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a b s t r a c t

Mouse nucleoplasmin M.NPM2 was recombinantly expressed and the protein consisting of the complete
sequence was purified and characterized. Similar to its Xenopus laevis X.NPM2 counterpart, the protein
forms stable pentameric complexes and exhibits an almost undistinguishable hydrodynamic ionic
strength-dependent unfolding behavior. The interaction of N.PM2 with histones and mouse P1/P2 pro-
tamines revealed that these chromosomal proteins bind preferentially to the distal part of the nucleo-
plasmin pentamer. Moreover, the present work highlights the critical role played by histones H2B and H4
in the association of the histone H2A-H2B dimers and histone octamer with nucleoplasmin.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The term “chaperone” to describe a protein function was first
coined in 1978 by Ron Laskey. It was meant to explain the role of
nucleoplasmin, a highly abundant protein in the egg, initially isolated
from Xenopus, which is found associated with histones [1]. Yet, de-
spite the almost 40 years since its initial discovery, the molecular
details of the nucleoplasmin-histone complex are elusive and remain
ill-defined. It was subsequently shown that the nucleoplasmin has
additional functions that transcend those of its role as histone storage
within its initial description, and evidence has been provided that
shows it also plays a critical role in the remodelling of the paternal
chromatin immediately after fertilization [2]. This means that it op-
erates both as an assembly and disassembly factor during early em-
bryogenesis [3]. Indeed, the ability of Xenopus nucleoplasmin (hen-
ceforth referred to as X.NPM2) to bind to the nuclear sperm arginine-
rich protamines from different organisms other than Xenopus has
been well documented [4–6].

The nucleoplasmin family of proteins, can be classified into three
main groups: NPM1, NPM2 and NPM3. NPM1 also known with the
name of nucleophosmin is mainly localized in the nucleolus and it is
present in a wide variety of tissues. It is one of the most extensively
studied members of this family due mainly to its dis-regulation in
different types of cancers. Despite its important involvement in ribo-
some biogenesis, NPM1 has also been involved in histone chaperone
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activity. NPM3 has also been involved in ribosome biogenesis in
conjunction with NPM1 and it has been implicated in the remodelling
of paternal chromatin organization after fertilization in mammals.
NPM2 is present in the nucleus of eggs and oocytes and during the
early stages of development and it participates both in histone cha-
peroning and in the removal of paternal histones after fertilization.
From an evolutionary point of view, NPM1 and NPM3 are more closely
related and appear to have differentiated later than NPM2. Structu-
rally, protein members of the three groups have a very similar primary
and secondary structure which is characterized by the presence of
several acidic amino acid clusters, a nuclear localization sequence
signal (NLS) and an N-terminal core domain consisting of several beta
sheets which are responsible for the highly stable pentameric orga-
nization of these proteins (see [7,8] for extensive reviews).

From a structural point of view, the nucleoplasmin NPM2
monomer contains several highly characteristic acidic amino acid
clusters (A1, A2 and A3) (Fig. 1A) that were early hypothesized to
be responsible for the interactions of this protein with histones.
The protein also contains a nuclear localization signal (NLS). In
solution, the protein forms a highly stable pentamer [9] with a
characteristic beta-strand barrel organization [10]. The crystal-
lization of the nucleoplasmin pentamer led the authors to hy-
pothesize an interaction between the histone octamer and NPM2
through the lateral side of the pentamer [10], not necessarily de-
pendent on the acidic tracts, in contrast to its chromatin re-
modelling activity. Protamine removal from sperm nuclei has been
shown to be highly dependent on the A1 tract [11].

In solution, the C-terminal non-structured domains of the NPM2
pentamer (C-terminal tails) were shown to be able to adopt an
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Characterization of the protein interacting partners. (A) Primary structure alignment of mouse NPM2 and NPM3 (M.NPM2/MNPM3) in comparison to Xenopus NPM2
(X.NPM2) and cartoon representation highlighting the position of the three acidic tracts (A1, A2 and A3) and the nuclear localization signal (NLS). The arrow indicates the
beta-stranded region. (B) SDS-PAGE analysis of M.NPM2 before (B-) and after boiling (Bþ) the sample, in comparison to a protein (PM) and a chicken histone marker (CM).
M: monomer; P: pentamer. (C) Isolation (1) and purification (2) of the mouse testes sperm nuclear basic proteins (SNBPs) and histone octamers (3). (D) Amino acid sequence
of mouse protamines P1 and P2, Reference Sequences: P02319 and NP_032959, respectively.
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extended organization [5], and the overall interaction of NPM2 with
the histones and protamines did not seem to be significantly de-
pendent on their presence [5,12]. A few recent papers, using high-
resolution electron microscopy and three-dimensional image re-
construction, support the notion that the histone H2A-H2B dimer
and the entire histone octamer interact with the distal face of the
XNPM2 pentamer at a site were the C-terminal tails, which contain
the A2 and A3 acidic tracts, protrude from the molecule [13,14]. In the
native physiological settings of the oocyte, the egg, and the embryo,
the interactions between the histones in this region appear to be
modulated by posttranslational modifications (PTMs), such as phos-
phorylation and glutamylation of the disordered tails [15,16]. The
differential occurrence of these marks at different stages of devel-
opment can fine-tune the histone sequestration and deposition [16].

In a further attempt to better understand the interaction be-
tween nucleoplasmin, histones and protamines, we have, for the
first time, purified the full mouse NPM2 and characterized its in-
teractions with the histone octamer and mouse protamines using
crosslinking mass spectrometry [17].
2. Materials and methods

2.1. Gel electrophoresis

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was
carried out according to [18]. Acetic acid-urea (AU)–PAGE were
carried out as described elsewhere [19]. Native 12% PAGE was
prepared on 40 mM Tris–HCl (pH 7.5), 1 mM EDTA, 20 mM sodium
acetate buffer and run in the same buffer.

2.2. Cloning of mouse NPM2

Ovaries from Mus musculus, obtained from the Animal Care
Services (University Of Victoria), were flash frozen in liquid ni-
trogen and stored at �80 °C until use. RNA extraction was per-
formed using the RNeasys Mini Kit (Qiagen, Valencia, CA). cDNA
synthesis was conducted using SuperScripts III RT cDNA Synthesis
Kit (Life Technologies, Burlington ON). The full length mouse
NPM2 gene was PCR amplified using the following primers:

(5′-GCGCCATATGAGTCGCCACAGCACCA-3′) (forward primer)
and (5′GCGCGGATCCTCATTCTTGGTCACTGGCTTC-3′) (reverse pri-
mer). The DNA fragment obtained was inserted between the Sap1
and Nde1 sites of a pTXB1 vector, an IMPACTs Kit expression
vector containing a self-cleaving intein tag and chitin binding
domain (NEB, Ipswich, MA).

2.3. Expression and purification of mouse NPM2

Mouse NPM2 expression was carried out in BL21 (DE3) com-
petent cells (NEB, Ipswich, MA).

After induction with 1 mM IPTG, cells were grown for 3 h at
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37 °C. The culture was then centrifuged at 8000 x g for 10 min at
4 °C, and the pellets were re-suspended in one-tenth the volume
of 20 mM Tris–HCl (pH 8.5), 500 mM NaCl, 1 mM EDTA containing
1:100 protease inhibitor cocktail (Roche, Indianapolis, IN). The
homogenate was lysed with a French Press (SIM Aminco, Roche-
ster, NY) and centrifuged at 8000� g for 10 min. The supernatant
was then passed through a 0.45 μm filter, supplemented with 1:50
protease inhibitor cocktail, and loaded onto the IMPACTs Intein
chitin resin column (NEB, Ipswich, MA) at 4 °C with a flow rate of
0.5 mL/min, and eluted under the conditions described by the
supplier. Fractions containing mouse NPM2 were pooled and
dialyzed for 4 h against 50 mM Tris–HCl (pH 8), 100 mM NaCl
buffer at 4 °C. The dialysate was concentrated and FPLC fractio-
nated using the ATKAs FPLC System (Amersham Pharmacia Bio-
tech, Piscataway, NJ), using a HiLoad 16/60 Superdexs 200 Size
Exclusion Column. Full length Xenopus laevis NPM2 was purified as
described previously [12].

2.4. Isolation of mouse protamines and chicken erythrocyte core
histones

Mouse testes were homogenized in buffer [0.15 M NaCl, 10 mM
Tris–HCl (pH 7.5), 0.5% Triton X-100 containing 1:100 protease
inhibitor cocktail], and centrifuged at 2,000� g for 10 min at 4 °C.
The pellets were re-suspended in [4 M guanidinium hydro-
chloride, 50 mM Tris–HCl (pH 7.5), 1.25 mM EDTA] and homo-
genized with 30 strokes of a dounce homogenizer on ice and
brought to 52 mM β-mercaptoethanol, then incubated for 90 min
at room temperature. 10 μl vinyl pyridine was added and the
specimen was incubated for an additional 30 min at room tem-
perature, vortexing every 5 min in the dark. 7 volumes of dH2O
was added and the resulting solution was centrifuged at 8000� g
for 10 min at 4 °C. Pellets were homogenized in 0.5 N HCl in a
dounce on and centrifuged at 8000� g for 10 min at 4 °C. The HCl
extract (supernatant) was precipitated six volumes of acetone
overnight at �20 °C. The next day, the sample was centrifuged at
8000� g for 10 min at 4 °C and the pellets were re-suspended in
half a volume of acetone and centrifuged one more time. The
protein pellets thus obtained were dried under vacuum, and the
protamine powder was stored at �80 °C. The protamines (P1 and
P2) were further purified by reverse-phase high-performance li-
quid chromatography (RP-HPLC) on a Vydac Protein and Peptide
C18 column utilizing 0.1% TFA as the mobile phase and an in-
creasing gradient of ACN from 0% to 60%.

Chicken erythrocyte core histones were prepared as described
elsewhere [20].

2.5. NPM2-Chromosomal Protein Interactions

The interactions between mouse NPM2 and core histone oc-
tamers or protamines were carried out in native PAGE. Titrations
were performed in 240 mM NaCl, 8.8 mM Tris–HCl (pH 7.5),
1.8 mM MgCl2 buffer, and incubated for 30 min at room tem-
perature. The samples were then brought to 5% sucrose and loaded
on the gel.

2.6. Analytical ultracentrifuge analysis (AUC)

Sedimentation velocity AUC analyses were performed in a
Beckman XL-I analytical ultracentrifuge (Beckman-Coulter Instru-
ments, Brea, CA) using an An-55 Al aluminum rotor and cells with
double sector aluminum-filled Epon centerpieces, then analysed as
described elsewhere [21].
2.7. Cross linking mass spectrometry (CXMS)

Protamine- and histone-NPM2 complexes, prepared as de-
scribed in Section 2.5, were extensively dialyzed against 100 mM
NaCl, 10 mM PIPES (pH 7.3), and 0.1 mM EDTA buffer for 4 h at
4 °C. A minimum concentration of 30 μg of protein was used for
each CXMS experiment. Two samples, NPM2þhistone octamers
(NPM2-histone run) and NPM2þprotamines (NPM2-protamine
run) were subjected to CXMS in two independent runs. The pH of
each mixture was adjusted to 8.0-8.5 by the addition of 0.2 M
Na2HPO4, and proteins were crosslinked with 0.05 mM cyanur-
obiotindipriopyonylsuccinimide (CBDPS) (Creative Molecules Inc.)
for 30 min at 25 °C [17]. Reactions were quenched with ammo-
nium bicarbonate at a final concentration of 30 mM, and cross-
linked proteins were then digested with sequencing-grade trypsin
(Promega, Madison, WI) overnight at 37 °C at a 10:1 substrate:
enzyme ratio. Resulting peptide mixtures were affinity-purified
using monomeric avidin-agarose beads (Thermo Scientific, Rock-
ford, IL) and analysed using nano-LC-MALDI-MS/MS via the Eksi-
gents 1D nano-LC system (AB/Sciex, Dublin, CA), Dionexs Probot
spotter (Thermo Scientific, Rockford, IL) and the 4800 MALDI-TOF/
TOF mass spectrometer (AB/Sciex, Foster City, CA). Data was ana-
lyzed with the DXMSMS Match program [22] of ICC-CLASS [23].
3. Results

3.1. Purification and isolation of full sequence M.NPM2 and chro-
mosomal proteins

Purification of recombinant X.NPM2 is often cumbersome,
mainly due to the appearance of truncated forms along the se-
quence, which are difficult to separate from one another. However,
with M.NPM2, we were able to purify the entire protein to higher
than 80% purity (Fig. 1B) using a relatively simple two-step pro-
tocol involving the use of an intein-conjugated version of the
protein, followed by intein cleavage and size-exclusion chroma-
tography. The molecular mass of the protein (23,175 Da) obtained
by electron spray ionization mass spectrometry (ESI-MS) matched
the molecular mass determined from its amino acid sequence
(Fig. 1A). Earlier purification and characterization of a mammalian
human NPM2 used a truncated version (M1-D152), which lacked
the last 62 C-terminal amino acids containing the acidic tract E3
and the NLS [24].

M.NPM2 was used to determine its interactions between pro-
tamines and histones. Mouse testes sperm nuclear basic proteins
(SNBPs ) were prepared using a previously described protocol that
involves the reduction and alkylation of cysteine residues [25]. The
SNBPs obtained allowed for the easy HPLC fractionation of prota-
mines P1/P2 from testes histones (Fig. 1C, 1–2). Protamines have an
intrinsically disordered organization [26] that should not be af-
fected by the denaturing conditions of the RP-HPLC purification. A
stoichiometric mixture containing equal amounts of P1 and P2 was
used in the M.NPM2-protamine binding experiments described in
the following section. Histone octamers were obtained from
chicken erythrocytes under non-denaturing conditions (Figs. 1C, 3)
[20]. Avian histones are compositionally identical to their mam-
malian histone counterparts. Furthermore, the levels of PTMs in
chicken erythrocyte histones are relatively low compared to other
tissues or cell types [27].

3.2. Interaction between M.NPM2, histone octamers and protamines

The interaction between histone octamers and Xenopus X.
NPM2 has been quite extensively studied [10,12,14,16]. Only one
similar study is available for a C-terminally truncated version of its



Fig. 2. Native PAGE of a titration of histone octamers (A) and mouse protamines P1/P2 (B) with increasing amounts of M.NPM2. ). In this type of analysis, NPM2: histone/
protamine complexes display a complex ‘shift’ and are unable to enter the gel. (C) Amino acid sequence of mouse NPM2 and core histones H2A, H2B and H4, with interaction
sites determined through CXMS data (Supp. Table 1a) highlighted in red. Three peptide sequences in NPM2 represent strong cross-linking candidates with sequences in H2A,
H2B and H4 (highlighted in red). Gallus gallus H2A NCBI Reference Sequence: AAC60008.1, G. gallus H2B NCBI Reference Sequence: AAC60000.1, G. gallus H4 NCBI Reference
Sequence: NP_001032932.1. (D) Amino acid sequence of mouse NPM2, P1 and P2, with possible interaction sites determined through CXMS data (Supp. Table 1a) highlighted
in red. Three peptide sequences within M.NPM2 represent possible cross-linking candidates. M. musculus NPM2 NCBI Reference Sequence: NP_851990.2; M. musculus P1
NCBI Reference Sequence: NP_038665.1; M. musculus P2 NCBI Reference Sequence: P07978.1.
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Fig. 3. (A) Sedimentation velocity analysis of X.NPM2 and M.NPM2 at different sodium chloride concentrations. (A) Plots of the relative sample concentration vs. the
sedimentation coefficient at three different NaCl concentrations (120, 240, and 480 mM). Data was obtained using the histogram envelope analysis from the UltraScan
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corrected to standard conditions (water and 20 °C). S¼Svedberg units.
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mouse counterpart [24]. As shown in Fig. 2A, M.NPM2 saturation
takes place upon the binding of a whole histone octamer, as had
been previously reported for X.NPM2 [12].

The interaction between Xenopus nucleoplasmin and prota-
mines has been also studied, albeit to a lesser extent [2,5,6,11]. In
contrast to core histones, saturation takes place at a ratio of
3 mouse P1þP2:M.NPM2, which is also very similar to what was
observed in the interaction between X.NMP2 and fish protamines
[5].

Cross linking mass spectrometry (CXMS) analysis (Fig. 3)



Fig. 4. Schematic representation and 3D structure of mouse NPM2 with high-
lighted chromosomal protein interaction sites as determined by CXMS. The in-
tensity of the interactions is depicted in red (see Supp. Table 1). (A) Schematic
representation of the secondary structure organization of the NPM2 monomer.
Acidic tracts are highlighted in black boxes. Note: Acidic tract A1 denotes the region
where the A1 tract is seen in other species (but not in mouse) (see Fig.1). Beta
barrels β1-β8 are also shown by wide arrows and intra-sheet hydrogen bonds are
represented by dotted black lines. (B) Tertiary structure of the M.NPM2 monomer
created using PyMOL. (C) Tertiary structure organization of the M.NPM2 pentamer
created using PyMOL.
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revealed three sites of interaction with histones: The two strongest
ones were located in the C-terminal unstructured regions, and the
weakest one in the lateral face of the nucleoplasmin pentamer (see
Fig. 2C and supplementary Table 1). One of the C-terminal sites
overlaps with the acidic tract A3 (see Fig. 1A and Fig. 4). These sites
interact with the N-terminal tails of H2A, H2B and H4. In this later
case, an additional site of interaction was found in the region
corresponding to the loop L2 of the histone fold domain, and
which represents the interaction site with the higher score for this
histone. No interactions could be detected for histone H3 (Fig. 2C
and supplementary Table 1). Interestingly, the few sites of inter-
action we were able to detect with this technique revealed that
protamines were found to interact at two similar locations, as
histones in the C-terminal domains of M.NPM2 (supplementary
Table I), with no other interacting sites along nucleoplasmin
(Fig. 2D).

3.3. X.NPM2 and M.N.PM2 exhibit a very similar hydrodynamic
conformation and salt-dependent unfolding

As seen in Fig. 3, both X.NPM2 and M.NPM2 exhibit a very si-
milar hydrodynamic behaviour, with a sedimentation coefficient
value of 6.5 S for X.NPM2 and 6.0 S for M.NPM2, which correspond
to a pentameric organization [5,12]. The slightly lower sedi-
mentation coefficient values of the mammalian counterpart are
indicative of a slightly more compact organization within the
pentameric structure, which may be the result of the different
molecular structural changes exhibited by the Xenopus and mouse
nucleoplasmin that result in a smaller crystallization unit cell in
the latter [24]. The pentaneric association of M.NPM2 can also be
clearly visualized in Fig. 1B. The β-barrel organization of the nu-
cleoplasmin pentamer [10] confers the macromolecular complex
with high stability, which in the absence of thermal denaturation,
allows it to retain its pentameric organization even in the presence
of ionic detergents such as SDS [5].

Both nucleoplasmin complexes exhibit an identical ionic
strength–dependent change of their sedimentation coefficients
with a significant drop as the salt concentration increases. This is
indicative of their long C-terminal intrinsically disordered do-
mains becoming unfolded as a result of the charge neutralization
that releases the interaction of these regions with the pentameric
core [5,15], a process that in the physiological setting is likely to be
enhanced by phosphorylation [15,16,28].
4. Discussion

4.1. The interaction of M.NPM2 with histones

The results shown in supplementary Table 1 (see also Fig.2)
show that the strongest interactions between M.NPM2 occur be-
tween histones H2B and H4 at sites in M.NPM2 located at the
C-terminal tail of nucleoplasmin at the distal face of the pentamer
(Fig. 4). Interestingly, the two strongest interacting sites detected
here for H2B (KSKRKPKRKE) and H4 (KRKT) fall at the interface
between the histone tail of H2B and the histone fold, and at a
region within the histone fold domain in the case of histone H4.
This observation provides support to the notion that stereospecific
interactions between histones and nucleoplasmin play an im-
portant role in the formation of the complexes, in addition to the
electrostatic ones [12]. Interestingly, these stronger interaction
sites overlap with the sites of interaction previously determined by
Ramos et al. using [14]. The weakest sites of interaction de-
termined here for the N-terminal tails of H2A and H4 could not be
detected in [14] probably due to the fact that these represent
weaker interaction sites which would be harder to detect by the
limited proteolysis approach used [14].

The lack of strong interacting sites for H2A and H3 suggest that
these histones play a lesser role in the formation of the
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nucleoplasmin complexes with either the H2A-H2B dimer or the
entire histone octamer complex. It is possible that H2B represents
the main anchoring site for the H2A-H2B dimer. As described in
the introduction, nucleoplasmin was initially found associated
with H2A-H2B dimers in the Xenopus egg [29], but its prevalence
in the early stages of development immediately after fertilization
[30] in the absence of histone synthesis have suggested a potential
involvement in its interaction with the whole histone octamer.

4.2. The interaction of M.NPM2 with mouse protamines

The interaction between the sea bass fish (Dicentrarchus labrax)
protamine and Xenopus nucleoplasmin, and the potential in-
volvement of the main X.NPM2 polyglutamic tract, has already
been carefully analysed. The amino acid sequence of D. labrax is:
PR4QASRPVR5TR2STAER5V2R4. This very simple sequence shares
the recurrent presence of arginine clusters with mouse P1/P2
protamines. The very similar M.NPM2 protamine saturation ratio
observed for mammalian (mouse) protamines and X.NMP2:fish
protamine suggest that the interaction may be primarily electro-
statically driven, and reaches an approximate saturation value of
50-60 electrostatic R/E-D, which represent about only half of the
E-D residues contributed by the main acidic tract A2 and A3 in the
pentamer (Fig. 1A). Interestingly, whilst these tracts appear to play
an essential role in protamine binding in fish, they were not found
to be indispensable for sperm chromatin decondensation [5].

The results presented here for the protamine-M.NPM2 inter-
action should be viewed as preliminary. As described in the ma-
terials and methods, the novel crosslinking method of isotopically
(deuterium) labeled amine-reactive cross-linkers using CBDPS [17]
used here relies on the use of trypsin after cross-linking the pro-
tein complexes, where the digested cross-linked peptides are
avidin-fractionated, HPLC separated, and the peaks subjected to
mass spectrometric analysis. Special care is taken in this procedure
in regards to cross-linking specificity. This is achieved by titration
with different concentrations of the cross-linker and sequential
dilution of the sample. Only the persistent cross-linked bands are
analysed. This allows for unequivocal determination of the cross-
linked sites and amino acid sequence of the domains involved.
However, the massive presence of arginine clusters complicates
this type of analysis, as it results in peptide overdigestion. Never-
theless, the few sites identified here target the interactions of P1/
P2 protamines to the C-terminal domains of M.NPM2 at the distal
face of the nucleoplasmin pentamer (Fig. 2D and Fig. 4).

4.3. Binding of M.NPM2 with somatic and sperm chromosomal
proteins preferentially occurs through the distal face of nucleoplasmin

Fig. 4 schematically summarizes the results described above. In
Fig. 4A–B, the strongest sites of interaction between histones and
protamines with M.NPM2 are indicated in red. Weaker sites are
indicated in faint red. As observed in the 3D crystallographic im-
age shown in Fig. 4D, most of the interactions observed here take
place in the distal face of the nucleoplasmin pentamer, with fewer
observed in the lateral face. In this model, the C-terminal regions
of NPM2 extend to participate in the binding through electrostatic
interactions with the basic amino acids of the chromosomal pro-
teins, similar to what is observed in the ionic competition with
monovalent salts (Fig. 3).

The roles or differential involvement of M.NPM2 and M.NPM3
in mammalian oogenesis and sperm decondensation after fertili-
zation still remain quite obscure [8]. In future studies, it will be of
interest to extend the present research to the analysis of the in-
teractions between histones and protamines with M.NPM3, which
lacks acidic tract A3. In this regard, molecular swapping experi-
ments between the two proteins, where A1 is incorporated into M.
NPM2 or A3 deleted from M.NPM2, may turn out to be very
informative.
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