
© Translational Pediatrics. All rights reserved.   Transl Pediatr 2023;12(6):1213-1224 | https://dx.doi.org/10.21037/tp-23-133

Introduction

What is biomedical informatics (BMI)?

Informatics seeks to take large amounts of data and 
determine how to best give it meaning (1). BMI is a field 
that combines computer science, mathematics, statistics, 
epidemiology, and engineering to solve problems in biology 

and medicine. It involves the application of computational 
methods to manage, analyze, and interpret biological and 
biomedical data, such as genomic data, clinical data, or 
imaging data. Figure 1 illustrates a few of the subfields that 
encompass BMI (2).

BMI has become increasingly popular over the past few 
decades and has already made substantial contributions 
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to healthcare. Recent advances in BMI have contributed 
significantly to various healthcare processes. For example, 
the development of clinical decision support tools within 
electronic health records (EHRs) has improved patient 
safety. These techniques have also enabled more accurate 
analyses of hospital costs and identification of inequities in 
healthcare (3). BMI has also become prominent in clinical 
research and the understanding of diseases at the molecular 
level. This reach notably includes a number of “omics” 
fields that allow a more comprehensive analysis of biologic 
systems such as genomics (studying DNA), transcriptomics 
(transcripts), proteomics (proteins) and metabolomics 
(metabolites). These also can undergo further specialization 
into more specialized fields such as epigenomics (studying 
epigenetic modifications of DNA) and metagenomics 
(combining study of the human genome with other 
organisms such as bacteria, viruses, etc.), among others (4).  
New exciting areas of medicine are evidenced by the 
Human Genome Project, predicting protein folding, and in 
a better understanding of complex genetic diseases such as 
cancer and Alzheimer’s. These individual “omic” disciplines 
are often also combined for further, more in depth analysis, 
under the umbrella terms “multiomics” or “panomics”.

In this review, we will examine the novel role of 
bioinformatics in understanding the pathophysiology 
of bronchopulmonary dysplasia (BPD) in neonates. By 
analyzing large-scale molecular and clinical data, BMI 
has the potential to uncover underlying mechanisms 

contributing to this chronic lung disease. Furthermore, 
these findings may facilitate the discovery of targeted 
therapies that could prevent or mitigate BPD, thereby 
improving outcomes in a vulnerable population. We 
present this article in accordance with the Narrative Review 
reporting checklist (available at https://tp.amegroups.com/
article/view/10.21037/tp-23-133/rc).

Bioinformatics: subfield of BMI

As discussed above, bioinformatics is one of many fields 
under the umbrella of BMI. As the name implies it is more 
specifically involved in the application of biological data. 
Bioinformatics is essential for management of data in 
modern biology and medicine (5). In addition to the analysis 
of genomic data, bioinformatics is now being used for more 
complex topics such as analyzing molecular pathways in 
order to understand gene-disease interactions, querying, 
biological databases, and drug design (6). Bioinformatics 
and gene sequencing have allowed for collection and 
organization of large amounts of molecular data that 
would be nearly impossible to use in a meaningful way  
otherwise (7). These collections have been integral for 
the study and comparison of genetic information, and 
furthermore are frequently collected into databases and 
online-tools for public use (8).

Bioinformatics continues to feature prominently across 
medical research. Given the heterogeneity and complexity 
of the field, it is unsurprising that it has been used 
extensively in the study of cancer. It has been used in gene 
sequencing to identify pathogenic variants and predisposing 
genes and in risk stratification (9). Once disease has been 
identified, it has also been used in drug development and 
the development of targeted chemotherapy. Even after 
treatment is ongoing, it has a place in monitoring for drug 
response and patterns of resistance (10). Whether in cancer 
or any of a vast number of diseases in which it is currently 
being used, the end is a more personalized or “precision 
medicine”-based approach to tailor diagnosis and treatment 
down to the individual patient level (11).

Although bioinformatics is a relatively new approach 
in neonatology, its utilization is rapidly growing. In the 
pediatric literature it has been used in several diseases such 
as asthma, attention deficit hyperactivity disorder (ADHD), 
inflammatory bowel disease, and obesity (12). As we will 
demonstrate later in this review, bioinformatics has proven to 
be a valuable tool in neonatal research, particularly in BPD.
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Figure 1 Overview of disciplines in biomedical informatics.
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Methods

Literature search strategy

Articles were selected through PubMed and searched on 
October 19, 2022. Only articles in English were considered. 
The following keywords were used: “biomedical informatics”, 
“bioinformatics”,  “bronchopulmonary dysplasia”, 
“computational biology”, and “omics”. Retrieved studies 
were evaluated based on their titles and abstracts, and 
those considered relevant for the review. Two investigators 
conducted the research and included human and animal studies 
pertinent to the topic. Table 1 summarizes our search strategy.

Bioinformatics for BPD

Despite significant advances in the management of preterm 
infants, BPD remains the most common morbidity 
associated with preterm birth, even half a century after it 
was first described (13,14). While part of the rising BPD 
rates can be attributed to the survival of more extremely 
preterm neonates, there are still significant gaps in our 
understanding of this condition and how we define it (15). 

The definition of BPD has undergone numerous changes 
over the past 20 years and now includes the degree of 
positive pressure ventilation at 36 weeks postmenstrual age, 
rather than supplemental oxygen alone, as a measure of its 
severity (Table 2) (16-19). However, the challenge with the 
current and all previous definitions of BPD is that they are 
clinical descriptors of an infant’s lung function at a time 
they are expected to achieve lung maturity and are largely 
poor predictors of long-term respiratory outcomes (20). 
Additionally, there is significant phenotypic heterogeneity in 
the presentation of BPD and the complex interplay between 
lung injury and lung plasticity, making BPD a continuously 
evolving condition (21). With the advent of bioinformatic 
analysis and the numerous “omic” fields, backed by 
modern-day computational abilities, it is now possible to 
identify some of the pathobiological pathways that are likely 
involved in the development of BPD and identify some of 
the genetic risk factors that might predispose to it.

Applications of bioinformatics in BPD

The pursuit of the genetic basis of BPD has evolved from 

Table 1 Search strategy

Items Specification

Date of search October 19, 2022

Databases and other sources searched PubMed

Search terms used “Biomedical informatics”, “bioinformatics”, “bronchopulmonary dysplasia”, 
“computational biology”, and “omics”

Timeframe Inception till 10/19/2022

Inclusion and exclusion criteria English articles

Selection process T Arora, A Moreira

Table 2 Development of BPD definitions

Definition by Year Definition

National Institute of Child Health & Human 
Development & National Heart, Lung, Blood Institute

2001 Use of supplemental oxygen for >28 days (16)

Abman et al. (BPD collaborative) 2016 BPD if 28 days or greater of oxygen. Mild, moderate, severe type 1 
or severe type 2 based on FiO2 and mode of respiratory support (17)

Higgins et al. 2018 Need of oxygen supplementation in addition to respiratory support 
and early death due to parenchymal lung disease (18)

Jensen et al. 2019 Need of respiratory support at 36 weeks of PMA, irrespective of 
previous oxygen requirements (19)

BPD, bronchopulmonary dysplasia; FiO2, inspiratory fraction of oxygen; PMA, postmenstrual age.
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hypothesis-driven analysis of a few candidate genes to the 
use of high-throughput bioinformatic tools (22-24). A few 
studies have used the approach of genome wide association 
to elucidate the pathways associated with BPD.

Hadchouel et al. in 2011 used fine mapping techniques 
to identify SPOCK2 as a susceptibility gene for the 
development of BPD. They also showed a significant 
increase in the mRNA level of SPOCK2 in a rat model, 
during the alveolar stage of lung development (25). 
However, a genome-wide association study (GWAS) 
conducted by Wang et al. in 2013 did not identify a genomic 
loci or pathway that predicted the risk of BPD in very low 
birth weight (VLBW) infants (26). Another study in 2015 
by Ambalavanan et al. performed a genome-wide scan to 
identify single nucleotide polymorphisms (SNPs) and 
pathways associated with BPD, finding an upregulation 
in the CD44 and miR-219 genes in the lungs of BPD 
patients and in association with hyperoxia. They also found 
differences in the pathways associated with mild/moderate 
and severe BPD and found racial/ethnic differences in 
these pathways (27). In 2017, Mahlman conducted a 
GWAS on preterm infants (24–30 weeks gestation) and 
identified SNPs near the C-reactive protein (CRP) gene as 
risk factors for BPD, independent of antenatal risks (28). 
Furthermore, Torgerson et al. in 2018 performed ancestry 
studies and GWAS to identify variants, genes, and pathways 
associated with survival in BPD infants treated with inhaled 
nitric oxide, identifying genetic variants related to lung 
development, drug metabolism, and immune response that 
contributed to individual and racial/ethnic differences in the 
respiratory outcomes of this high-risk population (29).

While GWAS have been able to identify risk loci in 
association with many human diseases, their success with 
BPD has been mixed. The reason may be because the 
GWAS methodology targets common variants in the 
population but since BPD and other respiratory morbidities 
in preterm infants are associated with a high mortality rate, 
the potential genetic risk alleles are expected to have a very 
low frequency (30). However, whole-exome sequencing 
allows for opportunities to study these rare variants. In 
2015, Li et al. performed exome sequencing on 50 BPD 
twin pairs using DNA from neonatal blood spots and 
identified 258 genes associated with rare nonsynonymous 
mutations (31). Another study by Carrera et al. in the same 
year used whole exome sequencing in 26 unrelated infants 
with severe BPD to identify potential candidate genes 
implicated in the development of BPD (32).

Most recently, Wang et al.  [2022] conducted an 

epigenome wide association study of BPD in preterm infants 
using cord blood DNA and DNA methylation techniques, 
revealing insights into the biological pathways involved in 
BPD pathogenesis (33). Most of these studies have utilized 
data from publicly available biorepositories or collected 
their own data and contributed to these repositories.

We have included the above studies to give a summary of 
the work that has been done by multiple groups in an effort 
to uncover the complexity of this disease. Taken as a whole, 
they highlight the excitement for the field but also many of 
the difficulties. The identification of new genes and pathways 
gives the opportunity for better understanding and insight 
as well as the opportunity to ultimately alter the way we 
attempt to prevent and treat BPD. At the same time, similar 
to research from other fields, loci and pathways found in 
animal models do not always translate into similar findings 
in human models. Human models also do not always identify 
similar genes/pathways as being the most significant and 
depend heavily on the patient population represented by an 
individual database, the type of tissue being collected, the 
methods used to obtain gene expression or pathway data 
and the models used to analyze them. Multiple of these 
studies involve systems that are almost certainly involved in 
BPD including epigenomic changes, inflammation (more 
specifically macrophage function and cytokine response) and 
airway septation. However most individual studies find their 
“most significant” changes at different loci from the ones 
before it. As research and databases grow, they will hopefully 
be accompanied by refinement and consistency in their 
analysis and more overlap of patient populations. BMI gives 
us the tools to explore disease in new ways, but also bring 
about new challenges.

Bioinformatics and data sharing

As the amount of data, we are able to collect continues 
to grow at an exponential rate, it has become equally 
important that we are able to maintain a system for keeping 
the data useable. Fortunately, the recent advances in data 
collection have been complemented by the development of 
sophisticated systems for the storage of biological data (5). 
This has had a number of benefits including international 
collaborations and database (or biorepository) creation, 
improvements in data quality, and helping to ensure 
traceability and transparency (34). It would be impossible 
to create a comprehensive list of these tools and data 
collections, but a few terms and examples are helpful in 
illustrating their use (Table 3).
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These databases are often combined to help researchers 
make the leap from identifying genetic changes to discovering 
what biological pathways the genes in question belong to. 
Once identified, these pathways provide context to the results 
and can be used to help explain underlying physiology.

For applications in neonatology, a biorepository that 
houses data on BPD is the National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO). 
Developed in the early 2000s, it is a publicly available 
database that contains a vast array of bioinformatic data (43). 
Similar to the previously discussed databases, it also has built-
in tools to help download and interpret results.

The above examples are only a few of the many tools that 
exist to help obtain, analyze, and interpret biologic data. 
These systems are continually becoming more sophisticated, 
as are the projects that utilize them. Collaborations such 
as these have significant potential to rapidly expand our 
knowledge of disease much more quickly and clearly than 
individual studies could accomplish. As we continue to 
push the boundaries of biomedical research, BMI will 
undoubtedly play a key role in unraveling new frontiers in 
disease understanding, prevention, and treatment.

Future directions for use of bioinformatics in 
BPD

Recently RNA sequencing techniques have been developed 
that can evaluate messenger RNA (mRNA), long non-
coding RNA (lncRNA) and microRNA (miRNA, miR) (44).  
In 2016, Kho et al .  analyzed the fetal whole-lung 
transcriptomic profile at 54–127 days post conception and 

found that postconceptional age had a more dominant 
effect on the fetal lung transcriptome than the sex of the 
fetus at this early stage of lung development (45). While 
initial transcriptomic research primarily focused on mRNA, 
studies are now starting to evaluate the non-coding RNAs-
lncRNA, miRNA, and single-cell transcriptomics. Several 
miRNAs have been shown to play a critical role in lung 
development and a 2013 study by Syed et al. elucidated the 
role of pharmacological inhibition of miR-34a to prevent 
and treat hyperoxia induced lung injury in a BPD mouse 
model (46-48).

Similar to the evolution of the field of genomics, 
the future of proteomic research is also shifting from 
establishing associations between individual proteins and 
BPD to unbiased proteomic analysis. The study of the 
modulation of protein function as the disease evolves may 
provide insights into the “real-time” status of the diseases. 
Magagnotti et al. collected tracheal aspirates from preterm 
infants and performed proteomic analysis to find that there 
were clear differences in the proteomic profiles of 23–25 
and 26–29 weeks’ gestation infants and between infants with 
mild and severe BPD (49). Recently in a 2022 study, Ahmed 
et al. conducted proteomic analysis on the urine of infants 
with BPD and validated multiple proteins previously found 
in serum samples and tracheal aspirates that have been 
implicated in the pathogenesis of BPD, thereby opening the 
doors for noninvasive longitudinal monitoring of disease 
progression (50).

These studies highlight the current state of the field in 
simultaneously evaluating changes at a molecular level while 
also focusing on applying those findings to the current 

Table 3 Example databases in bioinformatics

Database collections Functions

GWAS catalog, https://www.ebi.ac.uk/
gwas/

Human genome to find genetic changes associated with phenotypes of interest. The 
sharing of GWAS allows researched access to individual level data including pathway 
analysis/correlation, risk prediction and heritability estimation (26)

The KEGG Japanese database, https://
www.genome.jp/kegg/

Functions by taking genome sequence data and associating it with the corresponding 
cellular/biologic pathway (35,36)

GO, http://geneontology.org/ Used both in human and animal research to link specific genes to their biological function 
(37)

Reactome, https://reactome.org/ Open-source, peer-reviewed pathway database whose goal is to provide bioinformatics 
tools for the visualization, pathway interpretation and analysis, genome analysis, modeling, 
systems biology, and education (38)

Other databases include SNPedia, Promethease, and MAGMA (39-42). This information is often then used as the basis for new projects 
and questions. GWAS, genome-wide association study; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; 
MAGMA, Multi-Marker Analysis of GenoMic Annotation.

http://www.ebi.ac.uk/gwas/
http://www.ebi.ac.uk/gwas/
http://www.genome.jp/kegg/
http://geneontology.org/
https://reactome.org/
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clinical status of the patients they come from. Before they 
could possibly be used bedside for BPD prediction and 
management, more work needs to be done to contextualize 
many of these more isolated findings. For instance, which of 
these are specifically related to BPD rather than prematurity 
(or illness, inflammation, etc.) as a whole, how many of 
these findings are specific to one patient population, what 
effects do the type of analysis have on our findings, and 
many other considerations.

The use of state-of-the-art computational methods in 
the future will hopefully enable a more comprehensive and 
systems-level understanding of the underlying molecular 
mechanisms driving BPD pathogenesis. By leveraging 
computational biology to integrate multi-omic data from 
several tissue sources (e.g., blood, urine, umbilical cord, 
tracheal aspirates, stool), we can gain a more complete view 
of BPD. Another future direction includes the integration 
of machine learning (ML) and artificial intelligence (AI) 
given the increasingly complex bioinformatic data that will 
be necessary to accurately understand BPD. For instance, 
Moreira et al. recently derived a five-gene peripheral blood 
transcriptomic signature using prediction modeling and AI 
that accurately predicts BPD in the first week of life. They 
also found that pathways related to T-cell development 
were associated with BPD (51). The studies in this and the 
previous sections concerning the use of bioinformatics in 
BPD are briefly summarized in Table 4.

AI and ML are becoming increasingly popular topics in 
the world of medicine and scientific research. While both 
can be intimidating on their surface (as can the statistics 
that underlie them), advances in both fields have been 
instrumental in helping to make them more accessible to 
the non-statistician. AI has been described over the past 
few decades as the advancement of technology, namely 
computers, to mimic human behavior and understanding (52).  
This pursuit has been present across multiple different 
disciplines, medicine among them. The goal of medical AI 
is to take the vast array of data that is becoming increasingly 
available and determine how to best use it in clinical decision 
making. ML, as a subset of AI, seeks to use that same 
computational power to improve the ability of the computer’s 
ability to “think” and help make complex decisions (53). In 
other words, how can a model (or machine) collect data on 
the mistakes it makes and find patterns or strategies to help 
reduce them.

The advent of chat generative pre-trained transformer 
(ChatGPT), an online tool developed by open AI, has 
shown the vast utility of AI (54). This program is not only 

capable of answering questions and having conversations, 
but also collects information from these interactions to 
continue to “teach itself” and make improvements over 
time. As an example, the paragraph below was written by 
ChatGPT using the following prompt ‘write a paragraph 
about bioinformatics and bronchopulmonary dysplasia’.

BPD is a complex and multifactorial chronic lung 
disease that affects premature neonates. BMI has emerged 
as a powerful tool for understanding the underlying 
molecular mechanisms driving BPD pathogenesis and 
developing targeted therapies. By integrating various 
types of data from genomic, proteomic, and clinical 
sources, BMI can provide novel insights into the disease’s 
pathogenesis, identify potential biomarkers, and facilitate 
the development of precision medicine approaches for 
improved patient outcomes. For example, the use of 
state-of-the-art computational methods can allow for the 
integration of miRNAs and other transcriptomic factors 
into clinically relevant biological pathways. Additionally, 
data-driven approaches such as ML and network analysis 
can help identify complex relationships between genetic and 
environmental factors that contribute to the development of 
BPD. As we continue to advance our understanding of BPD 
and other neonatal diseases, BMI will undoubtedly play a 
critical role in developing more personalized and effective 
approaches to patient care, ultimately improving the long-
term health outcomes of premature neonates affected by 
this devastating condition.

ChatGPT is one of many AI models currently being 
designed and evaluated to “learn” from feedback and 
numerous interactions to improve its function. ChatGPT 
itself is undergoing many changes, evidenced by the 
presence of multiple versions (version 3.5 which is free 
and trained on more limited information through June 
2021, compared to version 4 available via subscription that 
is trained on 5+ times the amount of prompts and is still 
undergoing updating), highlighting how quickly the field 
is changing and adapting to the challenges that accompany 
it (55). While none of these AI models are currently able 
to successfully answer clinical questions or fully analyze 
bioinformatic data, they will continue to impact research 
and clinical discussions going forward.

Optimally, an integrated and comprehensive approach 
that incorporates clinical informatics (e.g., demographics, 
morbidities, ventilator settings), laboratory markers (e.g., 
complete blood count, electrolytes, cultures), imaging 
informatics (e.g., chest X-rays, computed tomography, or 
magnetic resonance imaging), data extraction (e.g., natural 
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Table 4 Sample of literature on the use of GWAS and whole-exome sequencing for BPD

Name of study Year GWAS analysis Cohort Results Conclusion

Identification of 
SPOCK2 as a 
susceptibility gene for 
bronchopulmonary 
dysplasia (25)

2011 DNA pooling 
strategy to create 
discovery sets

N=418 SPOCK2 gene (with lung 
expression pattern) 
identified by both 
discovery tests

SPOCK2 gene is a 
possible susceptibility 
gene for BPD

A genome-
wide association 
study (GWAS) for 
bronchopulmonary 
dysplasia (26)

2013 Genotyping using 
genome DNA + 
pathways analysis

N=1,726 No SNPs associated with 
BPD were identified

No genomic loci or 
pathways were found to 
account BPD heritability

Integrated genomic 
analyses in 
bronchopulmonary 
dysplasia (27)

2015 Genome wide scan 
on SNPs

N=751 (with 428 BPD/
death)

Association of miR-219 
and phosphorous oxygen 
lyase activity in severe 
BPD/death/survivors and 
increased CD44 and 
ADARB2

Confirmed involvement of 
known pathways (CD44 
and POL activity) and 
new pathways (ADARB2 
and miR-219 targets) in 
BPD

Genome wide 
association study of 
bronchopulmonary 
dysplasia (28)

2017 Genome-wide SNP 
genotyping

N=174 (GWAS done 
on Finnish 24–30-week 
preterm infants); N=943 
(replication cohorts that 
underwent genotyping 
of SNPs associated with 
BPD)

SNP rs11265269 found to 
be a risk factor for BPD 
independent of antenatal 
risks

Variants near the CRP 
gene proposed to be a 
risk factor for BPD

Ancestry and genetic 
associations with 
bronchopulmonary 
dysplasia in preterm 
infants (29)

2018 Ancestry and 
GWAS + admixture 
mapping

N=387 BPD treated with 
inhaled nitric oxide

Identified top genetic 
variant within intron of 
NBL1. Upregulated genes 
associate with CCL18 
cytokine

Genetic variation 
contributes to differences 
in respiratory outcomes 
after inhaled NO2

Exome sequencing of 
neonatal blood spots 
and the identification 
of genes implicated 
in bronchopulmonary 
dysplasia (31)

2015 Exome sequencing 
using DNA from 
neonatal blood 
sports

N=50 BPD affected and 
unaffected twin pairs

258 rare genes found, 
enriched for processes 
involved in pulmonary 
structure and function

Rare and high confidence 
genes are implicated in 
BPD

Exome sequencing and 
pathway analysis for 
identification of genetic 
variability relevant for 
bronchopulmonary 
dysplasia (32)

2015 Exome sequencing N=26 (with severe BPD) Identified 3369 novel 
variants with top 
candidate genes being 
NOS2, MMP1, CRP, LBP 
and TLR family genes

Identified potential 
candidate genes for the 
development of severe 
BPD

Epigenome-wide 
association study of 
bronchopulmonary 
dysplasia in preterm 
infants: results from the 
discovery-BPD program 
(33)

2022 Illumina 450 K 
methylation arrays 
on cord blood DNA 
and epigenome 
wide association 
study

N=107 Total of 313 differentially 
methylated CpGs 
associated with BPD, 
with elevated stochastic 
epigenetic mutation 
burden at birth

Potential insights into 
biological pathways 
involved in BPD 
pathogenesis were 
identified

Table 4 (continued)
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Table 4 (continued)

Name of study Year GWAS analysis Cohort Results Conclusion

Age, sexual dimorphism, 
and disease associations 
in the developing human 
fetal lung transcriptome 
(45)

2015 Transcriptome and 
gene expression 
analysis from fetal 
lung tissue

N=139 Post-conceptual age was 
a more significant factor 
than gender differences. 
Enriched genes found 
associated with BPD and 
asthma

Potential insights into 
developing fetal lung, 
including involved genes, 
biological pathways, and 
association with long term 
outcomes

MicroRNA in late lung 
development and 
bronchopulmonary 
dysplasia: the need to 
demonstrate causality (46)

2015 MiRNA gene 
expression via 
mouse models

N/A Only two studies attempted 
to determine causality or 
possible pathways, and 
will need to be validated in 
human models

Potential insight into 
genetic basis underlying 
lung development and 
eventual development of 
BPD

Regulation of 
alveolar septation by 
microRNA-489 (47)

2015 MiRNA expression 627 mouse miRNAs and 
39 mouse viral miRNA

miRNA-489 appears to be 
associated with inhibiting 
alveolar septation. 
Disregulation of miR-489 
and downstream genes is 
associated with hyperoxia 
associated lung injury and 
BPD

Identify potential 
candidate genes 
for abnormal lung 
development and possible 
target for future therapies

Hyperoxia exacerbates 
postnatal inflammation-
induced lung injury in 
neonatal BRP-39 Null 
mutant mice promoting 
the M1 macrophage 
phenotype (48)

2013 Lung histology, cell 
count and cytokine 
analysis

N=12 per litter, otherwise 
unspecified

BRP-39 (associated with 
anti-inflammatory effects) 
more sensitive to hyperoxia 
and lipopolysaccharide 
administration, suggesting 
protective effect

Identified potential 
biologic pathways and 
candidate genes for 
targeted therapy

Calcium signaling-related 
proteins are associated 
with broncho-pulmonary 
dysplasia progression (49)

2013 Gel electrophoresis 
for proteins obtained 
via bronchoalveolar 
lavage

N=12 Changes in protein 
expression present across 
changes in gestational age 
along with BPD severity

Potential insights into 
biological pathways 
involved in BPD 
pathogenesis and 
molecular changes

Urine proteomics for 
noninvasive monitoring 
of biomarkers in 
bronchopulmonary 
dysplasia (50)

2022 Urine proteomics via 
mass spectrometry

N=42 Multiple targets (16 of 
which associated with FDA 
approved drugs) associated 
with BPD-associated 
changes in the urine

Identified potential 
biologic pathways in 
BPD and candidates for 
targeted therapy

Development of a 
peripheral blood 
transcriptomic gene 
signature to predict 
386 bronchopulmonary 
dysplasia (51)

2022 Whole blood 
microarray 
data to develop 
transcriptomic 
signature. 
Development of 
ML model for BPD 
prediction and 
pathway analysis

N=97 4,523 significant genes 
(FDR <0.01) out of 33,252. 
Model using 5 genes at 
day of life 5 outperformed 
clinical model using birth 
weight or gestational age

Potential insight into 
biological pathways 
underlying BPD. 
Development of ML model 
for BPD prediction that 
performs as well or better 
than clinical model

GWAS, genome-wide association study; BPD, bronchopulmonary dysplasia; SNPs, single nucleotide polymorphisms; CD44, cluster of 
differentiation 44; POL, phosphorus oxygen lyase; ADARB2, adenosine deaminase, RNA specific, B2; CRP, C-reactive protein; NBL1, 
neuroblastoma suppressor of tumorigenicity 1; CCL18, chemokine ligand 18; NO2, nitrogen dioxide; NOS2, nitric oxide synthase; MMP1, 
matrix metallopeptidase 1; LBP, lipopolysaccharide binding protein; TLR, toll-like receptor; CpGs, cytosine-guanine dinucleotides; miRNA, 
microRNA; N/A, not available; FDA, Food and Drug Administration; ML, machine learning; FDR, false discovery rate.
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language processing to pull data from clinical documentation, 
EHR generated reports) and multi-omic bioinformatic 
data (e.g., metabolomic, transcriptomic, proteomic) 
intertwined with AI would be instrumental in advancing our 
understanding of BPD.

Challenges and ethical considerations in 
bioinformatics

The increasing cost effectiveness and accessibility of 
bioinformatic tools has introduced a new set of challenges. 
The most worthwhile among these is the challenge of 
translating these discoveries to clinical medicine. While 
there is more information being generated with each 
passing day, there is significant information that is still 
to be learned about how and when to best incorporate 
it. These findings carry serious implications when 
discussed with patients and it will be imperative that 
medical personnel using this information are comfortable 
interpreting results from “big data” and “omics” studies 
and placing it in appropriate context, especially as more 
results are automatically being shared with patients and 
their families. Given the heterogeneity in BPD phenotypes 
and the multifactorial nature of its onset, the approach 
of ‘one SNP causing one phenotype’ is insufficient and 
requires further study of complex gene-gene and gene-
environment interactions (56).

While GWAS have been extensively utilized to establish 
statistical associations between SNPs and disease states, they 
do not inform us of the biological basis of the relationship 
between genetic variants and phenotypic traits (57). This is a 
field that is relatively new in its use in medicine. This has led 
to several institutions producing their own primary studies, 
but we have yet to see larger, pooled analyses comparing 
findings across populations or across different points in time. 
We also have not yet seen multi-institutional analyses of 
differentially expressed genes or pathways of which less is 
currently known, therefore not giving us the opportunity to 
learn more about how these variants might all contribute to 
an outcome of interest. A systems biology-based approach 
that integrates data from multiple biological levels including 
genome, transcriptome and proteome may be successful 
in elucidating these relationships, but further clinical and 
translational research is needed to validate these genetic 
associations (58).

Another barrier to bioinformatic research is that 
tools needed to characterize more precise phenotypic 
interpretation are either invasive or not accessible to most 

centers, leading to selection bias and insufficient sample 
size (59). There is also virtually non-existent training of 
physicians in these tools in standard medical education and 
competency in these fields requires a significant amount 
of time and resources. While bioinformaticians and data 
scientists are available in some places, access is extremely 
limited in many centers. Some of these challenges can be 
circumvented by combining data from multiple sources 
but significant heterogeneity in bioinformatic data sets 
may lead to loss of statistical power. While the error rate 
of current high-throughput sequencing techniques is 
very low, when extrapolated to the entire human genome, 
these errors can pose significant hurdles and contribute 
to high false discovery rates. This makes the accurate 
identification of novel variants difficult (60). These factors 
all contribute to a lack of consistent reproducibility 
across studies when evaluating changes at the molecular 
level or in the context of biological pathways. Efforts 
have been made using more strict criteria (such as false 
discovery rates or corrected P values <0.05 or correcting 
for multiple comparisons using Bonferroni, Šidák, or 
similar methods), however these are also not applied 
in a consistent manner and therefore do not solve the 
reproducibility problem across studies. Thus, there is a 
need for a standardization of design and accepted criteria 
(accepted databases or tools for molecular identification 
and pathway analysis, significance cutoffs and statistical 
corrections, among others) and large scale multicenter 
genomic trials to validate these findings.

Lastly, as with any emerging field of research involving 
human subjects, bioinformatic research and use of AI 
and ML algorithms must be done in an ethical, fair, and 
unbiased manner (61). Care must be taken to avoid data 
leaks of sensitive patient information thereby preserving 
privacy and confidentiality (62). Medico-legal risks and 
potential problems related to insurability if adverse 
long-term outcomes are predicted early also need to be 
addressed (61,63). Minority populations are also consistently 
underrepresented in research and in databases (genomics 
included) (64) which is not only a problem in current 
clinical care but will also be of utmost importance as these 
models start to influence research design and clinical 
decision making. This also highlights a significant need 
for transparency of models and databases to ensure this 
information remains available as applicability to different 
populations is considered. Future research must balance the 
ethical aspects of beneficence from these new discoveries 
with the increased uncertainty and anxiety it might bring for 
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parents and caregivers.

Conclusions

We live in the age of data deluge, where emerging bioinformatic 
tools have made it possible to obtain massive amounts of genetic 
information in a timely and cost-effective manner. Modern-
day computational analysis including ML algorithms and AI 
has given us the ability to draw meaningful inferences from this 
data, to bring the promise of precision medicine to fruition.

Going forward, our success is going to be defined 
by making this knowledge accessible, explainable, and 
interpretable for frontline clinicians. Future application of 
these technologies will hopefully allow us to characterize 
BPD endotypes, develop novel diagnostics and targeted 
therapeutics, and enable us to understand the biology of this 
menacing disease in all its complexity.
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