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Abstract

Faced with the current large-scale public health emergency, collecting, sorting, and

analyzing biomedical information related to the “SARS-CoV-2” should be done as

quickly as possible to gain a global perspective, which is a basic requirement for

strengthening epidemic control capacity. However, for human researchers studying

viruses and hosts, the vast amount of information available cannot be processed

effectively and in a timely manner, particularly if our scientific understanding is also

limited, which further lowers the information processing efficiency. We present

TWIRLS (Topic-wise inference engine of massive biomedical literatures), a method

that can deal with various scientific problems, such as liver cancer, acute myeloid leu-

kemia, and so forth, which can automatically acquire, organize, and classify informa-

tion. Additionally, this information can be combined with independent functional data

sources to build an inference system via a machine-based approach, which can pro-

vide relevant knowledge to help human researchers quickly establish subject cogni-

tion and to make more effective decisions. Using TWIRLS, we automatically analyzed

more than three million words in more than 14,000 literature articles in only 4 hr. We

found that an important regulatory factor angiotensin-converting enzyme 2 (ACE2)

may be involved in host pathological changes on binding to the coronavirus after
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infection. On triggering functional changes in ACE2/AT2R, the cytokine homeostasis

regulation axis becomes imbalanced via the Renin-Angiotensin System and IP-10,

leading to a cytokine storm. Through a preliminary analysis of blood indices of

COVID-19 patients with a history of hypertension, we found that non-ARB (Angio-

tensin II receptor blockers) users had more symptoms of severe illness than ARB

users. This suggests ARBs could potentially be used to treat acute lung injury caused

by coronavirus infection.
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1 | INTRODUCTION

The sudden outbreak of a new coronavirus (SARS-CoV-2) at the end

of December 2019 is currently posing huge health challenges world-

wide. The SARS-CoV-2 virus causes severe respiratory disease

(COVID-19) that can quickly spread from person to person and in

some cases lead to death. Researchers have found that both the

SARS-CoV-2 and SARS coronaviruses invade human cells in target tis-

sues in a similar manner via high-affinity binding to angiotensin-con-

verting enzyme 2 (ACE2) (Zhou et al., 2020). In recent epidemiological

investigations of the spread of SARS-CoV-2 and a preliminary study

of the clinical characteristics of this disease (Chan et al., 2020; Chen

et al., 2020; Pan et al., 2020; Wei et al., 2020; Zhu et al., 2020),

researchers have found that patients infected with the new coronavi-

rus have severe symptoms similar to that of the SARS infection. The

first clinical case reports of SARS-CoV-2 infections in China revealed

“cytokine storms” in critically ill patients (Huang et al., 2020; Wan

et al., 2020). However, the mechanism of the viral infection and path-

ological changes in the immune system are still not known. The

sooner this information is added to the current clinical knowledge on

these viruses, the better the control and treatment of this disease.

Here, we present an automated topic-wise inference method

called TWIRLS (Topic-wise inference engine of massive biomedical lit-

eratures), to help human researchers to quickly establish topic-cogni-

tion of interest and solve different scientific problems. In this study,

we constructed the “coronavirus” knowledge graph using the TWIRLS

system. First, TWIRLS can process and summarize the massive bio-

medical literature on coronaviruses, and then collect, classify, and ana-

lyze reported coronavirus studies to reveal host-related entities based

on the distribution of specific genes in the text of the articles. By com-

bining with general protein interaction data, links between certain

functional cellular/physiological components can be inferred to fill in

the knowledge gaps on the probable mechanisms of host pathological

changes. By analyzing the coronavirus literature, TWIRLS was able to

reveal that the binding of the coronavirus spike proteins to ACE2

would cause an imbalance in the Renin-Angiotensin System (RAS).

When the level of Ang II is elevated, the angiotensin-stimulated AT1R

leads to increased pulmonary vascular permeability, which triggers

cytokine storm and then eventually results acute lung injury in the

host (Imai et al., 2005; Kuba et al., 2005). Therefore, TWIRLS can

guide human researchers by providing further potential therapeutic

target information based on the regulation of RAS for the treatment

of acute viral lung injury.

2 | METHODS

2.1 | Construction of the data interface

We used PubMed, the most widely used biological literature database,

as the resource for text mining. The schematic representation of the

overall study design is shown in Figure 1 and can be summarized in

the following steps.

2.2 | Corpus and dictionary organization

The dataset used in this pipeline was derived from the text of articles

from PubMed. First, PubMed was searched for articles containing the

subject keyword “coronavirus” including titles, abstracts, and author

and affiliation information. The search results were downloaded in txt

format for compiling into structured information. The text in the sub-

ject abstract set was organized and cleaned, and assigned to specific

corpuses related to the coronavirus (specific corpus), and then com-

piled into the subject dictionary. To enhance the accuracy of effective

entities associated with the key word, we also constructed the control

group which is a random corpus with “public health” as the key word.

For balancing the amount of information, we randomly selected the

same amount of text as the subject abstract set from the control

group before statistical analysis.

2.3 | Identification of genes precisely related to
the subject “coronavirus”

Biological entity identification is a key step in the literature mining

process. To validate the functionality of the extracted entities, we first

compared the entities from the subject dictionary with the human
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official gene symbols in the Hugo Gene Nomenclature Commission

(HGNC) database to generate subject candidate genes using standard

nomenclature. In addition, the entities in the abstract were capitalized

to avoid errors in the identification process. To obtain widely used

gene entities that are precisely related to the subject and to determine

the significance of the gene distribution in the specific texts, we calcu-

lated the difference in the distribution proportions. We first searched

for the subject candidate genes in the subject dictionary and in the

randomized control dictionary, respectively. We then counted the

number of abstracts containing each subject candidate gene in each

abstract set, respectively. Finally, we calculated the odds ratio of each

subject candidate gene and sorted them into a list of precisely related

genes referred to as coronavirus study-specific host genes (CSHG).

2.4 | Identification of all entities correctly related
to the subject “coronavirus”

Similar to the process of identifying CSHG, we calculated whether

entities were significantly distributed in a specific corpus as the coro-

navirus study-specific entities (CSSE). We counted the number of

texts containing each CSHG in a specific corpus, and then counted

the number of each candidate entity in the corpus subset. Next, we

randomly selected the same amount of text from the random control

corpus and then counted the number of each candidate entity in this

subset of the random corpus. This was repeated 100–10,000 times in

the random corpus to generate candidate entities in the specified

amount of text from the random distribution model. According to the

central limit theorem, the distribution of random sampling averages of

randomly distributed data always conforms to a normal distribution.

Therefore, we can use the Z score to evaluate whether an entity is

significant in a specific text. Here, we used a cutoff Z score > 6.

In addition, some entities mentioned in the abstracts are in singular

or plural noun forms, or synonyms with multiple forms. Therefore, we

automatically combined nouns with plural forms and homologous words

with adjectives and adverb roots into the same subject-related entities

and assigned them the same number. For example, synonymous entities

such as coronaviral, coronavirus, coronaviruses were grouped into one

entity called coronavirus and assigned with one number (see entity num-

ber in Table S1, Sheet 1 first column). A previous method of merging syn-

onymous entities based on a dictionary (Cook & Jensen, 2019; Hettne

et al., 2010) relied on the integrity of that dictionary, and also required a

long retrieval time. To automatically solve the synonymous entity prob-

lem, TWIRLS classifies similar strings based on whether there is a signifi-

cant statistical association between the character blocks in a set of

candidate entities including various synonymous entities.

2.5 | Programming language and efficiency

Part of the algorithm was developed using the MatLab programming

environment and Python language. Algorithm efficiency improvements

F IGURE 1 Flow chart of the knowledge-driven literature mining method, the basic steps of the literature mining includes: (a) identify genes
with accurate relevance to the subject, (b) identify entities with accurate relevance to the subject, (c) entities were classified by calculating the
association strength between genes and entities, (d) alignment with KEGG database to establish an association matrix between pathways and

entity-categories
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and the targeted parallel acceleration module were developed in C/C++

language. In our analysis, the automated text analysis took about 4 hr

to complete on a workstation with an Intel Xeon CPU E5-2690 v4 X2

(28 cores) and 128 GB of memory.

2.6 | Clinical data collection

In this study, we collected the medical records of 92 patients with

COVID-19:90 patients with COVID-19 admitted to the Chongqing

Public Health Medical Center (Chongqing, China) from Jan 24 to Mar

15, 2020 and two patients with COVID-19 admitted to the Chong-

qing Southwest Hospital (Chongqing, China) from Jan 25 to Feb 28,

2020, all patients were diagnosed with COVID-19-related pneumonia

based on the New Coronavirus Pneumonia Prevention guidelines

(World Health Organization, 2020). This study was performed in

accordance with guidelines approved by the Ethics Committees from

the Institute of Basic Medical Sciences, Chinese Academy of Medical

Sciences (002–2020). Demographic, clinical, treatment, and laboratory

data were extracted from medical records. Patients with COVID-19

were classified into mild, severe, and critical according to their condi-

tion based on the partial pressure of oxygen test. All data were inde-

pendently checked by more than one physician.

3 | RESULTS

3.1 | Coronavirus specific entities and host genes

As of February 21, 2020, the PubMed database included 14,878 bio-

medical articles on coronaviruses. We obtained text data (referred to

as the local samples) from all related peer reviewed articles published

by human researchers that contained the keyword “coronavirus”

including the title, abstracts, and author and affiliation information

(total 3,182,687 words). The goal of the literature mining was to iden-

tify host genes and entities that are relevant to coronavirus research

and to establish connections between them. An entity can refer to a

word or phrase of the concept name including related concepts (e.g.,

virus structure and chemical composition, source of infection, and

virus type). The gene names were defined using the mammalian offi-

cial gene symbols in the Hugo Gene Naming Committee (HGNC) data-

base. We directly retrieved 667 candidate genes from the local

samples. By establishing a random distribution of one of the candidate

genes in a control sample, the significance of this gene appearing in

the local samples can be determined if the frequency of the current

gene is an outlier of the random distribution of a control sample (see

Methods for details). By calculating the odds ratio, we can also further

determine the specificity of the association between this gene and

the local samples. In this paper, we selected an odds ratio > 6 as the

threshold for this judgment, which resulted in 123 coronavirus study-

specific host genes (CSHGs).

To determine the specificity of the entity, we made several

choices in the different texts in the local samples. We removed

numbers, symbols, verbs, and garbled characters to obtain clean versions

of the local samples. The CSSE were then identified in only the clean

texts containing CSHGs. Based on the clean selected samples, we next

built a local dictionary of candidate CSSEs, which contained 49,293

words after deduplication. Before calculating the random distribution of

each entity, we included the synonymous entities into a same entity

number (including singular or plural words, active and passive forms, dif-

ferent tenses, suffixes that do not change the meaning, etc.).

After cleaning and processing, CSSEs were identified by TWIRLS

using a similar method as described above for CSHG. For the candi-

date CSSE dictionary, a random distribution model for each entity was

built by TWIRLS using the control samples. We identified 623 CSSEs

(Table S1) based on the outliers discriminated by the random model

and the calculated odds ratios. For example, TWIRLS found 100

CSSEs close to ACE2, the receptor of SARS and SARS-CoV-2 viruses

(Figure 2a). The size of the entity represented the relative distance to

ACE2, with a larger size indicating a closer distance to ACE2. Addi-

tionally, we also constructed the CSSE cloud of the human receptor

gene DPP4 of the MERS virus (Figure 2b).

3.2 | Entity categories and their labels: Human
conclusions and enriched pathways

Although TWIRLS only identified 623 CSSEs after collation, the infor-

mation is scattered in words, which limits the reconstruction of under-

standable mechanistic models. Accordingly, TWIRLS clusters CSSEs

based on the rules defined by the CSHG distribution, as genetic level

research can accurately answer and solve physiological and pathologi-

cal problems. TWIRLS first calculates the specific co-distribution

between CSHGs in local samples, then determines the distance

between each pair of CSSEs and performs dichotomy clustering

according to the linkage relationship between CSSEs and CSHGs. This

step classified the 623 entities into 32 categories represented as C0-

C31 (see category number in Table S1, Sheet 1 second column). In

addition, for each category, TWIRLS also cited the top 10 most rele-

vant references for human researchers (Table S2). Therefore, in any

category, according to the CSSE and the most relevant literature, we

can quickly provide “Labels of conclusion-drawn-by-human-

researcher” (HR Labels) for this category. This label outlines the most

relevant research directions of the current entity category. For exam-

ple, for category C3, the HR label is “Neurotrophic Coronavirus

Related to Immune-Mediated Demyelination”. We have summarized

the HR labels for the 32 entity categories in Table 1.

The relative position of any CSHG to a certain CSSE can be esti-

mated by TWIRLS (see Table S1). As each category contains different

entities, we can determine whether a certain CSHG is significantly

closer to each entity in the current category based on the ranking

matrix between CSHG and CSSE. For example, the average distance

between ACE2 and each of the 92 entities in category C5 was first

calculated and a random distribution model of the average distances

between ACE2 and any of the 92 entities (3,000–5,000 times) was

built. The average distances between ACE2 and entities in category
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C5 were then analyzed to determine those significantly less than or

those deviating from the mean of the random distribution (Z

score = −5.8416). The significance of each category associated with

each CSHG was then determined by TWIRLS using a score ranging

between −10 and + 10, with a smaller score indicating the current

CSHG is more relevant to the current category (see the Z score matrix

in Table S3). For an entity category, the associated CSHGs (e.g.,
CiCSHGs, where i represents the category number) can thus be

selected using a Z score < −3. The Z scores describing the association

between CSHG and any category is summarized in Table S3 and the

category labels of all CSHGs are provided in Table S4.

Specifically, Spike proteins (S proteins) of different coronaviruses

recognize different receptor molecules on human cells: ACE2 binds to

S proteins in SARS and SARS-CoV-2 viruses, and DPP4 binds to S pro-

teins in the MERS virus, FURIN restriction site on the Spike protein

makes the SARS-CoV-2 more infectious than SARS, and TMPRSS2

(Transmembrane protease serine 2) is widely reported to mediate and

assist in the invasion of host cells by multiple viruses. We found that

these four genes were assigned to category C5, which had the

corresponding HR label of “Spike protein (S) of coronavirus”. This

demonstrated that TWIRLS can provide an interface to summarize

human findings automatically and help human experts quickly under-

stand the research directions and relevant knowledge in this field.

At the same time, we also mined the time attribute of the entity

from abstract text, and constructed the correlation matrix between

the topic entities and years by counting the number of occurrences of

each entity in the text sample in different years (1900–2019) (Table S5),

and then clustered according to this time distribution information of

each entity category. The result showed that the topic entity catego-

ries are divided into three groups based on the essence of the entity

category labels: molecular biology research of SARS virus, research of

different coronavirus genera and pathogenic mechanism of coronavi-

rus. Further analysis of the time distribution information showed that

the relevant literatures of the entity category in the molecular biology

research group of SARS virus were mainly published after 2003,

which is in line with the time point of SARS outbreak. Therefore,

TWIRLS mines the research direction and trend of the topic catego-

ries from the time dimension (Figure 3).

The distribution and meaning of the data can be compared to spe-

cific expression values of CSHG under different conditions (here, the cat-

egory is used as a condition). We applied general analysis method of

pathway enrichment that the most relevant genes from each entity cate-

gory are taken as input of the enrichment program for pathway analysis

(Reimand et al., 2019). Therefore, TWIRLS can recommend the most

likely and least likely signaling pathways based on the distribution of the

pathway signatures (Table 2). On the other hand, TWIRLS can also rec-

ommend the most likely and least likely categories for each signaling

pathway. As an example, Table 3 shows the signaling pathways most

likely associated with category C3 and the most unlikely category.

3.3 | Entity category-associated genes involved in
generalized interaction networks

We coupled the above category information with gene interaction/

regulation databases to construct a generalized protein–protein

F IGURE 2 (a, b) The entity cloud (CSSE cloud) associated with ACE2 and DPP4 in the coronavirus knowledge graph. (c–e) The entity clouds of the

three IFITMs family proteins (IFITM1-3) in the coronavirus knowledge graph. (f) The gene cloud associated with coronavirus-C3 entity category
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interaction network (PPI network) for 119 genes out of the 123 CSHGs.

We defined the direct interaction between two genes as one degree (1�)

of interaction, and the indirect interaction connecting two genes through

a gene as two degrees (2�) of interaction. All the genes in the 1� net-

works mined in the PPI database are shown in Figure 4. The results after

deduplication showed 2,004 pairs in the 119 CSHGs (see Table S6). As a

control, the average interactions of 119 randomly selected genes in the

database showed between 252 to 612 pairs (average 220.16, SD 35.15).

Compared to random genes, the regulatory connections between CSHGs

were significantly enriched (Z score = 50.97).

Those CSHGs associated with a certain category had much closer

interactions. For example, CSHGs associated with category C3 (or

associated with C5 or C10) were closer to each other in the 1� net-

works (Figure 4), suggesting that TWIRLS can possibly highlight

important research directions and biology systems involved in corona-

virus-specific research and can provide reliable interfaces for further

automatic inference.

Several hub genes among the 119 CSHGs were further rec-

ommended by TWIRLS. Compared with a random sampling from all

interactions recorded in the database, these hub genes had signifi-

cantly increased numbers of interactions with the other 118 CSHGs.

The recommended results showed that the three members of the

IFITMs family (IFITM1-3) were ranked first, second, and sixth among

the top 10 hub genes. The CSSE cloud of the IFITMs family genes is

shown in Figure 2c–e and detailed ranking recommendation results

are shown in Table S7. These IFITMs genes demonstrated 115 inter-

actions, accounting for 8.59% out of all 1,338 interactions of the 119

CSHGs. These IFITMs were significantly enriched in the local samples

representing updated coronavirus-related studies (average 0.03% in

the control test of random samplings, p < 1.5676e-61). The IFITMs

family plays crucial roles in the induction of interferons during viral

infections. Under the action of interferon, IFITMs disrupt intracellular

cholesterol homeostasis and prevent the virus from entering the host cell

(Amini-Bavil-Olyaee et al., 2013). However, TWIRLS did not directly

associate IFITMs with any category, and we will need further information

so that TWIRLS can determine which part of these genes might be

involved in the coronavirus infection and the host body response.

Combining the category information with generalized interaction

databases provides richer interactions and regulatory linkages. We

extended the 119 CSHGs to their 2� networks based on the interac-

tions with higher likelihood connections (Combined score > 800). The

2� networks expanded the number of genes from 119 host genes to

3,494 genes that may be associated with coronaviruses (see Table S8

for a list of genes, excluding CS119, as this type of gene is called

CSHG2). These genes are mainly involved in two types of functions:

virus-related signaling pathways and immune function-related path-

ways. Table 4 shows a summary of the KEGG signaling pathways.

Among the entire network, we found several CSHGs in the 1�

networks (32.6–35.71%) that directly interacted with three members

of the IFITMs family, whereas fewer CSHGs in the 2� network (5.21–

9.46%) indirectly interacted with them. Although there was a higher

proportion of directly interacting CSHGs, they were not significantly

enriched in any category (see Table S9 for the enrichment scores of

the 1� network nodes in different categories), whereas the indirect

CSHGs were significantly enriched mainly in the C3 and C10 catego-

ries (Z score > 3) (see in Table S10 for the enrichment scores of the 2�

network nodes in different categories). These findings demonstrate

that TWIRLS can provide new insights about hub molecules, particu-

larly when coupled with interaction information. These new candidate

IFITM genes had potential functions associated with category C3.

However, after adding generalized interaction information, TWIRLS

also inferred possible functions of these proteins not associated with

any category.

TABLE 1 Coronavirus-entity category labels and genes associated
with each category. MISC indicates the label cannot be summarized

Category HR label

C0 MISC

C1 Canine coronavirus

C2 Porcine epidemic diarrhea (PED)

C3 Neurotropic coronavirus correlated with immune-

mediated demyelination

C4 Coronavirus that infects humans

C5 Coronavirus spike protein

C6 Protease enhances SARS-CoV infection

C7 Monoclonal antibody to the coronavirus nucleocapsid

protein

C8 SARS-CoV genome

C9 Avian infectious bronchitis coronavirus

C10 Coronavirus and interferon

C11 Feline infectious peritonitis (FIP)

C12 Vectors of novel coronaviruses

C13 Mouse hepatitis virus

C14 Interaction between coronaviruses and receptors

C15 Coronavirus-related vaccines

C16 Identification of MHC class I restricted T-cell epitopes

C17 Transmissible gastroenteritis coronavirus

C18 SARS coronavirus inhibitors and diagnostic methods

C19 Coronavirus fusion with host cells and virus replication

C20 Gene therapy-inhibition of coronavirus by antisense

RNA, sense RNA and protein

C21 Imaging

C22 Cytotoxic T-lymphocyte escape

C23 SARS coronavirus compound inhibitors

C24 Coronavirus studies using biophysical methods

C25 Detection of viral pathogenicity and distribution (RT-

PCR, immunohistochemistry and in situ hybridization)

C26 Coronavirus immunization

C27 Gastroenteritis virus and coronavirus

C28 Effects of coronavirus infection on the body

C29 Coronavirus detection evidence and methods

C30 Human respiratory coronavirus NL63

C31 The antibodies against SARS-CoV
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3.4 | Reconstruction of the mechanistic
consequences of coronavirus invasion

Similar to the SARS virus, viral genomics and structural biology studies

have shown that ACE2 is also a functional receptor for the new

SARS-CoV-2 coronavirus, and the binding of ACE2 to the S protein in

SARS-CoV-2 is 10 to 20 times stronger than in SARS (Wrapp

et al., 2020), which may help the new coronavirus infect the host

through the upper respiratory tract, significantly increasing its infec-

tivity. Using TWIRLS, we were able to identify both ACE2 and DPP4

genes as CSHGs, and both were significantly associated with category

C5. The HR label for this category is “associated with S protein.”

Although entities in category C5 mainly show that virus invasion is

facilitated by virus-binding receptors and membrane proteases, the

biological mechanism of receptor binding to viruses leading to patho-

logical changes has been reported less frequently.

TWIRLS can also recommend new genes that interact with C5CSHGs,

and other 1� or 2� CSHGs linked to these genes might be enriched in

other categories. These inferences are based on a process that finds new

genes connected to different categories. The connected categories can

suggest potential regulatory relationships between different biological

functions or phenotypes. The genes that serve as linkers are potential tar-

gets for gain- and loss-of-function experiments to identify those systems

described by the meaningful entities in these categories.

In this study, TWIRLS found the 2� networks had connections

with certain CSHGs associated with categories or with no category.

For example, TWIRLS found that CSHGs in the 2� connections of

IFITM1 were mainly concentrated in category C3 (see Figure 5). Inter-

estingly, CSHGs in the 2� connections of ACE2 and DPP4 associated

with category C5 were also enriched in category C3, inferring that the

information summarized in category C3 probably describes the under-

lying mechanisms of the pathological changes after coronavirus infec-

tion. In our analysis, the signaling pathways in C3 were mainly RAS,

Vitamin D and RXR activation, and Chemokine signaling, with RAS

being the most significant (Table 3 shows a summary of the C3-

related signaling pathways).

Figure 5 shows that the CSHGs in the 2� connections of IFITM1,

ACE2, and DPP4 were enriched in category C3 through different

genes (AGT/AGTR2 in ACE2, PYY in DPP4, and C3 in IFITM1), which

then linked to C3-associated cytokines including CCL5, CXCL1,

CXCL10, CXCL11, CXCL2, CXCL9, CXCR2, and CXCR3 (Figure 2f).

Subsequently, these linker genes may contain information on the bio-

logical mechanisms that may be important for understanding these

diseases. For example, TWIRLS recommended angiotensinogen (AGT)

and angiotensin II receptor type 2 (AGTR2 or AT2R) genes in category

C3 associated with ACE2. This supports that RAS is probably involved

in the pathological changes caused by cytokine storms after S protein

binds to ACE2 as suggested by other reports.

We next used TWIRLS to calculate the 1� and 2� networks of all

119 CSHGs. Based on the significantly enriched categories of CSHGs

in the above networks, we used TWIRLS to construct separate models

for the complex relationships of each CSHG. We found that 45.53%

of the CSHGs in these networks were associated with C3 or C10 cat-

egories, and five genes (CCL3, CCL5, CXCL1, CXCL2, and STAT2)

were associated with both categories. This suggests that the biological

mechanisms described by C3 and C10 categories might be involved

universally. Research on the entities, genes, pathways, and linker

genes in the C3 and C10 categories could lead to new directions for

the prevention, treatment, and clinical management of coronavirus

infections.

3.5 | Angiotensin II receptor blockers (ARBs) may
be beneficial in patients with COVID-19

It has been demonstrated that the binding of the coronavirus spike

proteins to ACE2 leads to ACE2 downregulation (Jia, 2016), which in

turn results in unbalanced regulation of ACE-Ang II axis and ACE2-

Ang-(1–7) axis. The level of Ang-(1–7) is then decreased, which affects

angiogenesis inhibition, cardiovascular protection against oxidative

stress, and significantly limits cell proliferation (Benter, Yousif, Anim,

Cojocel, & Diz, 2006; Grobe, Mecca, Mao, & Katovich, 2006; Magaldi,

F IGURE 3 Cluster analysis of time information. Entity categories were grouped based on the distribution of date information corresponding
to the topic entities contained in each category. In the heatmap, the rows represent the time information on a yearly basis and the columns
represent the topic-entity categories. To generate the heatmap/cluster dendrogram, Euclidean measure for distance matrix and complete

agglomeration method for clustering was applied
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TABLE 2 The most relevant and least relevant signaling pathways of each coronavirus-entity category

Class Likely pathway Z score Unlikely pathway Z score

C0 PKCθ signaling in T lymphocytes 1.5782 Toll-like receptor signaling −1.7195

C1 AMPK signaling 5.1816 TGF-β signaling −4.0841

C2 Extrinsic prothrombin activation pathway 4.3314 Melanocyte development and pigmentation

signaling

−3.8316

C3 Renin-angiotensin signaling 5.6100 AMPK signaling −4.4763

C4 April mediated signaling 3.2382 Neuregulin signaling −2.4121

C5 Melanocyte development and pigmentation signaling 3.7887 Extrinsic prothrombin activation pathway −3.9823

C6 Leukocyte extravasation signaling 2.3615 Pancreatic adenocarcinoma Siganling −2.3694

C7 Role of BRCA1 in DNA damage response 4.6871 NF-κB signaling −4.8545

C8 PKCθ signaling in T lymphocytes 1.9902 VDR_RXR activation −2.6143

C9 Toll-like receptor signaling 4.2000 Role of BRCA1 in DNA damage response −2.5017

C10 April mediated signaling 4.3113 TGF-β signaling −3.5853

C11 Acute phase response signaling 2.5066 Renin-angiotensin signaling −3.2492

C12 ATM signaling 2.7020 PKCθ signaling in T lymphocytes −1.9846

C13 Retinoic acid mediated apoptosis signaling 2.6069 Interferon signaling −1.8953

C14 ATM signaling 2.9244 PKCθ signaling in T lymphocytes −1.9667

C15 AMPK signaling 1.9142 Leukocyte extravasation signaling −2.4233

C16 Role of BRCA1 in DNA damage response 3.1033 Colorectal cancer metastasis signaling −3.1033

C17 Production of nitric oxide and reactive oxygen species in

macrophages

3.1398 mTOR signaling −2.8893

C18 Extrinsic prothrombin activation pathway 1.8215 Intrinsic prothrombin activation pathway −1.5680

C19 Role of NFAT in regulation of the immune response 2.0089 CD40 signaling −2.2696

C20 April mediated signaling 2.3687 Aryl hydrocarbon receptor signaling −1.5471

C21 NRF2-mediated oxidative stress response 1.4679 CD40 signaling −2.4042

C22 Toll-like receptor signaling 2.2825 Melanocyte development and pigmentation

signaling

−1.6007

C23 ATM signaling 2.5518 mTOR signaling −1.8228

C24 Melanocyte development and pigmentation signaling 2.1700 Aryl hydrocarbon receptor signaling −2.1700

C25 Extrinsic prothrombin activation pathway 1.9825 IL-22 signaling −1.7638

C26 mTOR signaling 2.7449 Aryl hydrocarbon receptor signaling −1.7790

C27 AMPK signaling 2.4033 Intrinsic prothrombin activation pathway −1.7579

C28 NRF2-mediated oxidative stress response 2.0846 PKCθ signaling in T lymphocytes −1.3415

C29 TGF-β signaling 2.4379 Ephrin A signaling −2.0030

C30 Role of NFAT in regulation of the immune response 2.1383 Leukocyte extravasation signaling −1.8524

C31 Role of NFAT in regulation of the immune response 1.7979 Neuregulin signaling −1.4467

TABLE 3 Recommended signaling
pathway most relevant to entity
category C3

Pathway Likely class Z score Unlikely class Z score

Renin-angiotensin signaling C3 5.6100 C5 −3.5918

VDR_RXR activation C3 4.7060 C5 −3.2514

Aryl hydrocarbon receptor signaling C3 4.3746 C5 −3.7887

Chemokine signaling C3 3.9999 C7 −2.4881

IL-8 signaling C3 3.5211 C2 −2.6692

Neuregulin signaling C3 3.2914 C1 −3.4134
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Cesar, de Araújo, e Silva, & Santos, 2003; Shah, Oh, Lee, Lim, &

Kim, 2012; Soto-Pantoja, Menon, Gallagher, & Tallant, 2009). In con-

trast, the level of Ang II is relatively or absolutely elevated, which in

turn contributes to lung injury, as angiotensin-stimulated AT1R results

in increased pulmonary vascular permeability, which mediates

increased lung pathology(Imai et al., 2005; Kuba et al., 2005). Our

F IGURE 4 Gene interaction network centered on 119 CSHGs. The yellow nodes represent 119 CSHGs, the blue nodes represent genes that
interact with CSHG in the string database (combination score > 800), and the red squares mark the most relevant entity category of CSHG

TABLE 4 The signaling pathways enriched by 119 CSHGs

KEGG_PATHWAY Count % p value Bonferroni Benjamini FDR

Part 1. Virus related pathways

ptr05162:Measles 18 11% 1.05E-13 1.38E-11 1.38E-11 1.22E-10

ptr05164:Influenza A 19 11% 7.05E-13 9.30E-11 4.65E-11 8.23E-10

ptr05160:Hepatitis C 15 9% 2.30E-10 3.04E-08 7.60E-09 2.69E-07

ptr05161:Hepatitis B 11 7% 7.37E-06 9.72E-04 1.22E-04 8.61E-03

ptr05169:Epstein–Barr virus infection 6 4% 9.87E-03 7.30E-01 9.58E-02 1.09E+01

ptr05168:Herpes simplex infection 14 8% 2.73E-07 3.60E-05 6.00E-06 3.18E-04

Part 2. Immune functions

ptr04620:Toll-like receptor signaling pathway 15 9% 6.78E-12 8.95E-10 2.98E-10 7.92E-09

ptr04062:Chemokine signaling pathway 16 10% 9.91E-10 1.31E-07 2.62E-08 1.16E-06

ptr04060:Cytokine-cytokine receptor interaction 13 8% 2.80E-06 3.69E-04 5.28E-05 3.27E-03

ptr04622:RIG-I-like receptor signaling pathway 7 4% 1.41E-04 1.84E-02 2.06E-03 1.64E-01

ptr04623:Cytosolic DNA-sensing pathway 6 4% 7.45E-04 9.37E-02 9.79E-03 8.66E-01

ptr04630:Jak–STAT signaling pathway 7 4% 6.11E-03 5.54E-01 7.09E-02 6.90E+00

ptr04668:TNF signaling pathway 6 4% 7.61E-03 6.35E-01 8.06E-02 8.53E+00
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results above also suggest that the homeostatic imbalance of RAS

could be caused by viral binding to membrane ACE2 molecules, which

may lead to dysregulation of inflammatory factor levels. Therefore,

we evaluated the effects of the AT1R antagonists (ARB) such as

losartan and telmisartan on the SARS-CoV-2 infection. We analyzed

the medical records of 92 patients diagnosed with COVID-19 pneu-

monia based on the New Coronavirus Pneumonia Prevention guide-

lines. More than one-half of these patients (51.1%) had one or more

underlying conditions including 31 patients (33.7%) with hypertension

(Figure 6a–c).

Clinically, patients with COVID-19 are classified into mild, severe,

and critical according to the partial pressure of oxygen test, and in this

study we can also define them by analyzing the differences in their

blood indices. Using these blood indices we then investigated hyper-

tension patients with and without ARB, and it turned out that they

also can be clearly distinguished. Here 31 numeric blood indices in

COVID-19 patients were selected as the clinical characteristics,

including the functional indices of the liver, kidney, and heart (Table S11).

Patients with other medical history were also evaluated and clustered

(see below).

For each index, we calculated the average of each group. As the

numerical indices among various patients are not always normally dis-

tributed, we used a random distribution of the mean of the randomly

separate group of patients for 10,000 times. According to the central

limit theorem, the random distribution of any index should be nor-

mally distributed. Therefore, the Z score measures the statistical sig-

nificance of each group of patient indexes defined by illness or

treatments.

Patients with hypertension were divided into two groups, ARB

users and non-ARB users. Out of the 31 hypertensive patients, eight

took ARB drugs (one took Telmisartan, two took Candesartan, three

took Irbesartan and two took Valsartan) and the other 23 patients

took other drugs such as calcium antagonists or diuretics before

admission. After admission, all hypertensive patients were assigned a

calcium antagonist for targeted treatment. We also considered 16

patients with other medical history without hypertension as the other

patient group. For each group, the blood indices were compared

between ARB and non-ARB patients without any medical history to

analyze differences with corresponding Z scores. We obtained Z

scores of six groups representing the clinical characteristics of mild

F IGURE 5 The gene interaction networks centered around DPP4, ACE2, and IFITM1, respectively. The yellow nodes represent the ACE2,
DPP4 and IFITM1 genes, purple nodes represent genes that have 1� of interaction with the core genes, green circled purple nodes represent the
genes connecting CSHG and C3 category-related genes, and pink nodes represent genes with 2� of interaction with the core gene. The red
diamonds show the most relevant entity category symbol for CSHG
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illness, severe illness, critical illness, ARB users, non-ARB users, and

patients without medical history, respectively (Table 5). The cluster

analysis of the Z scores showed a closer relationship between non-

ARB users and severe illness (see Figure 6d), suggesting that ARB

anti-hypertensive drugs may have positive effects on reducing the

severity of COVID-19.

3.6 | Discussion

We used TWIRLS, a machine-based approach, to collect, summarize,

and analyze about 15,000 biomedical articles related to coronavirus,

with the aim to elucidate the mechanisms underlying coronavirus-

induced host pathological changes. The TWIRLS system is an auto-

mated process that can be used to summarize the entities and genes

related to coronavirus infection. By combining this system with gener-

alized interaction databases, we can reveal further associations that

can provide a deeper understanding of the biological mechanisms of

the disease phenotype caused by virus-host interactions. Using

TWIRLS, we found a possible mechanism involving ACE2/AT2R-RAS-

Cytokine signaling, which becomes imbalanced under virus infection

leading to cytokine storms.

The Renin-Angiotensin system consists of an enzymatic cascade

beginning with liver-mediated production of AGT (Skeggs, Dorer,

Levine, Lentz, & Kahn, 1980). As part of RAS, angiotensin-converting

enzyme (ACE) regulates many physiological processes including

inflammation and brain functions (Corvol, Eyries, & Soubrier, 2004).

Angiotensin II (Ang II) is the main effector of this system and exerts

most of its actions through the activation of Ang II type 1 and type 2

receptors (AT1R and AT2R)(Donoghue et al., 2000). Angiotensin II is

formed by the successive enzymatic action of renin and ACE. Defi-

ciency of ACE2 causes respiratory failure pathologies such as sepsis,

pneumonia, and SARS (Boehm & Nabel, 2002; Imai et al., 2005). It has

been confirmed that genetic deletion of AT1a receptor expression in

mice can significantly improve lung function and reduce the formation

of pulmonary edema compared with wild-type mice (Sugaya

et al., 1995). In contrast, inactivation of AT2R in mice aggravated

acute lung injury. This suggests that AT1R mediates the pathogenicity

of Ang II, whereas activated AT2R has a protective role(Hein, Barsh,

Pratt, Dzau, & Kobilka, 1995). Thus, ACE/AT1R and ACE2/AT2R neg-

atively feedback into one another, playing important roles in RAS-

mediated central nervous system and cardiovascular functions. The

binding of the virus to ACE2 may disrupt this balance, which causes a

homeostatic imbalance in RAS, leading to subsequent pathological

changes.

Although Ang II was originally described as an effective vasocon-

strictor, there is growing evidence that it is closely involved in the

inflammatory response of the immune system. Proinflammatory

F IGURE 6 The specific distribution of COVID-19 patient clinical data. (a) Age and gender distribution. (b) Distribution of mild, severe and
critical illness in patients with or without basic medical history. (c) The distribution of illness and anti-hypertension drug in patients with
hypertension history. (d) Cluster graph of clinical characteristics of mild illness, severe illness, critical illness, ARB or non- ARB users with
hypertension, and patients with other medical history
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cytokines derived from immune cells normally regulate the RAS com-

ponent, which further accelerates the formation of systemic and local

Ang II (Nataraj et al., 1999; Rudemiller & Crowley, 2016; Suzuki, Ruiz-

Ortega, Gomez-Guerrero, Tomino, & Egido, 2003). In particular,

proinflammatory cytokines regulate the production of AGT in the liver

and kidney (Brasier, Ron, Tate, & Habener, 1990; Corvol &

Jeunemaitre, 1997; Sriramula, Haque, Majid, & Francis, 2008). On the

other hand, RAS has also been implicated in mediating the cytokine

storm and has functional relationships with the immune system.

Angiotensin II regulates vascular tension and stimulates the release of

proinflammatory cytokines (El Bekay et al., 2003; Ruiz-Ortega

et al., 2002). The production and release of CXC chemokines can

induce the accumulation of neutrophils in vivo (Ide, Hirase,

Nishimoto-Hazuku, Ikeda, & Node, 2008). Besides, ACE inhibitors and

Ang II receptor blockers have been used in a number of cytokine-

mediated inflammatory pathologies, and AT1R blockers (angiotensin

receptor blocker) were shown to have beneficial effects that are com-

monly attributed to AT2R activation (Henrion, 2012). It was also

reported that Ang II-stimulated human endothelial cells exhibit

increased release of a CXC chemokine, IFN-γ-inducible protein 10 (IP-

10 or CXCL10). This protein is mainly expressed in the lung and is a

chemoattractant for activated T cells. The expression of IP-10 has

been observed in many Th1-type inflammatory diseases, where it is

thought to play an important role in recruiting activated T cells to sites

TABLE 5 The z score values of clinical characteristics

Clinical characteristics ARB

Non-

ARB

With other medical

history

Severe

illness

Critical

illness

Mild

illness

Routine blood

tests

White blood cells(WBC)count 1.35 1.06 0.90 1.93 −0.58 −0.32

Neutrophil count(Neu) 1.42 1.47 1.23 2.77 0.03 −0.58

Lymphocyte count(lymph) −0.26 −1.37 −0.93 −2.78 −1.75 0.82

Monocyte count(mono) 1.20 −0.21 −0.03 1.02 −1.63 0.02

Neu% 1.18 2.51 1.43 3.49 1.52 −0.94

Lymph% −1.25 −2.58 −1.44 −3.66 −1.25 0.94

Mono% −0.27 −1.57 −0.76 −0.61 −0.85 0.24

Red blood cell (RBC) count 0.76 −2.24 −1.05 −1.77 −0.48 0.43

Hemoglobin(Hb) 0.55 −0.09 0.99 1.38 −0.04 −0.26

Platelet(PLT) 0.41 0.97 0.72 0.97 −1.91 0.07

Liver function Alanine aminotransferase (ALT) −0.41 −0.73 −0.07 1.61 0.52 −0.40

Aspartate aminotransferase

(AST)

−0.68 0.39 0.58 0.22 2.99 −0.47

Total bilirubin (TBIL) 1.01 0.92 0.11 0.34 0.20 −0.11

Direct bilirubin (DBIL) −0.04 −0.51 −0.13 −0.32 2.96 −0.37

Indirect bilirubin (IBIL) 1.26 0.67 0.03 0.49 0.00 −0.11

Gamma-glutamyl transferase

(GGT)

0.18 0.34 0.64 3.83 1.39 −0.97

Alkaline phosphatase (ALP) 0.11 −0.01 −0.41 −0.30 −0.50 0.13

Lactic dehydrogenase (LDH) −0.54 0.32 0.74 2.70 3.55 −1.07

Total protein (TP) 3.10 −0.73 −1.24 −1.11 −1.35 0.42

Albumin (Alb) 1.97 −1.72 −2.22 −3.65 −1.52 0.99

Globulin (Glb) 2.77 0.54 0.28 2.10 −0.47 −0.38

ALB/GLB (A/G) −1.20 −1.64 −1.54 −3.71 −0.49 0.86

Renal function Na+ 0.31 0.81 0.44 0.63 −3.49 0.37

K+ 1.31 −1.97 −0.47 −3.13 −1.36 0.83

Fasting blood glucose (FBG) 0.03 1.94 0.05 0.41 −0.34 −0.05

Uric acid(UA) 3.07 −1.99 −0.74 −0.84 −1.14 0.34

Urea nitrogen(UN) 0.40 −0.55 −0.28 −0.21 −0.33 0.10

Creatinine(Cr) 2.33 −1.57 −0.76 −0.51 −0.47 0.17

Glomerular filtration rate(CDK-

EPI)

−2.83 −1.89 −0.43 −0.48 −1.34 0.29

Cardiac enzymes Creatine kinase(CK) −0.44 1.14 0.56 −0.26 2.79 −0.32

Creatine kinase-MB (CK-MB) −0.67 0.74 1.76 0.37 0.71 −0.18
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of tissue inflammation. Therefore, RAS dysfunction may result in the

accumulation of cytokines in the lungs leading to excessive accumula-

tion of immune cells and interstitial fluid, resulting in blocked airways

and causing eventual death. In the first reports of severely infected

patients diagnosed with COVID-19, a large number of patients experi-

enced “cytokine storms” that were fatal (Huang et al., 2020). Figure 7

summarizes the functional changes and pathological consequences of

RAS after ACE2 combines with the coronavirus.

We expect the mechanism summarized and reasoned by TWIRLS

can be further supported by pathological evidence. To date, only one

report of a postmortem biopsy has been published with pathological

data. Although histological examination showed bilateral diffuse alve-

olar damage with cellular fibromyxoid exudates, the right lung showed

evidence of desquamation of pneumocytes and hyaline membrane

formation, indicating acute respiratory distress syndrome (ARDS),

whereas the left lung showed pulmonary edema with hyaline mem-

brane formation, suggestive of early-phase ARDS. The pathological

evidence suggests that ARDS symptoms are closely related to cyto-

kine storms (Xu et al., 2020). Based on the above results, we analyzed

the clinical characteristics of COVID-19 patients, which showed that

patients taking ARBs were at a lower risk of developing severe lung

damage than non-ARB patients, indicating these anti-hypertensive

drugs may have positive effects on COVID-19 patients.

Meanwhile, some latest hypothesizes also support this conclusion

that angiotensin receptor 1 (AT1R) inhibitors might be beneficial for

pneumonia patients infected by COVID-19 (Gurwitz, 2020). In addi-

tion, the available evidence, in particular, data from human studies,

does not support the hypothesis that using ACEI/ARB increases ACE2

expression and the risk of complications from COVID-19 (Sriram &

Insel, 2020). Therefore, we suggest that ARB can be used as potential

alternatives for COVID-19. At present, there are several ongoing clini-

cal trials for testing the efficacy of ARB on COVID-19 patients

(telmisartan (Rothlin, Vetulli, Duarte, & Pelorosso, 2020),

NCT04355936; losartan, NCT04312009; valsartan, NCT04335786).

We hope that there will be more evidences of ARB clinical trials and

more histopathology-related data can further support our preliminary

findings using machine approach. At the same time, in order to further

rectify the deviation of structured knowledge generated by the algo-

rithm, more rigorous data statistics methods, discussion and inter-

views with scientists are demanded for guaranteeing the goals of

machine learning algorithm are consistent with that of the human.

That it to say, only combining human experts and algorithms to realize

F IGURE 7 Disequilibrium of RAS-cytokine signaling homeostasis causing cytokine storms triggered by ACE2- mediated coronaviral infection
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machine learning with human guidance can really promote the devel-

opment of machine learning in the future.
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