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Abstract

The epidemiology of chronic viral infections, such as those caused by Hepatitis C Virus (HCV) and Human Immunodeficiency
Virus (HIV), is affected by the risk group structure of the infected population. Risk groups are defined by each of their
members having acquired infection through a specific behavior. However, risk group definitions say little about the
transmission potential of each infected individual. Variation in the number of secondary infections is extremely difficult to
estimate for HCV and HIV but crucial in the design of efficient control interventions. Here we describe a novel method that
combines epidemiological and population genetic approaches to estimate the variation in transmissibility of rapidly-
evolving viral epidemics. We evaluate this method using a nationwide HCV epidemic and for the first time co-estimate viral
generation times and superspreading events from a combination of molecular and epidemiological data. We anticipate that
this integrated approach will form the basis of powerful tools for describing the transmission dynamics of chronic viral
diseases, and for evaluating control strategies directed against them.
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Introduction

Mathematical epidemiology describes the spread of infectious

diseases and aims to aid in the design of effective public health

interventions [1–3]. Central to this endeavour is the basic

reproductive number (R0) of an infectious disease, the mean

number of secondary infections per primary infection in a

completely susceptible population [4] (for notations see Table 1).

Under simple epidemiological scenarios, in which all infected

individuals behave identically, R0 depends on the transmission

probability per contact with a susceptible individual, the duration

of infectiousness and the rate at which new contacts are made

[2,4,5]. However, studies on sexually transmitted and vector-borne

infections indicate that infected individuals behave far from

identically and that variation in the number of secondary

infections per infected individual can play a major role in

epidemic dynamics. For example, some researchers have invoked

the so-called 20–80 rule to describe the finding that approximately

20% of infected individuals are responsible for 80% of onward

transmission [3,6,7]. The term ‘superspreaders’ has been coined to

describe hosts that contribute disproportionately to onward

infection.

In previous work, variation in the number of secondary

infections per infected individual, Z, has been represented by a

negative binomial distribution that is described by two parameters,

(i) mean R0 among infections and (ii) the dispersion parameter k

[8,9]. A small k (,0.1) indicates that a small proportion of infected

individuals actively transmit the pathogen, whilst a large k (.4)

means that all infected individuals contribute approximately

equally to onwards transmission [8,10]. Lloyd-Smith et al.

introduced a definition of superspreaders as the top 1% of hosts

when ranked by the number of secondary infections they create

[8]. Although superspreading events (SSE) (i.e. the minimum

number of secondary infections generated by a superspreader)

have been estimated for directly-transmitted acute infections [8],

they have never been described for chronic viral infections. The

indolent and subclinical nature of chronic infections makes it

difficult to track primary and secondary infections of the multiple

strains that concurrently transmit in a given population. The

problem is further compounded for HIV and the hepatitis C virus

(HCV) that circulate in socially-marginalised groups such as

injecting drug users (IDUs) and commercial sex workers.

In addition to R0 and the variation in onward transmission,

another epidemiologically-important parameter is the average

time between the primary and secondary infections, typically

termed the infection generation time (T; several other definitions

are used in the literature). A short T indicates rapid transmission,

whilst a longer T suggests slower spread but also longer carriage.

The duration of carriage of pathogens, which is usually known,

represents an upper-limit on T and thus it is reasonable to

conclude that directly transmitted acute infections have T,1

month whilst chronic infections have T values on the order of

months or years.
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Here we show how transmission variability and infection

generation time can be estimated by combining viral genomic

data with surveillance data and mathematical epidemiology.

Results/Discussion

Conceptual modelling framework
The concept of effective population size (Ne) has been used in

population genetics for at least 50 years (for a brief review see Text

S1) [11,12]. Ne(t) is generally defined as the size of an idealised

population (one without selection or population structure) that

experiences the same level of genetic drift as the studied

population at time t. Ne(t) is typically lower than N(t), the

population’s actual size at time t. The ratio N(t)/Ne(t) thus indicates

how similarly the real population’s reproduction matches the

assumptions of the idealised model [13,14]. Under a wide range of

scenarios this ratio represents the variation in offspring numbers

among individuals [15,16].

If the population in question is a viral epidemic, then N(t) is the

number of infections at time t (or number of prevalent cases) and

Ne(t) represents the effective number of infections (i.e. the number

of infections of an idealised epidemic that experiences the same

level of genetic drift as the studied population). Crucially, if genetic

variation among strains has little or no effect on their ability to

infect hosts, as appears to be the case for HIV and HCV [11] then

the ratio N(t)/Ne(t), is formally equal to var(Z), the variance in the

number of secondary infections [17,18]:

var(Z)~
N(t)

Ne(t)
ð1Þ

N(t) can be directly observed or estimated from surveillance data

using classical epidemiological methods [19]. Ne(t) can be

estimated by analysing the pattern of genetic diversity in a sample

of the viral population. Specifically, methods based on coalescent

theory, such as the skyline plot [11,20], estimate the product of the

coalescent Ne(t) multiplied by T, the generation time. The value

var(Z)/T is inferable from empirical data and we here call it the

phylodynamic transmission parameter, PTP. With all these

estimates in hand it is therefore possible to estimate var(Z) from

equation 1 as follows:

var(Z)~
N(t)

Ne(t)T

� �
T~PTP|T ð2Þ

PTP reflects two important features of the intensity of transmission

within a population, (i) the variance of secondary infections among

infections, and (ii) time between infections. Equation 2 suggests

that an epidemic with a specific PTP is equally well described

either by slow and highly variable onward transmission or by fast

and more homogeneous onward transmission. This means that by

comparing prevalent cases and genetic diversity (as measured by

the skyline plot) alone, we cannot directly infer var(Z) and T; more

information is required to separate these parameters. In the next

two sections we consider practical aspects of inferring these two

variables.

Infection generation time
Volz and Frost [21,22] incorporated mathematical epidemiol-

ogy in coalescent models assuming that pathogens spread in the

population according to compartmental models of epidemic

spread. As theory predicts they showed that there is no constant

transformation from NeT to N because as susceptible hosts decline

in the population, T expands; a constant transformation from NeT

to N is observed when the epidemic is on the exponential phase

(i.e. T remains constant). Koelle and Rasmussen [23] showed

similarly that a linear constant transformation of NeT to N is also

observed when the epidemic is within a steady endemic state.

Thus, if we compare NeT with N at the exponential phase or the

endemic state we can assume that T remains constant.

Distributions of numbers of secondary infections for
epidemics with active and inactive transmitters

To describe the variability in onward transmission we require a

probability density function of the random variable Z, the number

of secondary infections per infected individual. Previous work has

modeled variation in this number with a negative binomial

distribution described by two parameters, mean R0 and a

dispersion parameter k [8,9]. Chronic viral infections, such as

those caused by HIV and HCV, are unlikely to be well described

by a single distribution. For these epidemics a significant

proportion of transmissions result in inactive infections that

transmit the virus no further and thus a mixed distribution is a

more realistic representation.

In our study we define a sub-population of ‘‘inactive’’ infections

whose expected number of secondary infections is equal to 0. The

rest of the population is defined as ‘‘active’’. Active infections

comprise a proportion u of all infections and their expected

number of secondary infections are assumed to be Poisson

distributed with mean R0,a. The distribution of the number of

secondary infections Z in the whole population (active and inactive

combined) is therefore a zero-inflated Poisson distribution, such

that:

E(Z)~uR0,a ð3Þ

var(Z)~uR0,a½1z(1{u)R0,a� ð4Þ

Equations 3 and 4 can be used to estimate the number of

secondary infections of active infections (R0,a) provided that

estimates of E(Z), u and var(Z) are available.

Author Summary

To design strategies that efficiently mitigate an epidemic
requires estimates of how many people each carrier is
likely to infect, what is the variation of this number among
infections, and what is the time needed for these
transmissions to take place. The disciplines of epidemiol-
ogy and population genetics independently provide
partial answers to these questions by analysing surveil-
lance data and molecular sequences, respectively. Here we
propose a novel integration of the two fields that can
reveal the underlying transmission dynamics of rapidly-
evolving viruses such as HIV or HCV. We explore a well-
described nationwide HCV epidemic and show that our
method provides new insights into the nature and
variation of HCV transmission among infected individuals.
We suggest that this approach could form the basis of new
tools that can help in the design of effective public health
interventions targeting the spread of viral pathogens.

Variation of Transmissibility in Viral Pathogens
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Proof of concept: Concurrent nationwide epidemics of
HCV

Well-described cohorts of HCV infections (of subtypes 1a, 1b,

3a and 4a) have been described in Greek populations [24,25].

Crucially, for these epidemics we have both surveillance informa-

tion and concurrent samples of viral genome sequences from the

same population. First, we used inferred HCV incidence and

prevalence by subtype from previous studies [25]. Next, we used

the skyline plot method to estimate the value Ne(t)T for each

subtype from the viral genome sequences sampled concurrently

from the same populations (see Table S1) [26–28].

For both methods we assume that the population corresponds to

the set of individuals chronically infected with HCV. The majority

of patients with HCV infection develop persistent or chronic

infection (60–92%) whilst a minority clears HCV-RNA (8–40%);

viral clearance is much faster within the first 2 years of infection

and slower thereafter (%1% per year), while increased rates of

viral clearance are associated with younger age, female gender,

lack of HIV co-infection, chronic HBV infection and genetic

variation in IL28B [29–42].

HCV phylodynamic analysis
In total, 24, 27, 24 and 22 samples from Greek patients were

amplified and sequenced for subtypes 1a, 1b, 3a and 4a,

respectively (Table S1). The majority of subtype 1a and 3a

infections were associated with injecting drug use, while for

subtype 1b and 4a infections the source of infection was usually

unknown. These distributions are consistent with previous

epidemiological findings [24].

Phylogenetic trees (Figure S1) were estimated using a part of the

NS5B region (nt 8297–8597) for which more reference sequences

from other locations are available. These revealed the epidemics of

different subtypes in Greece are not monophyletic and thus they

arose through multiple introductions.

Since the outbreaks were not monophyletic we can only provide

upper limits of the date of introduction of each subtype (i.e. the

date of the oldest possible introduction). Analysis using molecular

clock coalescent methods (Figure 1, Figure S2) indicates that the

1a, 1b, 3a and 4a epidemics first entered the Greek population

around 1965, 1958, 1975 and 1967, respectively (Table S2). It is

important to note that the methods developed here depend on the

exponential growth phase of each subtype, and not on the date of

its most recent common ancestor, as the latter is more sensitive to

sampling biases. The most striking difference in epidemic history

among the subtypes is the rapid exponential growth of subtype 3a

during 1978–1990, whereas the other subtypes appeared to

expand more slowly during 1960–1990 (Figure 1).

Epidemic and phylodynamic estimates are correlated
For each HCV subtype, the estimated plots of Ne(t)T and N(t) for

each subtype correspond with each other in relative size

(Figure 1a), indicating that larger N corresponds to larger NeT.

The plots of Ne(t)T and N(t) for each subtype are also remarkably

similar in shape (Figure 1b), indicating that PTP = (N(t)/Ne(t)T) is

relatively constant through time. Subsequently, to estimate the

ratio N/NeT for each subtype, we assessed the correlation of NeT

and N during the period of exponential growth using linear

regression (suppressing the constant term, since theory proposes

that N is directly proportional to Ne). The correlation of N(t) and

Ne(t)T is thus given by N(t) = a Ne(t)T, such that a is an estimate of

the phylodynamic transmission parameter PTP = (N/NeT). Since

all these metrics are time-series data we corrected the cross-

correlations between NeT and N for auto-correlation by means of

the Newey-West method [43]. Specifically, we assessed the auto-

correlation structure for each parameter and each subtype and

then used the maximum lag between the cross-correlated data to

correct statistical significance. Linear regressions of N(t) against

Ne(t)T for each HCV subtype are strong and significant (p,0.01;

Table 1. Abbreviations and terms used throughout the manuscript.

Symbol Name Statistical definiton Units

R0 Basic reproductive number or ratio Mean number of secondary infections Number of infections

R0,a Basic reproductive number or ratio of the transmitter group
assuming a transmitter, non-transmitter secondary infections
model

Mean number of secondary infections Number of infections

Z Number of secondary infections per infected individual Random variable Number of infections

Za Number of secondary infections of the transmitter group
assuming a transmitter, non-transmitter secondary infections
model

Random variable Number of infections

N Number of prevalent cases - Number of infected people

Ne Effective number of infections - Number of infected people

PTP Phylodynamic transmission parameter - Number of infections per year

T Generation time Average length of time between
primary and secondary infections

Years

c Recovery rate from the disease - Number of persons per year

m Death rate of the population - Number of persons per year

SSE Superspreading Events Minimum expected number of secondary
infections from a superspreader

Number of secondary infections

k Dispersion parameter of the negative binomial distribution - -

superspreader Top 1% of infected individuals when we rank them by their
attributed secondary infections

- -

doi:10.1371/journal.pcbi.1002876.t001

Variation of Transmissibility in Viral Pathogens
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R2 = 0.70–0.95). The regression gradients (a) provide estimates of

PTP = (N/NeT), which vary from 15.6 to 43.4 for the different

HCV subtypes (Table 2, S3).

Subtype-specific R0 estimates
The subtype-specific estimates of mean R0 during the exponential

growth phase of Ne or N were 2.4–11.5 (Table 2, Table S3) assuming

that infectivity period is 40 years and life expectancy is 70 years. These

estimates are similar to those reported previously for subtypes 1a and

1b (both global samples) and 4a (sampled from Egypt) [44]. The

expansion of subtype 3a is characterised by faster epidemic growth over

a shorter timeframe compared to the other subtypes (Figure 1) and this

is reflected in the large R0 value for that subtype, which suggests an

average of .10 secondary infections per primary infection.

Figure 1. Plots through time of NeT (estimated from genetic data using the Bayesian skyline plot) versus N (estimated from
surveillance data using back calculation). The plot of N is drawn by means of locally weighted smoothing on the scatter plot (lowess) of the
estimated N. We have truncated the plots after 1990 as we wish to characterise HCV transmission prior the virus’ discovery in 1989. The vertical axes
of the plots through time of NeT N for each HCV subtype (B) have been scaled between maximum and minimum values.
doi:10.1371/journal.pcbi.1002876.g001

Variation of Transmissibility in Viral Pathogens
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Model of secondary infections in the Greek HCV
epidemics

Historically, HCV epidemics have taken two distinct forms:

older transfusion and iatrogenic-related transmission, and more

recent intravenous drug use-related (IDU-related) outbreaks. The

earlier transmission was characterised by slower spread; individ-

uals infected by transfusion or nosocomial transmission are less

likely to practice high-risk behaviors and thus often represent

transmission chain dead-ends. The more recent IDU-related

epidemics are characterised by rapid spread. HCV is hyperen-

demic in IDUs worldwide with anti-HCV prevalence of 15–90%

[45]; IDUs may share syringes, needles and other contaminated

equipment and are likely to cause long transmission chains

[46,47]. As explained above, the Z-values of HCV epidemics are

thus unlikely to be described well by a single distribution; instead

we suggest a bimodal distribution model for the number of

secondary infections (see Eq.3–5) that can represent both types of

transmission behavior.

We can use Equation 4 to test whether our model is congruent

with epidemiological data. Equation 4 predicts that PTP increases

with the proportion of ‘‘transmitters’’ in the population of infected

individuals (provided that the proportion of transmitters is ,50%,

which is the case for all the HCV epidemics in this study).

Regression of PTP against the percentage of IDU infections for

each HCV subtype is strongly significant (Figure 2) whereas the

regressions for other risk groups are not (Table S4). This suggests

that the estimates of PTP are compatible with the known

epidemiology of HCV. However, we note that this regression

contains only 4 points and therefore data from more sub-

epidemics are required to strengthen this finding.

Estimation of the generation time (T)
There is no previously-available estimate for the generation time

(T) of HCV since tracking of secondary infections is very difficult

and date of infection is in most cases unknown. Some workers have

suggested approximating T using the duration of infectiousness (1/

(c+m)) [48], which for HCV is around 25 years (i.e 1/c = 40 years

and 1/m = 70 years) (Table S3). If we assume that secondary

infections follow a Poisson process within the duration of

infectiousness (1/(c+m)) (i.e. if we perform a simulation of random

secondary infections within 25 years of infectiousness), then the

mean average time between primary and the subtending

secondary infections is similarly high (,12.5 years) regardless of

the average number of secondary infections. Such values are

epidemiologically and empirically unrealistic for many HCV

epidemics: we know that IDUs usually get infected within 2 years

after initiating injection [49].

By combining Equations 2, 3 4 taking into account that

E(Z)~R0~uR0,a we can investigate how T is dependent on the

proportion of the transmitters (u) and vice versa (Table 3, Figure 3):

u~
R2

0

PTP|TzR2
0{R0

and T~
1

PTP
(

R2
0

u
{R2

0zR0) ð5Þ

We assume that T is constant, which is reasonable for the

exponential phase of the epidemic that we focus on [50–53].

Equation (5) shows that T is maximized at the smallest plausible

value of u. The known epidemiology of HCV in IDUs suggests

that the proportion of the transmitters (u) will not be smaller than

the proportion of the IDUs (i.e. every IDU is likely to have

transmitted), at least in our subtype 1a, 3a and 4a outbreaks, which

are driven by intravenous drug use. Thus an epidemiologically-

meaningful maximum T value can be obtained by setting u equal

to the proportion of IDUs in the population (Figure 3).

Using Greek surveillance data on the proportion of HCV

infections of each subtype associated with IDU [24] we estimate

that the maximum T (Figure 3, Table 3) for subtype 1a (IDU:

26%) is 1.4 years, for subtype 3a (IDU: 47%) is 3.7 years and for

subtype 4a (IDU: 20%) is 0.9 years. For the iatrogenic (non IDU-

Table 2. Estimates of transmission parameters for each HCV subtype.

All Transmitters 99th percentile SSE

PTP = (N/NeT)1 (95% C.I.) E(Z) = R0 (95% C.I.) T2 u3 E(Za) = Var(Za) = R0,a Top 1% (overall)4

1a 25.8 (21.2–30.2) 3.4 (3.3–3.5) 1.4 0.26 13.1 20

1b 15.6 (14.6–16.4) 4.5 (4.2–4.8) 20.6 0.06 75 83

3a 43.4 (38.6–48.2) 11.5 (10.7–12.4) 3.7 0.47 24.5 35

4a 27.8 (23.2–31.4) 2.4 (2.3–2.5) 0.9 0.2 12 18

1The phylodynamic transmission parameter PTP = N/(NeT) has been estimated as the coefficient of the linear regression of N versus NeT without constant term. For the
confidence intervals the autocorrelation structure of each variable has been taken into account according to the Newey-West correction.
2Generation time estimated as Var(Z)/PTP (maximum estimate assuming that the minimum proportion of transmitters equals the proportion of IDUs in each subtype).
3Proportion of transmitters, practically equal to the proportion of IDUs within each subtype.
4Upper 1% of the distribution of secondary infections including transmitters and non-transmitters.
doi:10.1371/journal.pcbi.1002876.t002

Figure 2. Scatter plot of the proportion of IDUs against the
phylodynamic transmission potential ( = N/NeT) for each sub-
type.
doi:10.1371/journal.pcbi.1002876.g002
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driven) epidemic of 1b (IDU:,10%) we estimate the maximum T

close to the approximate duration of infectiousness (,20 years)

[Note that we use IDU as transmitters even if the epidemic is non-

IDU driven; this is due to their engagement in repeated paid blood

donation up to the end of the 1970s.] [54].

These estimates of T for subtypes 1a, 3a and 4a are more

compatible with the natural history of the disease than those based

on the duration of infectiousness (,12.5 years). The probability of

secondary infection per contact is expected to be higher during the

first year of infection, when viral load is 10 times greater than later

in infection [55,56]. Also, in the first year patients are less likely to

have ceased or reduced the high-risk behavior (e.g. IDU) that led

them to be infected. Taken together, this suggests that secondary

infections are more likely during the first year of infection. For

subtype 1b the estimated T is artificially inflated due to its

transmission route (see below).

Figure 3. Contour plots showing how generation time (T), basic reproductive number (R0) and the proportion of transmitters in the
population (u) co-vary. Gray bands highlight different values of u. The area between the white dashed lines represents R0 values estimated by
sensitivity analysis of mortality and recovery rate (Table S3). The area between the yellow dashed lines represents the 95% confidence limits of R0

values estimated assuming 40 years of infectivity and 70 years of life expectancy. The black dots show the maximum T value for each subtype, which
is defined by empirical values for u and the median values of R0 (see text).
doi:10.1371/journal.pcbi.1002876.g003

Variation of Transmissibility in Viral Pathogens
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Analysing the transmission diversity of HCV epidemics
We used equations (3) and (4) to estimate the basic reproductive

number of the transmitters (R0,a) and the variability in onward

transmission, given the values for u, PTP, R0 and T obtained above

(Table 2). We estimate that for HCV subtypes 1a, 1b, 3a and 4a

the R0,a values ranged from 12 to 74 and the 99th percentile SSE

from 18 to 83 secondary infections (Table 2, Figure 4, Figure S4).

Compared to directly-transmitted pathogens, HCV epidemics

generally have large 99th percentile SSE values, at least at the

levels of SARS and Smallpox. For outbreaks of subtypes 1a, 1b, 3a

and 4a investigated here, we estimate that 80% of the infections

are caused by approximately 20%, 5%, 35% and 15% of the most

infectious individuals, respectively (Figure 5).

The subtype 1b epidemic is the oldest and most prevalent in

Greece, characterised by a small proportion of IDUs (6%) and was

spread due to the use of contaminated blood and blood products.

The very large number of secondary infections for each member of

the transmitter population (R0,a = 75), the high degree of super-

spreading (SSE 99th percentile = 83) and the long generation time

(T,20 years) are compatible with the expected transmission

dynamics of blood transfusions in the 1960s and 1970s.

Historically, subtype 1b infections in Greece are attributed to

the use of imported pooled plasma products, a practice that

increased the probability of contaminating dozens of individuals

from a single contaminated batch; the plasma products could be

stored and distributed over many years leading to an artificially

large ‘‘generation time’’. Moreover, within Greece, infected IDUs

during the 1960s and 1970s practiced repeated paid blood

donations as a source of income. The reported dynamics of

HCV-1b are typical of older (pre-1990s) HCV epidemics and do

not apply to contemporary transmission (except in rare instances

when transfusion safety breaks down. Similar trends in blood

transfusion as a risk factor for HCV have been documented in

many developed countries [46,57–60].

On the other hand, the epidemics of subtypes 1a, 3a and 4a

epidemics have higher proportions of IDUs (26%, 47% and 20%

respectively) [24] and are typical of the modern HCV epidemics in

the Western societies. For these epidemics the higher proportion of

IDUs resulted in almost proportionally higher mean and variance in

the number of secondary infections. The dynamics of these epidemics

are still operating in the developed world and the estimated

transmission parameters can be used to design mitigating strategies.

Limitations of the study
Phylogenetic analysis suggests the sub-epidemics of HCV in

Greece are the result of multiple introductions (i.e. non-

monophyletic; Figure S1) suggesting that estimates of Ne(t)T near

the root of the each subtype phylogeny may be biased upwards

(because lineages fail to coalesce due to population structure). Two

arguments suggest this is not a significant issue in our analysis.

First, the trajectories of N(t) and Ne(t)T, which were estimated from

separate data sources, closely correspond in four independent

epidemics (in scale and shape) and N was obtained from

epidemiological surveillance data of wholly Greek origin. Second,

it is reasonable to assume that coalescent events within the

exponential phase (the period during which we compared N(t) and

Ne(t)T) did occur within Greece. That is, coalescences close to the

root of each phylogeny (which may represent transmission outside

Greece) were not used in our analysis. In the worst case scenario –

that Ne(t)T has been overestimated – our estimate of PTP can be

considered a lower bound and that variation in onward

transmission might be even greater than reported here.

A second limitation of our study is that our estimate of PTP does

not incorporate statistical uncertainty in the estimation of N(t) and

Ne(t)T. In the future, we aim to develop a Bayesian approach to

incorporate both sources of uncertainty and provide a proper

posterior distribution for PTP.

Our approach provides information about superspreading from

analytical relationships between the rate of coalescence (Ne), viral

generation time (T), and prevalence (N) and thus is independent of

phylogenetic topology. It is therefore complementary to alternative

approaches that investigate how non-random contact structures

affect the topology of a transmission tree [61]. At this point we

should emphasize that further exploration and extension of the

approach is required. For example a zero-inflated Poisson

distribution of secondary infections does not fit most of the

HIV-1 epidemics. A power-law distribution resulting from sexual-

contact analysis would provide a more realistic approximation, for

which a detailed analysis of the effect of network structure on PTP

needs to be performed. Finally, simulation studies could explore

the robustness of the approach under a wider range of

epidemiologic scenarios, whilst larger datasets could empirically

replicate our findings to support wider applicability of this

approach e.g. to inform Public Health policies.

Conclusion
We have shown that phylodynamic methods can be combined

with epidemiological surveillance data to estimate the variability in

ongoing transmission of a chronic viral epidemic, and to

investigate its generation time. Both parameters are critical to

the design of effective control measures but are very difficult to

estimate from surveillance data alone. We tested the framework on

a well-characterised set of HCV epidemic in Greece, showing that

the results are epidemiologically coherent and suggesting that this

approach could be a new tool for public health. We expect our

Table 3. Sensitivity analysis of the transmission parameters
(var(Z), u, R0,a) accounting for different generation times (T)
using the two-group (transmitter, non-transmitter) model of
secondary infections (Eq.1).

R0 T var(Z) u R0,a

1a 3.4 1 25.8 0.34 9.99

2 51.6 0.19 17.58

10 258 0.04 78.28

25 645 0.02 192.11

1b 4.5 1 15.6 0.65 6.97

2 31.2 0.43 10.43

10 156 0.12 38.17

25 390 0.05 90.17

3a 11.5 1 43.4 0.81 14.27

2 86.8 0.64 18.05

10 434 0.24 48.24

25 1085 0.11 104.85

4a 2.4 1 27.8 0.18 12.98

2 55.6 0.1 24.57

10 278 0.02 117.23

25 695 0.01 290.98

The proportion of the transmitters (u) contrasted to the proportion of IDU,
provides us information about epidemiologically probable generation times (T)
i.e. we do not expect that the proportion of transmitters would be less than the
proportion of IDU in the same population.
doi:10.1371/journal.pcbi.1002876.t003
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approach to be most readily adapted to other chronic viral diseases

such as HIV, but could also be applied to directly transmitted (e.g.

Influenza) or vector-borne (e.g. Dengue) viral epidemics, for which

superspreading events and generation times are largely unknown.

Methods

Ethics statement
Study approval was granted by the IRB of Athens University

Medical School.

Estimation of chronic HCV incidence and prevalence
through time

The overall and genotype-specific incidence of chronic HCV

infection has been estimated in previous studies using back-

calculation [24,25]. Briefly, the distribution of transmission risk

groups among HCV infected individuals was obtained from 943

Greek patients enrolled in treatment studies [24,25]. Enrolment

took place between 1995 and 2000; patients were adults (18–70

years old) with a histological diagnosis of chronic hepatitis. Injecting

drug use, transfusion, other and sporadic transmissions were

reported by 24%, 32%, 6% and 38% of the patients, respectively.

The distribution of the dates of infection within each transmission

group was determined using data from 456 Greek patients enrolled

in treatment studies with known dates of infection. We extended the

back-calculation approach to estimate subtype-specific incidence of

chronic HCV [25] in Greece as follows: a) we estimated the number

of individuals infected with HCV in Greece, b) we obtained the

distribution of HCV subtypes by year of onset for each transmission

group within the infected population and c) we calculated subtype-

specific incidence according to transmission group using the

number of new infections in the past for each transmission group

and the corresponding distribution of HCV subtypes by year of

infection. The estimates for each transmission group were then

combined to obtain an estimate of the overall genotype-specific

incidence and prevalence during 1940–1990.

HCV sequence data
Correct sampling is crucial to the inference of epidemic history

from genetic data [62]. All available 1a, 1b, 3a and 4a subtype

samples from distinct HCV-infected patients, tested within a 12-

year period (1994–2006), were sorted according to their sampling

dates, and at least one sample was randomly selected and

sequenced for every 6-month interval. For cases in which no

sample was available in a specific 6-month interval, the closest

sample to that period was selected. Besides the sampling date,

additional information was recorded for each sample: patient’s

age, sex, transmission group and treatment history (Table S1).

Samples were excluded where the patient had a prior history of

antiviral therapy and/or HIV co-infection, since these factors are

believed to affect the intrahost evolution of the virus, thus

(theoretically) introducing a bias into the estimation of substitution

Figure 4. Estimated distributions of the number of secondary infections per primary infection for each HCV subtype.
doi:10.1371/journal.pcbi.1002876.g004
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rate [63]. Sequencing of the HCV E2P7NS2 and NS5B regions

was performed as previously described [26].

Estimation of basic reproductive number (R0)
We estimated R0 assuming that the population is large enough

to follow a deterministic Susceptible-Infected-Removed model

(SIR) [3]:

R0~
1

(czm)t
ln

N(t)

N(0)
z1 ð6Þ

where N(t) is the number of infected people at time t (prevalent

cases), N(0) is the number of infected people at the baseline of the

exponential growth phase, c is the recovery rate of the disease and m
is the death rate in the general population. This equation is valid for

the exponential phase of the epidemic growth. To estimate subtype-

specific R0 we used the nl routine in STATA to fit the above

equation to the estimated N(t) curve during the exponential growth

phase, assuming an average life expectancy (1/m) of 70 years and an

average infectivity period (1/c) of 40 years (i.e. excluding host

mortality), which are plausible estimates for the study population

(Table S3). Note that if the N(t) and Ne(t) are highly correlated (such

that N(t)/N(0) is equal to Ne(t)/Ne(0)) then equation 6 shows that we

can get equivalent estimates of R0 from the skyline plot..

Identification of the exponential growth phase
To identify the exponential growth phase of each Greek HCV

epidemic, we first defined the end of the exponential phase as

1990, to reflect the introduction of anti-HCV screening after the

virus’ discovery in 1989. The start of the exponential phase was

detected using two methods. First, by visually inspecting the

epidemic time series and selecting the first time point after 6 years

of consecutive increases of N or NeT. Second, we employed a

previously-published algorithm used in quantitative PCR exper-

iments, where the identification of the exponential phase of a

growth curve is crucial [64]. Both methods provided closely similar

results (63 years).

Supporting Information

Figure S1 Phylogenetic trees (midpoint rooted) of the Greek

isolates (blue circles) along with a global sample (all published

sequences available at April 1st, 2010) on NS5B (nt 8297–8597).

(TIF)

Figure S2 Upper and lower limits of the 95% Higher Posterior

Density (HPD) of the skyline plots (NeT) and of the 95%

Confidence Intervals (C.I.) of the back-calculated number of

prevalent cases (N).

(TIF)

Figure S3 Scatter plots of N against NeT for the exponential

growth phase along with the fitted regression line that passes from

the origin of the axis (i.e. suppressing the constant term). Note that

regression has been performed correcting for auto-correlation

according to the Newey-West method. We note an apparent

deviation from linearity due to stochastic noise independently

present the auto-correlated series. This deviation disappears when

only independent data points are included in the plot.

(TIF)

Figure S4 Cumulative distribution of the secondary infections

for the Greek HCV epidemics (solid lines) and directly transmitted

pathogens (dashed lines) based on estimates provided by Lloyd-

Smith et al. [30]. (SSE = Superspreading events)

(TIF)

Table S1 A. Demographic features and experimental efficiency

in the sample used for the phylodynamic analysis, B. Demographic

features of the patients used for the epidemiological analysis.

(PDF)

Table S2 Estimated parameters of the phylodynamic analysis.

(PDF)

Table S3 Sensitivity analysis for the estimated medians of the

Basic Reproductive Numbers (R0).

(PDF)

Figure 5. Cumulative proportion of onward infection versus
the infected population ranked by the number of secondary
infections they create. 20% of onward infections is indicated with a
grey horizontal line. The proportion of the population that generates
80% of onward infections is shown by a vertical dashed line. HCV
subtype 1a is close to the 80-20 rule (i.e. 80% of the infections are
caused by the most infectious 18%).
doi:10.1371/journal.pcbi.1002876.g005
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Table S4 Regression analysis of the percentage of the risk group

per genotype with the spread metrics PPT and R0 per genotype in

the study population: coefficients of determination (Pearson’s R2)

are shown with associated level of significance (P value).

(PDF)

Text S1 Supplementary information.

(DOC)
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