified in the present study

are also reportedly affected by HIV infection (Jasenosky et al., 2015;

Zhou et al., 2021). The results of the present study also suggest

implications for future research on the molecular mechanisms by

which HIV facilitates TB activity. Our findings were based on an

adult cohort; however, children living with TB deserve special

attention (Marais et al., 2014). Constrained by the target

population size, we were unable to enroll a new cohort; however,

we performed validation in comparable high-quality datasets. The

results suggested that our findings were also valid for pediatric cases.

It is worth noting that the peripheral T-cell compartment could

change with aging (Arsenovic-Ranin et al., 2017; Reynaldi et al.,

2019). As shown in Supplementary Table S7, the diagnostic accuracy

of nTreg in child cases was low. The immune effect of nTreg on

tuberculosis may be affected by aging factors (Namdeo et al., 2020).

The issue is worthy of further exploration.

Conclusion

The results of this study identified a T-cell-related MIR600HG/

hsa-mir-21-5p axis ceRNA network, which likely revealed the

immunological mechanisms associated with TB activation. The

results of the internal and external validations confirmed that our

findings applied to various populations with different backgrounds.

Although some results remain controversial, we believe that this

ceRNA network helps uncover the CD4+ T subsets associated with

the regulatory mechanisms in TB activation and provides prospects

for clinical applications.
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