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Abstract

The adult cerebellum is composed of several distinct cell types with well defined developmental origins. However, the
molecular mechanisms that govern the generation of these cell types are only partially resolved. Wnt/b-catenin signalling
has a wide variety of roles in generation of the central nervous system, though the specific activity of this pathway during
cerebellum development is not well understood. Here, we present data that delineate the spatio-temporal specific pattern
of Wnt/b-catenin signaling during mouse cerebellum development between E12.5 and P21. Using the BAT-gal Wnt/b-
catenin reporter mouse, we found that Wnt/b-catenin activity is present transiently at the embryonic rhombic lip but not at
later stages during the expansion of cell populations that arise from there. At late embryonic and early postnatal stages,
Wnt/b-catenin activity shifts to the cerebellar ventricular zone and to cells arising from this germinal centre. Subsequently,
the expression pattern becomes progressively restricted to Bergmann glial cells, which show expression of the reporter at
P21. These results indicate a variety of potential functions for Wnt/b-catenin activity during cerebellum development.

Citation: Selvadurai HJ, Mason JO (2011) Wnt/b-catenin Signalling Is Active in a Highly Dynamic Pattern during Development of the Mouse Cerebellum. PLoS
ONE 6(8): e23012. doi:10.1371/journal.pone.0023012

Editor: Cara Gottardi, Northwestern University Feinberg School of Medicine, United States of America

Received April 18, 2011; Accepted July 8, 2011; Published August 8, 2011

Copyright: � 2011 Selvadurai, Mason. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by award number 083209/Z/07/A from the Wellcome Trust, www.wellcome.ac.uk. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: john.mason@ed.ac.uk

Introduction

The cerebellum forms as a result of a highly regulated

programme of cell specification, proliferation, differentiation and

migration (reviewed in [1]). At the cellular level, the cerebellum is

organised into distinct neuronal layers: the outermost molecular

layer (ML), the Purkinje cell monolayer (PCL), the densely

populated internal granule layer (IGL) and the innermost white

matter (WM). The diverse cell types that make up these layers

originate from two distinct germinal centres in the early

cerebellum; the ventricular zone - a monolayer of cells lining the

fourth ventricle on the ventral surface of the cerebellar anlage, and

the rhombic lip - a transient structure in the most posterior part of

the cerebellar anlage that forms the interface between the neural

tube and non-neural roofplate ectoderm (reviewed in [2]).

The rhombic lip gives rise to the entire complement of

glutamatergic neurons that populate the IGL. The first glutamatergic

neurons born are the projection neurons of the deep cerebellar nuclei

(DCN). In the mouse these arise between embryonic day (E) 10.5 and

E12.5 [3], and migrate along the sub pial stream to the rostral end of

the developing cerebellum. From E12.5 onwards, the rhombic lip

generates granule progenitor cells (GPCs) and unipolar brush cells

(UBCs) [4,5,6]. Exiting the rhombic lip, GPCs migrate rostrally

across the pial surface of the cerebellum to form a secondary germinal

zone, the external germinal layer (EGL), which covers the pial surface

of the cerebellum. This cell layer proliferates extensively until the

second postnatal week, producing a vast number of mature granule

cells (GCs), which become post-mitotic within the EGL before

migrating radially along Bergmann glial fibres into the IGL, a process

that is complete by postnatal day (P) 21 [1,7,8].

Distinct from the rhombic lip, the ventricular zone gives rise to

all cerebellar cells of the c-aminobutyric acid (GABA)ergic, and

glial lineages. The first of these, the Purkinje cells, are born from

E10.5 then migrate radially towards the pial surface of the

cerebellum and settle as a distinct monolayer of cells around the

time of birth (E19.5-E20) [9]. Closely following this the Bergmann

glia are generated and migrate radially behind the developing

Purkinje cell population before undergoing morphological matu-

ration postnatally [10,11]. Interneurons (including stellate, basket,

Golgi and Lugaro interneurons) and the remaining glial

population (velate and fibrous astrocytes) are then generated in a

sequential manner. These cell types are derived from progenitors

that delaminate from the ventricular zone and continue to divide

in the WM [12,13,14,15,16,17].

These tightly coordinated developmental processes rely on the

spatio-temporal specific activity of several key signalling pathways. The

sonic hedgehog (Shh) signalling pathway, for example, is the main

mitogenic factor driving GPC proliferation within the EGL [18,19].

The Wnt/b-catenin signalling pathway has been shown to play an

important part in regulation of neural stem and progenitor populations

within the central nervous system [20,21], but its role in cerebellum

development is only partially defined. Wnt1 is an important regulator

of early cerebellum development. It is expressed at the isthmus and

rhombic lip [22,23,24,25], and in cells of the granule lineage [26] and

Wnt12/2 mutant mice completely lack or exhibit a severely

underdeveloped cerebellum [27,28,29]. No specific role for Wnt/b-

catenin signalling in later stages of cerebellum development has yet

been described. However, activating mutations in components of the

Wnt/b-catenin signalling pathway have been identified in medullo-

blastomas, a paediatric tumour that arises in the posterior fossa
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(cerebellum plus brainstem) [30,31]. Further, individuals carrying

germline mutations in the tumour suppressor gene APC that

constitutively activate Wnt/b-catenin signalling have a greatly elevated

risk of developing medullobastoma [32]. This raises the possibility that

Wnt/b-catenin signalling regulates developmental processes in the

cerebellum, and that activation of this pathway may cause these

processes to go awry, predisposing to the development of medullo-

blastoma (reviewed in [33]). Recent in vivo evidence supports this [34].

In order to investigate possible roles played by Wnt/b-catenin

signalling during development of the cerebellum, we used the

BAT-gal reporter transgenic mouse strain [35] to identify regions

of the developing cerebellum where Wnt/b-catenin signalling is

active. At mid-gestational stages, we found active Wnt/b-catenin

signalling in the rhombic lip. At perinatal stages, activity was seen

in the ventricular zone, but not in the EGL. Postnatally, signalling

became progressively more restricted, and very few proliferating

cells expressed the BAT-gal transgene. Surprisingly, we found that

many of the Wnt/b-catenin responsive cells in the postnatal

cerebellum were Bergmann glia.

Results

Wnt/b-catenin signalling is active at the isthmus and
rhombic lip

The BAT-gal transgenic reporter strain expresses a lacZ gene

under the control of b-catenin/T cell factor (TCF) responsive

elements [35] and has been widely used as a general reporter of

Wnt/b-catenin activity. We first examined the expression of b-

galactosidase (the protein product of the LacZ transgene) from

E12.5 to E14.5 in cerebellum sections from BAT-gal+ embryos. b-

galactosidase expression was observed in a progressively restricted

pattern (Fig. 1). Firstly, at E12.5 expression was observed at the

isthmus in the anterior region of the cerebellum and at the

rhombic lip forming the posterior region of the cerebellum

(Fig. 1A). In addition b-galactosidase expressing (b-gal+) cells were

observed spread diffusely through the anterior and posterior

regions of the cerebellum, although were notably sparse within the

ventricular zone.

In contrast, at E14.5 b-galactosidase expression was more

restricted to the anterior and posterior ends of the cerebellum.

While b-gal+ cells were absent from the ventricular zone, they

were observed clearly at the rhombic lip (Fig. 1B). Staining for

proliferating cell nuclear antigen (PCNA), which marks prolifer-

ating cells including those in the rhombic lip area, confirmed the

presence of b-gal+ cells at the rhombic lip and within the

population of early GPCs that have begun to migrate in an

anterior direction along the pial surface of the cerebellum

(arrowheads in Fig. 1B–C).

Since b-galactosidase protein is a stable protein and can persist

in tissue after lacZ gene expression ceases [36], we also examined

expression of lacZ mRNA by in situ hybridization (Fig. 1D–E). The

expression pattern found was very similar to that observed by

Figure 1. BAT-gal expression in the E12.5 and E14.5 cerebellum. (A) DAB Immunohistochemistry for b-galactosidase (b-gal) on sagittal
sections of E12.5 cerebellum revealed two key expression domains: the isthmus (Is) and the cerebellar rhombic lip (RL). At E14.5 (B) expression was
also found in the early external granule layer (EGL, black arrowheads) but was notably absent from the ventricular zone (VZ) lining the fourth ventricle
(IV). (C) Double immunofluorescence for b-gal and PCNA confirms the expression of b-gal in the RL and EGL (white arrowheads). b-gal protein was
validated as a Wnt/b-catenin reporter by in situ hybridisation for LacZ (D, E) and Wnt target Axin2 (F, G)) mRNA. At both time points b-gal protein and
LacZ mRNA were expressed in the same domains as Axin2, although the LacZ mRNA expression appeared less diffuse than that of Axin2. (A–B
counterstained with hematoxylin. Scale bars: A, B, D–E = 100 mm, B = 50 mM).
doi:10.1371/journal.pone.0023012.g001
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immunohistochemistry (compare Fig. 1A to 1D and 1B to 1E),

although there are slight differences that would suggest the b-

galactosidase protein expression may to some extent label cells that

are no longer responding to a Wnt/b-catenin signal. For example,

b-galactosidase protein expression was found in the dorsal aspect

of the choroid plexus, whereas the expression of LacZ mRNA is

restricted to the rhombic lip. Importantly however, the key b-gal

protein expression domains identified (rhombic lip and isthmus)

mirror those of the LacZ expression.

As an independent verification that BAT-gal reporter expres-

sion in the developing cerebellum truly indicates Wnt/b-catenin

activity we also performed in situ hybridisation for Axin2. Axin2

encodes a negative feedback inhibitor of the Wnt/b-catenin

signalling pathway. It is a direct target of TCF/LEF-mediated

transcription and is therefore widely used as a readout of Wnt/b-

catenin signalling [37]. Within the isthmus and the rhombic lip,

the expression of Axin2 (Fig. 1F–G) closely mirrored both LacZ

mRNA expression (Fig. 1D–E) and b-galactosidase protein

expression (Fig. 1A–B). However, at E12.5, Axin2 expression was

not detected in the anterior portion of the cerebellum immediately

below the isthmus (Fig. 1F). At E12.5 and E14.5, Axin2 showed

more diffuse expression in a gradient from both the upper and the

lower rhombic lips (Fig. 1F–G), compared to both LacZ staining

and b-galactosidase protein expression.

Wnt/b-catenin signalling is active in the ventricular zone
but not in the EGL of the perinatal cerebellum

We next examined BAT-gal reporter expression at two perinatal

stages, E18.5 and P1. In contrast to the highly restricted expression

of b-galactosidase seen at E14.5, we found much more widespread

expression at these time points (Fig. 2). b-gal+ cells were spread

through several developing cell layers of the cerebellum, though

were notably absent from the EGL (Fig. 2A–B). This pattern is also

observed in the expression of LacZ (Fig. 2C–D), indicating that

perdurance of b-galactosidase is not a significant issue at these

ages.

While the rhombic lip and early migratory GPCs showed

abundant expression of b-galactosidase at E14.5, the absence of

detectable b-galactosidase expression within the EGL of the

perinatal cerebellum suggests that Wnt/b-catenin signalling is not

involved in the continued development of this cell population.

PCNA staining clearly labels the EGL at E18.5 and P1 and co-

staining for b-galactosidase clearly supported the lack of b-gal+
cells in the EGL at these stages (Fig. 2E–F).

An abundance of b-gal+ cells were identified in the cerebellar

ventricular zone at E18.5 (Fig. 2A) and P1 (Fig. 2B), in contrast to

E14.5. PCNA labelling clearly delineates the ventricular zone at

these stages, visible as a thin layer of cells lining the fourth

ventricle. Double staining for b-galactosidase and PCNA con-

firmed the presence of proliferative b-gal+ cells within the

ventricular zone (arrowheads in Fig. 2G–H). Interestingly, by P1

there were a number of b-gal+ cells that did not express PCNA,

indicative of a non-proliferative cell type. b-gal+ cells were also

found within the developing cerebellar anlage, consistent with cells

migrating from the progenitor monolayer (Fig. 2E–H). Some of

these were PCNA-positive (arrowheads in Fig. 2E–F).

Wnt/b-catenin signalling becomes increasingly restricted
and does not correlate with proliferation during
postnatal development

We next examined patterns of BAT-gal reporter expression at

later postnatal stages. By P5, all of the layers that make up the

mature cerebellum (WM, IGL, PCL, ML) can be identified - along

with the transient EGL. We found b-gal+ cells in each of these

layers, except for the EGL (Fig. 3A–B). A similar pattern was

observed at P10 (Fig. 4A–B), although b-gal+ cells were most

abundant within the PCL and WM at this stage. Increasingly

restricted distribution was also seen at P21, by which time b-gal+
cells were largely restricted to the PCL (Fig. 5A–B). This pattern

was also observed in the expression of LacZ mRNA (Fig. 3B, 4B),

further illustrating that b-galactosidase immunohistochemistry

accurately reflects expression of the BAT-gal transgene till P10.

However, by P21 there was no identifiable expression of LacZ

mRNA (data not shown) indicating that the b-gal+ cell types

identified at that late stage may no longer be responding to a Wnt/

b-catenin signal and could be maintaining detectable levels of the

Figure 2. BAT-gal expression in the E18.5 and P1 cerebellum.
DAB immunohistochemistry for b-gal in sagittal sections of the E18.5
cerebellum (A) reveals widespread expression, including predominant
staining in the VZ (black arrowheads). A similar pattern is observed at
P1 (B). These expression patterns are mirrored by those observed for
LacZ mRNA visualised with in situ hybridisation (C–D). Double
immunofluorescence for b-gal and PCNA reveals an almost complete
lack of BAT-gal reporter expression in the EGL at both E18.5 (E) and P1
(F), though b-gal+ cells can be observed within the developing
cerebellum at both time points, in some cases colocalised with PCNA
(white arrows). At the VZ, BAT-gal expression can be observed
colocalised with PCNA (white arrowheads) at both E18.5 (G) and P1
(H). (A–B counterstained with hematoxylin. Scale bars: A, B = 100 mm,
E–H = 50 mm).
doi:10.1371/journal.pone.0023012.g002
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b-galactosidase protein from when they last transduced a Wnt/b-

catenin signal.

As Wnt/b-catenin signalling is commonly associated with the

control of cell proliferation, we wanted to determine whether the

BAT-gal expression pattern correlated with proliferation between

P5 and P10 (the most highly proliferative period of cerebellar

development). We therefore performed double immunofluores-

cence staining for b-galactosidase and PCNA. A number of

PCNA+ cells were seen in each layer at P5 (Fig. 3D), becoming

restricted to the EGL, WM and PCL by P10 (Fig. 4D) reflecting

the overall decrease in proliferation by this point. By P21 PCNA+
cells were largely restricted to the WM (data not shown), reflecting

the proliferation of white matter progenitors. While b-gal+ cells

were identified in all these key regions, very few b-gal+/PCNA+
cells were seen at P5 (Fig. 3D), and none were identified at P10

(Fig. 4D) or P21 (data not shown). Thus, we found little evidence

for correlation between Wnt/b-catenin signalling and proliferation

in the postnatal cerebellum, despite the identification of many b-

gal+ cells in proliferative regions such as the WM and PCL.

Wnt/b-catenin signalling is seen in Bergmann glia in the
postnatal cerebellum

We next sought to identify the specific cell type(s) within the

postnatal cerebellum in which Wnt/b-catenin signalling is active.

The locations of the b-gal+ cell population identified at each

postnatal stage examined suggested a number of possible cell

types, including interneuron and glial progenitors within the WM,

granule cells, astrocytes, oligodendrocytes and interneurons within

the IGL, Purkinje cells and Bergmann glia within the PCL and

interneurons within the ML. To determine the identity of the b-

Figure 4. BAT-gal expression in the P10 cerebellum. (A) DAB b-
gal immunohistochemistry and (B) LacZ in situ hybridisation in P10
cerebellum. (C) Higher magnification of the region boxed in (A) reveals
a more restricted pattern than that seen at P5, with strongest staining
observed within the PCL (black arrowheads – also in B). At higher
magnification, b-gal+ cells within the PCL (white arrowheads) were
observed in close proximity to both PCNA+ (D) and Pax2+ (E) cells
(unfilled arrowheads), though no colocalisation was observed between
b-gal and PCNA or Pax2. (F) Double immunofluorescence for b-gal and
NeuN confirms the presence of b-gal+ cells at the PCL on the edge of
the IGL, while double immunofluorescence for b-gal and calbindin (G)
confirms the lack of BAT-gal reporter expression in Purkinje cells (PC).
(H) Colocalisation with glial marker s100b confirms the identity of b-
gal+ cells within the PCL as Bergmann glia (white arrowheads), though
not all Bergmann glia express b-galactosidase (unfilled arrowhead). (A, C
are counterstained with hematoxylin and D–H with Topro3 Scale bars:
A = 500 mm, B–C = 100 mm, D–H = 50 mm).
doi:10.1371/journal.pone.0023012.g004

Figure 3. BAT-gal expression in the P5 cerebellum. (A) DAB
immunohistochemistry for b-gal and (B) LacZ in situ hybridisation in the
P5 cerebellum. (C) Higher magnification of the region boxed in (A)
reveals expression spread through all layers except the EGL. The
Purkinje cell layer (PCL) and the white matter (WM) in particular
contained many b-gal+ cells (black and white arrowheads respectively).
Double immunofluorescence for b-gal and PCNA (D) revealed the
presence of b-gal+ cells within the PCL and white matter (white
arrowheads). Although b-gal+ cells were observed in close proximity to
proliferating cells (unfilled arrowheads) very few b-gal+/PCNA+ cells
were observed. Double immunofluorescence for b-gal and Pax2 (E)
showed the close proximity of b-gal+ cells (white arrowhead) to Pax2+
interneurons (unfilled arrowhead) but no double-labelled cells were
observed. Double immunofluorescence for b-gal and NeuN showed b-
gal+ cells (white arrows) located outwith the IGL. (A,C counterstained
with hematoxylin and D–F with Topro3. Scale bars: A = 500 mm, B–
C = 100 mm, D–E = 50 mm).
doi:10.1371/journal.pone.0023012.g003
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gal+ cells we performed double immunofluorescence experiments

between b-galactosidase and a number of marker proteins known

to label specific cerebellar cell types.

The transcription factor Pax2 is expressed in committed

cerebellar interneurons after their exit from the ventricular zone

and prior to their terminal differentiation [15]. Thus, colocalisa-

tion between Pax2 and b-galactosidase would indicate that

committed interneuron progenitors were responding to a Wnt/

b-catenin signal. The pattern of Pax2 expression identified at all

three stages analysed was consistent with that expected for

interneuron precursors. However, although many b-gal+ and

Pax2+ cells were observed in the same cell layers, often in close

proximity to each other, no colocalisation was observed in any

sections analysed (Fig. 3E, 4E, 5C).

The b-gal+ cells in the IGL, PCL and ML could also be

migratory post-mitotic granule cells, exiting the EGL towards their

final destination in the IGL. However, double immunofluores-

cence between b-galactosidase and NeuN, a marker for post-

mitotic granule cells [38], did not reveal any colocalisation of the

two proteins in any sections analysed (Fig. 3F, 4F, 5D). Thus,

Wnt/b-catenin signalling appears unlikely to be directly involved

in the migration of post-mitotic granule cells.

Many b-gal+ cells were clearly localised to the PCL, suggesting

the possibility that Purkinje cells may be responding to Wnt/b-

catenin signalling. However, no colocalisation was observed

between b-galactosidase and calbindin, a marker that clearly

identifies Purkinje cells from P10, at either P10 (Fig. 4G) or P21

(Fig. 5E). Interestingly, many of the b-gal+ cells in the PCL were in

close proximity to Purkinje cells, consistent with the location of

Bergmann glia.

To determine whether Wnt/b-catenin signalling indeed marks a

population of glial cells, we performed double immunofluores-

cence with s100b, a marker for Bergman glia and other astrocytes

from P10 [39]. As expected, we identified b-gal+/s100b+ cells in

the PCL at P10 (Fig. 4H) and P21 (Fig. 5F) consistent with the

conclusion that a population of Bergman glia respond to a Wnt/b-

catenin signal during development.

Discussion

In this study we have investigated the distribution of Wnt/b-

catenin signalling during development of the cerebellum from

E12.5 to P21 primarily using the BAT-gal Wnt reporter mouse

strain [35]. The specific roles played by Wnt/b-catenin signalling

during development of the cerebellum are not yet well char-

acterised. Here, we provide evidence for a specific and dynamic

spatio-temporal pattern of Wnt/b-catenin signalling through

different stages of cerebellum development (summarised in Fig. 6).

Wnt/b-catenin signalling is active at the rhombic lip but
not expansion or differentiation of GPCs

Our experiments revealed expression of the BAT-gal reporter at

the rhombic lip at E12.5 and early EGL at E14.5. The rhombic lip

gives birth to projection neurons of the deep cerebellar nuclei from

E10.5 to E12.5 [3] followed by GPCs and unipolar brush cells

from E12.5 onwards [4,5,6]. Because unipolar brush cells migrate

along a different path than the dorsal stream that forms the EGL,

we conclude that the BAT-gal reporter expression observed at

E12.5 and E14.5 is potentially limited to GPCs and late born

DCN neurons.

Consistent with this, a number of studies have identified

expression of Wnt1 at the rhombic lip and at the isthmus

[22,23,24,25,26] and loss of Wnt1 leads to a severe developmental

phenotype of the cerebellum, most likely due to a failure to

maintain the isthmus [27,28,29]. Due to the consistency between

the known expression pattern of Wnt1, and its proven role as a key

signalling molecule in this area, it is possible that Wnt1 activity is

responsible for the active Wnt/b-catenin signalling at the

embryonic isthmus and rhombic lip identified in our experiments.

However, it remains to be established whether additional Wnt

genes are expressed in this area.

While active Wnt/b-catenin signalling was observed in the early

migrating GPCs at E14.5 (Fig. 1A–B), this was lost in the GPCs

observed in the EGL during later stages of development. By E18.5,

BAT-gal expression within the EGL was minimal and from P1

onwards, it was undetectable (Fig. 2A–D). These data are

consistent with a potential role for Wnt/b-catenin signalling

during early specification of GPCs but not in their further

migration or proliferation. This is consistent with the fact that

proliferation of this cell population during late embryogenesis and

early postnatal development is driven by Sonic hedgehog secreted

by neighbouring Purkinje cells [18,19].

Additionally, the absence of NeuN expression in any of the b-

gal+ cells observed from P5-P21 demonstrates that Wnt/b-catenin

signalling is also not active in the migration of terminally

differentiated GCs from the EGL to the IGL. (Fig. 3E, 4E, 5D).

NeuN is abundantly expressed in most classes of neurons [38] and

has been identified in all stages of post-mitotic granule cell

development [40]. Thus, the lack of NeuN expression in b-gal+

Figure 5. BAT-gal expression in the P21 cerebellum. (A) DAB
immunohistochemistry for b-gal in the P21 cerebellum. (B) Higher
magnification of the region boxed in (A) reveals that BAT-gal reporter
expression is largely restricted to the PCL (black arrowheads), with few
b-gal+ cells observed in other layers. Double immunofluorescence
experiments confirmed this localisation of b-gal+ cells (C–F). Double
immunofluorescence for Pax2 (C), NeuN (D) and Calbindin (E) show the
b-gal+ cells (white arrows) located in the PCL do not express markers of
interneurons, granule neurons or PCs respectively. (F) Colocalisation
with glial marker s100b confirms the identity of these cells as Bergmann
glia (white arrows). (A–B are counterstained with hematoxylin and C–F
with Topro3. Scale bars: A = 500 mm, B = 100 mm, C–F = 50 mm).
doi:10.1371/journal.pone.0023012.g005
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cells located in these regions indicates that they are not of the

granule lineage.

A potential role for Wnt/b-catenin signalling in
development of cell lineages from the cerebellar
ventricular zone

At E18.5 and P1, many b-gal+ cells were seen in the ventricular

zone (Fig. 2), although none were found there earlier (Fig. 1). This

indicates that Wnt/b-catenin signalling is active in cell lineages

originating at the ventricular zone at these time points. Purkinje cells

arise at the onset of cerebellar neurogenesis between E10.5 and

E12.5 [8,9]. The interneuron lineage can then be detected by the

expression of Pax2 in scattered cells at the ventricular zone from

E13.5 to E17.5 [15] from where they migrate radially as Pax2+
lineage restricted progenitors [14,15]. Concurrently, gliogenesis

begins at the ventricular zone from E13.5, identified through the

expression of S100b, BLBP and Sox9 [41]. The early Bergmann

glial population exits the ventricular zone at E14.5 and follows a

migratory path behind Purkinje cells [10]. Birth of the remaining

cerebellar glial populations (astrocytes and oligodendrocytes) follows

from this point. Our data suggest that the cell populations born at

the ventricular zone between E18.5 and P1 could be doing so in

response to a Wnt/b-catenin signal. Based upon the timing of

known cell populations arising from the ventricular zone, this is

most likely limited to glial and interneuron progenitors.

Wnt/b-catenin signalling may persist in the glial
population throughout postnatal cerebellum
development

Further to the identification of b-gal+ cells at the ventricular

zone, we also observed a population of b-gal+ cells within all other

layers of the cerebellum (excluding the EGL) from E18.5 through

to P21. Lack of colocalisation between b-galactosidase and Pax2

(Fig. 3E, 4E, 5C), NeuN (Fig. 3F, 4F, 5D) and Calbindin (Fig. 4G,

5E) ruled out the possibility of the b-gal+ cell population being of

the interneuron, granule or Purkinje cell types respectively.

The remaining alternative is that the b-gal+ cell population

identified within the developing cerebellum are glia. Oligoden-

drocytes are thought to arise from extra-cerebellar tissue [42], while

velate and fibrous astrocytes arise from ventricular zone derived

WM progenitor cells. Bergmann glia are thought to follow a slightly

different developmental path. Rather than arising during gliogenesis

from WM progenitors like the rest of the astrocyte lineage, a

population of early Bergmann glia arise from the ventricular zone

and migrate in close proximity to - and remain developmentally

intertwined with - Purkinje cells [10]. This wave of migration occurs

from E14.5 onwards, and by E18.5 these glia come to lie in a pattern

similar to that seen for some of the b-gal+ cell population we

identified, outlining the developing folia inferior to the EGL. A b-

gal+ cell population in this pattern was seen at all postnatal stages,

though the number of labelled cells appears to decrease with age.

While limitations of the antibody used mean we were unable to

confirm the identity of this cell population prior to P5, colocalisation

of b-galactosidase with s100b in cells present in close proximity to

Purkinje cells at both P10 (Fig. 4G) and P21 (Fig. 5F) supports the

hypothesis that some Bergmann glia respond to a Wnt/b-catenin

signal during development. Expression of LacZ mRNA identified at

all stages except for P21 supports a potential role for Wnt/b-catenin

signalling during development, and would suggest that residual b-

galactosidase protein has been identified at P21.

Interestingly, the lack of b-galactosidase expression at the

ventricular zone at E14.5 indicates that Wnt/b-catenin signalling

is not involved in the birth of the Bergmann glia but may be

potentially involved in its further development and maturation.

This is consistent with the postnatal dynamic transformation of

Bergmann glia alongside dendritogenesis and synaptogenesis of

Purkinje cells [11] and suggests a possible role for Wnt/b-catenin

in this process.

Relevance to the developmental origins of
medulloblastoma

We have shown that Wnt/b-catenin signalling is active in a

highly dynamic and varied spatiotemporal pattern during key

stages of cerebellum development. Surprisingly, Wnt/b-catenin is

also active in a subset of Bergmann glia in the postnatal

cerebellum. How these results relate to the development of

medulloblastoma is confounded by recent findings by Gibson al

Figure 6. Summary of Wntb-catenin signalling during cerebellum development. Wnt/b-catenin signalling is present in a dynamic spatio-
temporal specific pattern in the developing cerebellum. Initially it is observed at the cerebellar rhombic lip but by E18.5 its expression expands into a
more widespread pattern with particularly strong expression at the VZ during the birth of glia and interneurons. During postnatal development it is
largely restricted to the PCL, consistent with a subpopulation of Bergmann glia.
doi:10.1371/journal.pone.0023012.g006
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[34]. These authors provide evidence that constitutive activation

of the Wnt/b-catenin pathway in BLBP expressing cerebellar

precursors causes a defect in cell migration from the lower

rhombic lip - which manifests eventually as medulloblastoma if

tumour suppressor TP53 is also deactivated - while cell

populations arising from the ventricular zone and rhombic lip

do not show evidence for any developmental defect. Interestingly,

we found BAT-gal and Axin2 expression in the lower rhombic lip

(Fig. 1) supporting their conclusion that the lower rhombic lip is a

Wnt responsive area. However, our findings that Wnt/b-catenin

signalling activity is in the upper rhombic lip and in cells arising

from the ventricular zone now warrants more in depth functional

investigation to determine the role of this pathway in development

of these cell populations.

Methods

Mice
The licence authorising this work was approved by the

University of Edinburgh’s Ethical Review Committee on 22nd

September 2008 (application number PL35-08) and by the Home

Office on 6th November 2008. Animal husbandry was in

accordance with the UK Animals (Scientific Procedures) Act

1986 regulations. To minimise animal suffering, pregnant dams

were culled by cervical dislocation under terminal anaesthesia

according to the Code of Practice for Humane Killing of Animals

under Schedule 1 to the Animals (Scientific Procedures) Act 1986

issued by the Home Office. The day the vaginal plug was detected

was designated E0.5 and the day of birth as P0. BAT-gal mice

were maintained on a C57BL/6J genetic background and were

genotyped as described previously [35]. Wild type mice on the

same background were obtained by crossing mice hemizygous for

the BAT-gal transgene and used as negative controls.

Histology
Embryos were collected at E12.5 and E18.5 and pups between P1

and P21. Whole E12.5 embryos, heads from E14.5 embryos and

brains dissected from E18.5 embryos were immersion fixed in 4%

paraformaldehyde (PFA) in phosphate buffered saline (PBS)

overnight at 4uC. P1, 5, 10 and 21 pups were anaesthetised with

Avertin and transcardially perfused with PFA, followed by tissue

dissection and overnight immersion fixation in fresh PFA. Embryonic

and postnatal tissue for immunohistochemistry and immunofluores-

cence were all processed following standard conditions [43],

embedded in paraffin wax and cut in serial 10 mm sections on a

sagittal plane. Tissue for in situ hybridisation was cryoprotected in

30% sucrose/PBS overnight before embedding in 30% sucrose/

OCT (1:1) and snap freezing. Frozen sections were cut on a cryostat

at 14 mm. At least two animals were analysed at each age.

Immunohistochemistry, immunofluorescence and in situ
hybridisation

Immunohistochemistry and immunofluorescence were performed

according to standard protocols. Antigen retrieval was achieved by

microwaving sections at full power in 10 mM citrate buffer (pH6.0)

for five minutes followed by 15 minutes at medium power. Primary

antibodies were rabbit anti-b-galactosidase (Molecular Probes,

1:1000 for immunohistochemistry, 1:500 for immunofluorescence),

mouse anti-b-galactosidase (DSHB, 1:500), mouse anti-PCNA

(Abcam, 1:500), mouse anti-Pax2 (Covance, 1:200), mouse anti-

NeuN (Millipore, 1:500), mouse anti-Calbindin (Swant, 1:500),

mouse anti-s100b (Abcam, 1:500). Secondary non-fluorescent

antibodies were biotinylated anti-rabbit IgG (Dako, 1:200).

For single immunohistochemistry experiments the dark brown

signal was revealed after incubation with the ABC kit (Vector),

followed by a diaminobenzidine (DAB) and hydrogen peroxide

reaction using the DAB detection kit (Vector). For double

immunofluorescence experiments, all primary antibodies were

detected using goat anti-rabbit IgG or goat anti-mouse IgG

secondary antibodies conjugated to Alexa fluor 568 or 488 dyes

(Invitrogen, 1:200) respectively. Appropriate controls were used in

all cases by incubating sections with all but the primary antibodies.

No staining was observed under these conditions.

In situ hybridisation on frozen section was performed as

described previously [44]. LacZ and Axin2 antisense riboprobes

[45] were labelled using the digoxigenin RNA labelling kit (Roche)

according to the manufacturer’s instructions.

Microscopy
A Leica brightfield microscope connected to a Leica DFC 480

digital camera was used to capture images of DAB labelled

sections. A Leica brightfield microscope connected to a Leica

DFC360Fx camera was used to capture images of fluorescently

labelled sections.
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