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Abstract

3D protein structures can be analyzed using a distance matrix calculated as the pairwise dis-

tance between all Cα atoms in the protein model. Although researchers have efficiently

used distance matrices to classify proteins and find homologous proteins, much less work

has been done on quantitative analysis of distance matrix features. Therefore, the distance

matrix was analyzed as gray scale image using KAZE feature extractor algorithm with Bag

of Visual Words model. In this study, each protein was represented as a histogram of visual

codewords. The analysis showed that a very small number of codewords (~1%) have a high

relative frequency (> 0.25) and that the majority of codewords have a relative frequency

around 0.05. We have also shown that there is a relationship between the frequency of

codewords and the position of the features in a distance matrix. The codewords that are

more frequent are located closer to the main diagonal. Less frequent codewords, on the

other hand, are located in the corners of the distance matrix, far from the main diagonal.

Moreover, the analysis showed a correlation between the number of unique codewords and

the 3D repeats in the protein structure. The solenoid and tandem repeats proteins have a

significantly lower number of unique codewords than the globular proteins. Finally, the code-

word histograms and Support Vector Machine (SVM) classifier were used to classify sole-

noid and globular proteins. The result showed that the SVM classifier fed with codeword

histograms correctly classified 352 out of 354 proteins.

Introduction

The analysis of protein structures using the distance matrix of Cα atoms has a long history in

structural biology. To date, a protein distance matrix has been used for structural alignment,

protein classification, and finding homologous proteins [1, 2]. Recently, tremendous progress

has been made in predicting 3D proteins based on distance matrix and artificial intelligence

[3–6]. Various studies have shown that the representation of protein structure in 2D space has

the following main advantages: it represents local, short-, medium-, and long-range contacts

between Cα-atoms simultaneously and is rotation and translation invariant [7]. The protein

distance matrix contains the distances between residues, which can be represented as a gray-

scale image, where the distances between pairs of Cα-atoms are represented by intensity.

Therefore, feature extraction can be applied to obtain points of interest.
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In previous studies on distance matrix, the extracted features have been used to classify pro-

teins and explore the universe of protein folding space. For example, the DALI Z-score [1, 8],

the Local Feature Profile [9], and the Effective Moment Feature Vector [10], which were gener-

ated as three-dimensional maps by dimensionality reduction, have shown that all α-, all β-, α/

β-, and α+β-domains are grouped. Moreover, multi-view rendering of 3D protein structures

was used to obtain a 2D image followed by feature extraction [11]. In this method, the code-

book is generated by clustering visual words and a histogram is used to explore similarities

between protein structures. Taken together, these studies have shown that feature vectors or

histograms of distance matrix are valuable to explore and investigate the space of protein fold-

ing in reduced dimensions. The feature vectors or histograms can be obtained in many differ-

ent ways, but the common approach in the above literature is the method from computer

science—Bag-of-Visual-Words. Sivic and Zisserman first introduced Bag of Features [12] for

matching objects in videos, where they investigated whether it is possible to retrieve a video

scene that contains a particular object. In addition, Yu et al [13] developed an image retrieval

system based on the Bag of Features method.

Several studies also introduced image recognition techniques to successfully classify protein

structures using Speeded Up Robust Features (SURF) and Scale-invariant Feature Transform

(SIFT) descriptors. The agreement between proteins was measured using the similarity of all

feature descriptors rather than codeword histograms [14, 15]. This approach does not intro-

duce a fixed codebook size, but determines the smallest distance between all feature pairs from

two images. A high number of matching points indicates that two images have similar patches

and we can conclude that they were generated from similar 3D protein structures.

Much of the previous research on distance matrix features has focused on optimal vocabulary

size, various feature extraction algorithms, protein folding universe representation, and classifica-

tion performance. Basic patterns in distance matrix showing secondary structure elements (α-

helix, parallel and anti-parallel β-sheet) are well known, but less work has been done on quantita-

tive analysis of distance matrix features. For example, Choi et al pointed out that the "null" pattern

(15th mediodis) is the most common [9]. In the mentioned study, one hundred medoids (subma-

trix of size 10x10) were extracted from the training set (sampled proteins). Thus, 100 medoids

represent a local feature of the protein distance matrix. However, no analysis was performed on

the frequency of all 100 mediodis, the most frequent position in the distance matrix (map to

image), or the correlation between the number of unique features and the solenoid proteins.

Thus, our main motivation was to extend the analysis of distance matrix features instead of

focusing only on the speed and accuracy of classification. Therefore, the focus of the present study

is on a quantitative analysis of the codewords of the protein distance matrix, and we tried to

answer the following questions: What is the relationship between the frequency of the codeword

and its position in the distance matrix, what is the distribution of the codewords, and what is the

correlation between tandem repeats proteins and the number of unique codewords. For our

study, we used bag-of-visual-words, a method commonly used in image classification, where a his-

togram of codewords represents each image. The aim of this study is to (i) find the optimal vocab-

ulary size of KAZE algorithm for fast protein classification of SCOPe protein domains, (ii) explore

the most frequent position of visual codewords in the distance matrix, (iii) investigate the relation-

ship between unique visual codewords, domain size, solenoid and tandem repeats in proteins.

Methods

SCOPe domain database and (non) solenoid proteins

The set was taken from the SCOPe 2.07 database [16–18] and included four main classes: all α,

all β, α/β and α+β. We excluded domains that are not a true family and are labelled as X.X.X.0;
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we also excluded all individual members at the family level. Thus, each SCOPe family in the

analysed database contains at least two members. The dataset contains 7308 distance matrix

images, and we extracted 2,929,445 KAZE features. The images of the distance matrix con-

tained the distances between all Cα-atoms. Therefore, each distance matrix was represented as

a grayscale image in the range [0, 1], where 0 (black) represents long-range contacts and 1

(white) represents short-range contacts.

Solenoid and non-solenoid protein data set—Benchmark

For the classification of globular and solenoid proteins, we used a benchmark database consist-

ing of 105 solenoid and 247 globular proteins downloaded from the following website: http://

old.protein.bio.unipd.it/raphael/precompiled.html [19, 20]. The dataset contains 105 solenoid

proteins for which the maximum sequence identity is 35% (CATH ’S’ -level, sequence fami-

lies). In addition to the solenoid proteins, the dataset contains 247 globular proteins with dif-

ferent topological or folding families and no detectable sequence similarity (CATH ’T’-level).

Thus, the dataset contains non-homologous proteins and has been used for other methods,

e.g.: RAPHEL [20], ReUPred [21], ConSole [22], which are briefly introduced below.

RAPHAEL uses geometric data instead of amino acid sequence profiles. The coordinates of

the Cα-atoms are used to build a coordinate profile. To obtain the coordinate profile, two fil-

ters are used, where the first window size for averaging is 6 and the second window size is 3.

Then, the period is calculated from the coordinate profile, which is defined as the distance

between successive local maxima. In the last step, the Support Vector Machines fed with the

feature profile is trained to classify proteins.

ReUPred (Repetitive Units Predictor) is a tool for the prediction and classification of

repeating units in proteins. The ReUPred algorithm takes as input the Structure Repeat Unit

Library (SRUL), derived from RepeatsDB, and the query protein. ReUPred uses an iterative

divide-and-evaluate approach to identify structural units by comparing the protein structure

to a manually curated library of repeat units. The alignments found by the repeat-protein

annotation that satisfy the predefined similarity criteria are considered valid.

ConSole uses the information contained in the protein contact maps. The 3D protein struc-

ture is represented as a contact matrix in which there is a contact between two amino acids if

the distance between any pair of heavy atoms is less than 4.5Å. The typical feature of the sole-

noid contact map is the second diagonal line indicating regular short distance contacts

between amino acids. The template matching or normalized cross-correlation performed on

the contact map is used as input for classification by a Support Vector Machines.

Bag of visual words

The earliest reference for Bag-of-Words was in Zellig Harris’ Distributional Structure [23].

Since then, the bag-of-words model has been used in various document classification methods.

The frequency of each word (number of occurrences) is used as a feature for training a classi-

fier. The Bag-of-Features model (Bag-of-Visual-Words) is influenced by the Bag-of-Words

model and is used to classify images by treating image features as words. This Bag-of-Visual-

Words algorithm includes the following four main steps: (i) feature extraction, (ii) visual dic-

tionary, (iii) codebook generation, and (iv) histogram generation. All four steps are shown in

Fig 1 and in the following text. Bag-of-Visual-Words was generated using the Matlab function

BagOfFeatures. The image database and Matlab code [24] are in Supplement.

Feature extraction. Features are parts or patterns of an image that can be used to classify

the image. Instead of storing the entire image, it is efficient to store the unique parts of the

image. Feature extraction is the process of extracting unique elements of the image. The
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feature extraction algorithm detects key points and creates descriptors based on the key points.

Usually, a descriptor is an array of 64 or 128 elements. We can consider these descriptors as

small images extracted from the image. Feature detection algorithms such as Speeded Up

Robust Features (SURF), Scale-invariant Feature Transform (SIFT) and KAZE create multiple

instances of the same image by blurring and transforming (rotating, scaling, skewing) it. Then

the algorithm identifies the keypoints by searching for similar points in all the generated

images. Once the algorithm finds the keypoints, the neighbouring pixels around the keypoints

Fig 1. Graphical representation of Bag of Visual Words. The presented algorithm consists of four steps: feature

extraction, creation of a visual dictionary, creation of a codebook and finally hardcoding or histogram creation.

https://doi.org/10.1371/journal.pone.0263566.g001
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are called descriptors. SURF and SIFT use Gaussian blur to create blurred versions of the

images. However, the Gaussian blur smooths both image details, such as object boundaries,

and noise to the same extent. Therefore, Gaussian blur degrades the quality of keypoints by

reducing localization accuracy and discriminability. In contrast, the KAZE algorithm [25]

locally adapts the blur to the image in a nonlinear scale space by using nonlinear diffusion fil-

tering. The KAZE algorithm reduces noise while preserving object boundaries, resulting in

better localization accuracy and discriminability. Therefore, KAZE features are more expen-

sive to compute than SURF and SIFT, but outperform SIFT and SURF in terms of feature

matching efficiency [26]. Therefore, we used the KAZE algorithm to obtain features from

protein distance matrix images.

Visual dictionary. In this step, we merged the raw features from all images using the

KAZE algorithm. Each extracted feature consisted of a 64-dimensional vector representing the

neighbouring pixel values around a given key point. We extracted features fi from all images in

the dataset and stored the extracted features in a collection F = {f1, . . ., fM}, where M is the total

number of features in the entire set. This feature collection F is called a visual dictionary.

Codebook generation. The codebook is a compact version of the visual dictionary.

Therefore, the codebook stores only a subset of the features F instead of all the extracted

features. We grouped similar features of the visual dictionary into clusters using k-means

clustering and extracted the centroids of each cluster. Clustering is an unsupervised machine

learning approach that groups similar data points. Data points in the same group should have

similar features, while data points in different groups should have very different features. The

goal of k-means is to cluster similar data points and help users discover the underlying pat-

terns. K-means initialises the centroid locations and then performs iterative computations to

optimise the centroid locations for each data point. We grouped the similar features of the

visual dictionary into clusters using k-means clustering and extracted the centroids of each

cluster. Then we stored the centroids in a new collection, which is called the codebook. Each

data point of the codebook is called a codeword.

Generating a histogram. Using the codebook, we represented all the images as histo-

grams, i.e., one histogram per image. Each bin of the histogram represents each codeword of

the codebook. So, after hard coding, the dimensions of histograms are same for all images.

First, we extracted the features from the image and found the closest codeword for each feature

in the image (hard coding) and thus created the histogram or feature vector. After creating the

histogram, the similarity of the images is calculated as the cosine distance between two histo-

grams—feature vectors. The histogram representation has the same dimension for the entire

dataset, regardless of the dimension and number of features of the images.

Support vector machine classification

The labelled (globular and solenoid proteins) distance matrix images were classified using the

trainImageCategoryClassifier function in Matlab [24]. The function trainImageCategoryClassi-
fier trains a multiclass classifier (Support Vector Machines) using a bag-of-features object.

Support Vector Machines (SVM) is a supervised machine learning model that can be used for

linear and nonlinear classification problems. SVM is based on the idea of finding a hyperplane

in a high-dimensional space that best separates features into different classes (S1 Fig). The fea-

tures closest to the hyperplane are called support vector points, while the margin width is the

distance between the separator and the closest points of each class. The SVM algorithm finds

the optimal hyperplane when margin width is maximum. In the present study, an SVM classi-

fier (linear kernel) was used to discriminate solenoid and globular proteins. The input data were

histograms of codewords, where each histogram corresponded to a protein distance matrix.
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Results and discussion

Vocabulary size of a distance matrix

When creating vocabulary, it is crucial that the size of the vocabulary is not too small or too

large. If the vocabulary is too small, it will not represent all the features or patches from the

image database, so images that are significantly different from each other may have similar

codeword histograms. On the other hand, if the vocabulary is too large, quantization artefacts

may occur, i.e., overfitting. To test how the classification accuracy depends on the size of the

vocabulary, we performed a nearest neighbour classification with different vocabulary sizes.

The cosine similarity measure was used to determine the similarity between two feature

vectors—codeword histograms. The minimum cosine distance between two codeword histo-

grams thus defined the nearest neighbour between the query domain and all other domains in

the database. The prediction was correct if the nearest neighbour belonged to the same class

(or fold or superfamily or family). Fig 2A shows the accuracy as a function of vocabulary size

for the class, fold, superfamily, and family levels.

It is obvious that the accuracy is highest for class prediction and lowest for family predic-

tion. The explanation is that the differences between classes are much larger than the differ-

ences at the family level of the same superfamily, which makes it harder to predict the correct

family level. For example, if the query protein is classified by SCOPe as a.1.1.1 and the closest

member was classified as a.1.2.1, the prediction is correct at the class and fold levels, but incor-

rect at the superfamily and family levels. Moreover, there are only four distinct classes at class

level (α alpha, all β, α+β, and α/β), but there are 534, 870, and 1602 distinct classes at fold,

superfamily, and family levels, respectively (Table 1). It follows that classification at the fold,

superfamily, and family levels is more challenging than at the class level, where there are only

four distinct classes.

Further, we can also see that accuracy increases as the vocabulary size increases until a pla-

teau is reached. This is observed at the fold, superfamily and family levels. The most significant

increase is observed at the family level, where accuracy increases from 0.72, 0.79 and 0.80 for

vocabulary sizes of 1000, 5000 and 10000 respectively. When the vocabulary size increases

from 5000 to 10000, the accuracy at the family level increases by only ~1%, and at the class,

fold, and superfamily levels, the increase in accuracy is even smaller. It is worth noting that cre-

ating and using a larger vocabulary increases the computation time. The creation of bag-of-

visual-words with a vocabulary of 1000, 5000 and 10000 codewords required a CPU time (3.4

GHz processor) of about 20, 27 and 39 minutes, respectively. Therefore, for further analysis,

Fig 2. (A) Accuracy versus vocabulary size of the SCOPe 2.07 database. (B) The first and second principal components

of the codebook (7308 SCOPe domains by 5000 codewords).

https://doi.org/10.1371/journal.pone.0263566.g002
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we set the number of visual words in the codebook to 5000, which gives a good prediction and

is not too large to prevent overfitting. Moreover, the principal component analysis of all histo-

grams, i.e., the matrix of size 7308 (proteins) times 5000 (codewords), clearly shows four prin-

cipal classes (Fig 1B). The first principal component analysis shows low values for all β-

domains and high values for all α-domains, whereas α+β and α/β are scattered around the

zero value. It follows that the first principal axis discriminates all α- and all β-classes, but not

α/β and α+β. The second principal component discriminates between the α+β- and α/β-

classes. It is also observed that three groups (all β, all α and α/β) cluster on the positive or nega-

tive principal axis, while the α+β class is scattered closer to the origin. We have shown here

that the extraction of descriptors in an image of the distance matrix using the KAZE algorithm,

followed by the construction of the codebook of 5000 words, gives a good distribution of

domains in the low-dimensional space and a good prediction of nearest neighbours, and is

consistent with the studies of Hou et al, Choi et al, and Shi et al, who studied the folding space

and structural similarity in proteins [8–10].

Relative frequency and spatial distribution of codewords of a distance

matrix

The spatial relationship between codewords is lost in the creation of the codebook because the

information about the coordinates of the features is not contained in a bag of visual words. If

we know which cluster (codeword) a feature belongs to, we can extract the coordinates of the

codewords and relate the coordinates of the codeword with its relative frequency. Here, we

examined the relationship between the relative frequency of codewords and the coordinates in

the protein distance matrix.

Fig 3A shows the relative frequency of codewords ordered from highest to lowest relative

frequency. We see that codewords with the highest relative frequency are present in more than

Table 1. SCOPe 2.07 levels and the number of unique classes at each level used in this study.

Level Unique classes

Class 4

Fold 534

Super-family 870

Family 1602

https://doi.org/10.1371/journal.pone.0263566.t001

Fig 3. (A) Barplot of relative frequency of codewords, (B) distance between feature coordinates and diagonal of

distance matrix.

https://doi.org/10.1371/journal.pone.0263566.g003
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30% of SCOPe domains. Only 52 (~1%) codewords have relative frequency above 0.25, and

about 3000 codewords (from 2000 to 5000) are present in less than 5% of the protein distance

matrix images. The next question we want to answer is: where are the codewords located in

the 2D matrix? Due to the hard coding, each extracted feature belongs to a particular code-

word, i.e., a member of a particular cluster, and each feature also contains the x and y coordi-

nates—the centre of the feature. In this way, we can calculate the minimum distance between

the feature coordinates and the diagonal of the distance matrix and relate the distance to the

relative frequency of a codeword.

Note that the size of the distance matrix depends on the size of the protein, but the shape of

the information presented remains the same. The distance matrix always shows local, short,

intermediate, and long-range contacts between Cα-atoms. Since protein domains differ by

size, we normalized the coordinates to a value between 0 and 1. Note that the maximum dis-

tance between the diagonal and the farthest points is limited by the value
p

2/2�0.7. The zero

distance indicates that the feature is on the diagonal, while the ~0.7 distance indicates that the

feature is far from the diagonal and represents the farthest contact between Cα atoms.

Fig 3B shows the distance (codeword-diagonal) for all 5000 codewords sorted by relative

frequency (from highest to lowest). In Fig 3B, it can be seen that codewords with high relative

frequency (from 1 to 500) are closer to the diagonal than codewords with low relative fre-

quency (from 500 to 1000). Less frequent codewords (from 1000 to 5000) are even more scat-

tered and are in the interval from 0.05 to 0.65. To get a better visual impression, we plotted the

positions of all features on a normalized distance matrix. The panel plot shows the position of

codewords from 1 to 500 (Fig 4A), 501 to 1000 (Fig 4B), 1001 to 2000 (Fig 4C), and from 2001

to 5000 (Fig 4D). It can be clearly seen that the codewords with the highest relative frequency

are located on the diagonal and represent local protein structure interactions. The highest den-

sity is located in the core of the diagonal, while the lowest density is found at the ends of the

diagonal. Fig 4B shows features representing short-range contacts; these are non-diagonal

codewords. Nevertheless, there are still some feature points at the tails of the diagonal. The

tails of the diagonal contain information about local interactions; however, these codewords

are relatively less frequent than the codewords in the core of the diagonal (Fig 4A). The expla-

nation for this is that the codewords at the tails of the diagonal represent flexible terminus.

Obviously, more codewords are required for disordered regions than for the rigid core region

of the protein domain. In addition, Fig 4C and 4D show the mid- and long-range contacts. In

Fig 3D, there are no elements near the diagonal, and the highest density of codewords is in the

corners of the distance matrix, which represents the longest contacts between Cα-atom pairs

in the protein structure.

Unique words ratio

This section focuses on how protein domain size is related to the total number of codewords,

the number of unique codewords, and the relationship between unique codewords and the

repetition of the structural motif within the protein.

The correlation between the number of codewords in the protein and protein domain

length was R = 0.96, and the correlation between protein domain length and unique code-

words was R = 0.93 (Fig 5A and 5B). It was expected that protein length would correlate posi-

tively with the number of (unique) codewords, since a larger image contains a larger number

of features. However, when constructing a histogram, different features can be encoded in the

same codeword. One reason for this is clustering, where similar but not identical features

belong to the same cluster. The second reason is that a protein with repeating units in 3D

space also has repeating units in the contact map. Therefore, a large protein with a high
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number of repeating units may have a low number of unique codewords, but still have a high

total number of codewords.

Fig 6A shows the ratio of unique codewords to all codewords for all protein domains in the

SCOPe dataset. When all features belong to different codewords (cluster classes), the ratio of

unique words is 1, but when a large number of features belong to the same codeword, the

ratio of unique words is low. For example, if the distance matrix image contains 500 features

extracted by the KAZE algorithm, and these features belong to 400 unique codewords (taken

from the precomputed codebook), then to calculate the proportion of unique words you need

Fig 4. Distribution of codewords in the distance matrix sorted according to the relative frequency (from highest

to lowest). (A) Visual codewords from 1 to 500, (B) 501 to 1000, (C) 1001 to 2000, (D) and from 2001 to 5000.

https://doi.org/10.1371/journal.pone.0263566.g004

Fig 5. (A) Number of codewords versus domain size, (B) the number of unique codewords versus domain size.

https://doi.org/10.1371/journal.pone.0263566.g005
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to divide 400 by 500 and get 0.8. The value 0.8 means that 80% of the codewords are unique.

We can see that the ratio of unique codewords can be as high as 1.0 and on the other hand it is

lower than 0.2. Moreover, we can observe a negative correlation (R = -0.74) between the

domain size and the ratio of unique words. The value 0.2 means that only 20% of the features

are unique. The histogram (Fig 6B) of the ratio of unique words shows that most (~0.96%) pro-

tein domains have a ratio between 0.7 and 1.0, and only a few (~0.6%) domains have a ratio

below 0.4, indicating that the protein domain with a low ratio of unique codewords has many

repeat units in 3D space. We selected three domains with unique codeword ratio below 0.2

and three domains with unique codeword ratio above 0.92.

As can be seen in Fig 7, the protein domains with a low ratio of unique codewords are sole-

noid domains containing repetitive structural units (see Fig 7A–7C); in contrast, all three

selected domains with a high ratio of unique codewords represent globular proteins (Fig 7D–

7F). Solenoid proteins and proteins containing tandem repeats [27] have been and still are the

subject of extensive research, as they have been shown to play fundamental roles in many

Fig 6. (A) Ratio of unique codewords versus domain size, (B) distribution of the ratio of unique codewords.

https://doi.org/10.1371/journal.pone.0263566.g006

Fig 7. (A, B, and C) Domains with a low number of unique codewords (below 0.2), SCOPe domains from left to right:

d1o6va2, d2q4gw_, d4cj9a. (D, E, and F) Domains with a high percentage of a unique word (above 0.92) and a domain

size above 200 residues, SCOPe domains from left to right: d1w55a1, d2zxea1, d4kb1a_. All ribbons were plotted by

UCSF Chimera [33].

https://doi.org/10.1371/journal.pone.0263566.g007
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biological processes such as signal transduction and molecular recognition [28, 29]. Due to

their elongated structures and flexibility, Ankyrin, Leucine-rich, and HEAT -repeat proteins

are involved in protein-protein interactions [30]. Fibromodulin, for example, is a Leucine-rich

repeat protein of the extracellular matrix that binds to fibrillar collagens and affects fibril veloc-

ity [31]. In addition, solenoid proteins also play a crucial role in the interaction with nucleic

acids. Exportin-5, for example, is a transporter for microRNA [29]. Therefore, we linked the

RepeatsDB (https://repeatsdb.bio.unipd.it/) [32] and our SCOPe dataset. We searched for

which domains from our dataset were also included in the RepeatsDB database, which con-

tains annotated tandem repeat protein structures. S2 Fig show that the domains from the

RepeatsDB database have a lower ratio of unique words than the domains that are not part of

the RepeatsDB database and do not have tandem repeats. In addition, a less strong correlation

(abs. value) is observed between domain size and the ratio of unique words in the repeat pro-

tein structures (R = -0.63), compared to the domains that are not part of the RepeatsDB data-

base (R = -0.80), see S2 Fig. Overall, these results suggest that the ratio of unique words of

solenoid and tandem repeat proteins is shifted towards lower ratios. Moreover, a lower corre-

lation (absolute value) between domain size and unique codewords is observed for solenoid

and tandem repeat proteins.

Discrimination between solenoid and globular proteins

To further investigate the typical ratio of unique codewords for globular and solenoid proteins,

we used a solenoid and non-solenoid protein dataset that has been used in many studies and

provides a benchmark for distinguishing between globular and solenoid proteins. We used a

codebook based on SCOPe domains and calculated the ratio of unique codewords for a bench-

mark set.

The boxplots in Fig 8 show the ratio of unique codewords for globular and solenoid pro-

teins. We see that globular proteins have a much higher ratio of unique codewords compared

to solenoid proteins. This shows that they have a more diverse structure without repeated 3D

units. Using the data presented in Fig 8, we see that if the ratio of unique codewords is less

than ~0.6, it is likely a solenoid protein.

Fig 8. The ratio of unique codewords of globular and solenoid proteins for a benchmark dataset.

https://doi.org/10.1371/journal.pone.0263566.g008
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Furthermore, visual inspection of the histograms of the frequencies of globular and sole-

noid protein codewords shows clear differences (Fig 9A and 9B). We can see that the histo-

gram of globular protein (Fig 9A) contains many codewords with lower frequencies and there

is no significant difference between low and high frequencies. In contrast, the histogram of the

solenoid protein contains few codewords with very high frequencies and many codewords

with very low frequencies.

To further investigate the performance of bag-of-features classification, we performed an

independent classification of globular and solenoid proteins. First, we divided the data into a

training and a test dataset, and then created a new codebook (using only the training dataset)

in two different sizes: 500 and 1000 words. We randomly divided the dataset into two groups,

G1 and G2. The training dataset (test dataset) represented 50% (50%) of the whole dataset. We

performed 2-fold cross-validation, i.e., training on G1 and validation on G2, followed by train-

ing on G2 and validation on G1. We used the default settings for image classification with the

MATLAB function trainImageCategoryClassifier, which trains a Support Vector Machine

multi-class classifier with a bag-of-features object. The feature vector (codeword frequency

histogram, see Fig 9A and 9B for an example) of each protein domain is fed into the Support

Vector Machine Multiclass Classifier. The results of the solenoid and non-solenoid protein

dataset, which contains 105 solenoid and 247 globular proteins, are shown in Table 2. As can

be seen from Table 2, the overall accuracy is over 0.99, which is higher compared to other

state-of-the-art methods that achieve an accuracy of 0.96 or less. The Support Vector Machine

Multiclass Classifier, which uses a bag-of-features object input, correctly classified 350 out of

352 domains. The largest improvement is observed in the correctly classified solenoids with an

increase in accuracy of 12% and 22% compared to RAPHAEL and ReUPred, respectively.

Table 2 also shows that this method is very robust to the size of the vocabulary. When the

vocabulary was reduced from 1000 to 500 words, the accuracy decreased only slightly, from

99.4 to 99.1.

Quantitative measure of repeats in protein domain: Inter- and intra-

comparison

There are several quantitative measures for comparing protein structures, such as the squared

deviation of the coordinates between two superimposed structures, globularity can be esti-

mated by calculating the radius of gyration [34–36] or eccentricity [37], and the locality of con-

tacts between amino acids is measured by relative contact order [38]. In this work, the ratio of

Fig 9. (A) Histogram of codewords (feature vector) for globular (PDBid:1a79) and (B) solenoid protein

(PDBid:1jl5) from the benchmark dataset.

https://doi.org/10.1371/journal.pone.0263566.g009
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unique words was used as a quantitative measure of regular repeats in protein domains. The

ratio of unique words can be used for inter- and intra-comparison of protein domains. Sole-

noid proteins belong to different SCOPe classes. WD40 and the Kelch motif belong to the all-β
class, HEAT and Armadilo repeat belong to the all-α class, and Leucine rich repeat and

Ankyrin repeat belong to the α/β and α+β classes, respectively.

Table 3 shows the ratio of unique words for six common protein solenoid domains, where

we can see that Leucine rich repeat has the lowest ratio of unique words (0.16), which means

that it has the simplest and most regular repeats. In this context, simple repetition means that a

relatively small number of visual words are required to describe the repetition in the distance

matrix. The WD40 and Kelch motifs were expected to have a higher ratio of unique words

(0.46 and 0.53, respectively) because the shape is more spherical, resulting in long-range con-

tacts between amino acids that are far apart in the sequence. Consequently, each repeat con-

tains short- and long-range contacts and therefore more visual words are needed to describe a

single repeat. Interestingly, the Ankyrin repeat, which does not have a globular shape, has a rel-

atively high proportion of unique words (0.48) compared to Leucine rich motif. Apparently,

the repeat consisting of two alpha helices separated by loops, which are also a source of disor-

der, is more complex than the α/β-horseshoe fold.

In addition to inter-, intra-comparison is also possible to evaluate repetitions in a particular

superfamily of the SCOPe database. Fold b.69: 7-bladed beta-propeller contains 15 superfamilies,

sorted by date of inclusion in the PDB or publication. We sorted the superfamilies by the ratio of

unique words, see S1 Table. As expected, the sorted list of superfamilies is unrelated to the date of

entry into the PDB or publication. The comparison between the highest ratio (0.66) and the low-

est ratio (0.33) shows a significant difference between the superfamilies. Visual inspection of

Table 2. Accuracy of globular and solenoid protein classification using a benchmark dataset.

TP FP TN FN Solenoid Globular Accuracy

RAPHAELa 91 1 246 14 86.7 99.6 95.7

ReUPredb 81 4 243 24 77.1 98.4 92.1

ConSolec 100 95 96

This study
Vocabulary = 1000 104 1 246 1 99.0 99.6 99.4

Vocabulary = 500 103 2 246 1 98.1 99.6 99.1

The data of true positives (TP), false negatives (FP), true negatives (TN) and false negatives (FN) for RAPHEL and ReUPred were taken from their original papers.
aRAPHAEL [20].
bReUPred [21].
cConSole [22].

https://doi.org/10.1371/journal.pone.0263566.t002

Table 3. Unique word ratio for six common protein solenoid domains.

Solenoid domain SCOPe id SCOPe family Ratio

Leucine-rich repeat d1a4ya_ c.10.1.1 0.16

HEAT repeat d1b3ua_ a.118.1.2 0.26

Armadillo repeat d3bcta_ a.118.1.1 0.35

WD40 d1pgua1 b.69.4.1 0.46

Ankyrin repeat d1ixva1 d.211.1.1 0.48

Kelch motif d1gofa3 b.69.1.1 0.53

Domains are sorted by ratio of unique words from lowest to highest.

https://doi.org/10.1371/journal.pone.0263566.t003
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YVTN repeat (superfamily b.69.2) and Nitrous oxide reductase, N-terminal domain (superfamily

b.69.3) reveals that the Nitrous oxide reductase domain has a more complex structure as it also

contains alpha helices (see S3 Fig). In addition, the high proportion of unique words may also

indicate that some parts of the oligoxyloglucan-reducing end-specific cellobiohydrolase are disor-

dered, indicating a domain irregularity (S3 Fig). As we can see, the ratio of unique words contains

information about modularity (extended or globular architecture), complexity, and disorder, and

thus quantitatively measures the repeats in the protein domain.

Conclusion

In this work, we analysed the visual words (codebook) of protein distance matrices. We studied

the relationship between the size of the vocabulary and the classification accuracy. It was found

that a codebook with several thousand codewords is required for accurate classification. Also,

the relationship between the relative frequency of codewords and the coordinates in the distance

matrix was analysed. The result was that codewords with higher relative frequency are generally

closer to the main diagonal of the distance matrix. We also showed that solenoid domains have

a much lower proportion of unique codewords compared to globular proteins, and that the fea-

ture vector (codeword histogram) together with a support vector machine classifier can be used

very efficiently to discriminate between globular and solenoid proteins. We believe that further

work and development can be done to investigate whether the codeword histogram is useful for

classifying tandem repeats. In addition, a more advanced approach, such as pooling methods,

can be used to incorporate spatial data from protein distance matrix patches.

Supporting information

S1 Fig. Support Vector Machines separating hyperplane. The hyperplane is a function that

separates features into multiple classes. The function that separates features in 2D space is a

line, while in 3D space it is a plane. When more dimensions are introduced, this function is

called a hyperplane. The figure shows two classes of data in 2D space, two support vectors,

margin width, and a hyperplane, which in this case is a line.

(TIF)

S2 Fig. (A) Ratio of unique words against the number of features. Domains that are members

of RepeatsDB and our dataset data set are marked with red dots. (B) The ratios of unique code-

words from SCOPe domains (not members of RepeatsDB) and SCOPe domains that are mem-

bers of RepeatsDB.

(TIF)

S3 Fig. Three 7-bladed beta-propeller domains (SCOPe fold b.69). The domains are sorted

by the ratio of unique words from lowest (left) to highest (right). (A) YVTN repeat (SCOPe:

d1l0qa2) has unique word ratio uwr = 0.33, (B) domain of oligoxyloglucan reducing end-spe-

cific cellobiohydrolase (SCOPe: d2ebsa1) has unique word ratio uwr = 0.62 and (C) domain of

oligoxyloglucan reducing end-specific cellobiohydrolase (SCOPe: d2iwka1) has unique word

ratio uwr = 0.66.

(TIF)

S1 Table. Unique word ratio for the SCOPe fold class 7-bladed beta-propeller (b.69),

which contains 15 superfamilies. The SCOPe entries were taken from SCOPe 2.07 and are

less than 40% identical. The domains are sorted by the ratio of unique words from lowest to

highest.
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S1 Dataset. Distance matrix images. The supplemental data includes distance matrix images

(grayscale, PNG format) and a Matlab script.

(DOC)
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