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Abstract

Investigating the pleiotropic effects of genetic variants can increase statistical power, pro-

vide important information to achieve deep understanding of the complex genetic structures

of disease, and offer powerful tools for designing effective treatments with fewer side

effects. However, the current multiple phenotype association analysis paradigm lacks

breadth (number of phenotypes and genetic variants jointly analyzed at the same time) and

depth (hierarchical structure of phenotype and genotypes). A key issue for high dimensional

pleiotropic analysis is to effectively extract informative internal representation and features

from high dimensional genotype and phenotype data. To explore correlation information of

genetic variants, effectively reduce data dimensions, and overcome critical barriers in

advancing the development of novel statistical methods and computational algorithms for

genetic pleiotropic analysis, we proposed a new statistic method referred to as a quadrati-

cally regularized functional CCA (QRFCCA) for association analysis which combines three

approaches: (1) quadratically regularized matrix factorization, (2) functional data analysis

and (3) canonical correlation analysis (CCA). Large-scale simulations show that the

QRFCCA has a much higher power than that of the ten competing statistics while retaining

the appropriate type 1 errors. To further evaluate performance, the QRFCCA and ten other

statistics are applied to the whole genome sequencing dataset from the TwinsUK study. We

identify a total of 79 genes with rare variants and 67 genes with common variants signifi-

cantly associated with the 46 traits using QRFCCA. The results show that the QRFCCA sub-

stantially outperforms the ten other statistics.
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Author summary

Association analysis of multiple phenotypes will unravel the genetic pleiotropic structures

of multiple phenotypes, provide a powerful tool for developing drug with fewer side

effects. To increase the power of the tests for high dimensional association analysis of mul-

tiple phenotypes with next-generation sequencing data, a key issue is to develop novel sta-

tistics that can effectively extract informative internal representation and features from

high dimensional data. However, the current paradigm of association analysis of multiple

phenotypes does not efficiently utilize the rich correlation structure of the genotype and

phenotype data. To shift the paradigm of association analysis from shallow multivariate

analysis to comprehensive functional analysis, we proposed a new general statistical

framework referred to as a quadratically regularized functional canonical correlation anal-

ysis (QRFCCA) for association test which explores rich correlation information in the

genotype and phenotype data. Large-scale simulations demonstrate that the QRFCCA

has a much higher power than that of the many existing statistics while retaining the

appropriate type 1 errors. To further evaluate the new approach, the QRFCCA are also

applied to the TwinsUK study with 46 traits and sequencing data. The results show that

the QRFCCA substantially outperforms the other statistics.

Introduction

As of February 6th, 2017, a catalog of published Genome-Wide Association Studies (GWAS)

had reported significant association of 26,791 SNPs with more than 1704 traits in 2,337 publica-

tions [1]. It is reported that more than 4.6% of the SNPs and 16.9% of the genes were significantly

associated with more than one trait [2]. These results demonstrate that genetic pleiotropic effects,

which refers to the effects of a genetic variant affecting multiple traits, play a crucial role in

uncovering genetic structures of correlated phenotypes [3–10]. Most genetic analyses of quanti-

tative traits have focused on a single trait association analysis, analyzing each phenotype inde-

pendently [11]. Less attention has been paid to comprehensive analysis of pleiotropic effects

[12]. However, multiple phenotypes are correlated due to shared genetic and environmental

effects [13]. The integrative analysis of correlated phenotypes which tests the association of a

genetic variant with multiple traits often increases the statistical power to identify genetic associ-

ations and increases the precision of genetic effect estimation [13–16]. It is increasingly recog-

nized that the genetic effect can be detected only when the association of the genetic variant with

the multiple traits are jointly tested [17]. It is also noted that directional pleiotropy indicating

that the genetic effects of the variant on the multiple traits are in the same direction (all positive

or all negative) widely exists [18]. Changes of one trait may cause undesired changes of other

traits. Investigation of pleiotropy provides a tool for designing the effective treatment with fewer

side effects.

Two types of approaches can be used for genetic pleiotropic analysis. One approach is to

utilize summary statistics for estimating genetic correlations and testing association of genetic

variants with multiple traits [17–22]. An alternative approach is to use individual genotypic

information for association analysis of multiple correlated traits [23]. The focus of this paper is

to use individual genotypes for pleiotropic analysis. Three major types of methods are com-

monly used to explore the association of genetic variants with multiple correlated phenotypes:

multivariate techniques including multivariate linear models [15,24–33], linear mixed models

[11,16,33,34] and functional linear models [35], the combinations of univariate association

measures for different phenotypes [36–39, 43], and dimension reduction methods including
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principal component analysis (PCA) [14,40–43], and canonical correlation analysis [30,44–

47].

Statistical methods for testing the association of common variants with multiple traits have

been well developed and successfully applied [2]. The methods for pleiotropic analysis of rare

variants are still under development [25, 48]. Next-generation sequencing and modern biosen-

sing techniques have generated dozens of millions of SNPs and large numbers of clinical and

intermediate phenotypes. The current multiple phenotype association analysis paradigm lacks

breadth (the number of phenotypes and genetic variants jointly analyzed at a time) and depth

(hierarchical structure of phenotype and genotypes). Most approaches perform analysis on the

subsets of the full data space that are often missing, but now available. A key issue for high

dimensional pleiotropic analysis is to effectively extract rich correlation information from

extremely high dimensional genotypic and phenotypic data. The statistical power of the meth-

ods that do not efficiently explore dimension reduction of both phenotype and genotype data

will be limited. Despite their wide applications to the pleiotropic analysis, the current pleiotro-

pic analysis methods share the same drawbacks. These methods, particularly multivariate

analysis methods, either do not use data dimension reduction or ignore the rich linkage dis-

equilibrium structure of genomic data when data dimension reduction is used. The most

widely used methods for pleiotropic analysis are originally designed for analyzing a small

number of phenotypes and common variant data. Due to the lack of efficient analytic plat-

forms, the current pleiotropic analysis methods have not been applied to large-scale real

genetic pleiotropic analysis with a large number of phenotypes and next-generation sequenc-

ing (NGS) data. To overcome these limitations and fully take the advantages of the rich linkage

disequilibrium information across a genomic region, we combine two approaches: (1) func-

tional data analysis and (2) quadratically regularized CCA to develop a novel statistical method

that is referred to as a quadratically regularized functional canonical correlation analysis

(QRFCCA) for testing the association of genomic regions with multiple traits. The QRFCCA first

transforms the high dimensional correlated discrete genotype data across the genes or genomic

regions to a few regularized functional principal components in the low orthonormal eigenfunc-

tional space by functional principal component analysis (FPCA). Then, the QRFCCA will further

utilize the quadratically recognized matrix factorization to project both the phenotype data and

compressed genomic data by FPCA to low dimensional space with much fewer number of bases

(components) than the traditional matrix factorization or PCA and changed distribution of eigen-

values in which the proportion of top eigenvalues substantially increases. The QRFCCA dramati-

cally reduces the dimensions of both genotype and phenotype data while fully retaining the original

genotypic and phenotypic information.

To evaluate the performance of the developed QRFCCA for association analysis of multiple

phenotypes, we conduct large-scale simulations comparing QRFCCA to ten statistics: Sparse

CCA (SCCA) [49], MSKAT [50], GAMuT [25], FCCA [51], kernel CCA (KCCA) [52], CCA,

A Unified Score-Based Association Test (USAT) [53], PCA (applying to both phenotypes and

genotypes), MANOVA (multivariate ANOVA applied to multiple phenotypes and SNPs),

and minP (minimum of P-values for testing the association of single SNP with multiple pheno-

types) and demonstrate that the QRFCCA has a much higher power than other competing

statistics while retaining the correct type 1 error rates. Finally, the QRFCCA and ten other sta-

tistics are applied to the whole genome sequencing dataset from the TwinsUK study where 756

individuals with 33,746 genes and 46 traits in 13 major phenotype groups are included in the

analysis. We find that the QRFCCA for pleiotropic analysis substantially outperforms the ten

other statistics. A program for implementing the developed QRFCCA for association analysis

of multiple phenotypes can be downloaded from our website https://sph.uth.edu/research/

centers/hgc/xiong/software.htm and https://cran.r-project.org/web/packages/.
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The UK10K data can be downloaded from http://www.uk10k.org.

Materials and methods

The essential component of the QRFCCA is data dimension reduction. To efficiently reduce the

data dimension while exploring the rich correlation information in the data, the data dimension

reduction pipelines of proposed QRFCCA for pleiotropic genetic analysis consist of four steps:

(1) FPCA, (2) matrix factorization, (3) quadratic regularization, and (4) CCA. The FPCA changes

the raw data (genotype data only or both genotype and phenotype data when the phenotypes are

function-valued, for example, RNA-seq data) to the functional principal component (FPC) repre-

sentation that can capture the correlation features. The matrix factorization is to embed the FPC

scores or multiple scale phenotypes into the low dimensional vector space. It compresses the FPC

score or phenotype data to a few new features that are another level of representation of data.

Quadratic regularization further compresses the data and changes the representation of FPC

scores or phenotypes. Finally, CCA is used as an effective tool for two-view dimension reduction.

QRFCCA combines dimension reduction in different levels of data representations.

Genotype-phenotype association attempts to unravel the relationships between certain

combinations of genetic variants from multiple loci and certain combinations of multiple phe-

notypes. The CCA measures the linear relationships between two multidimensional sets of var-

iables and hence will be naturally used as a general framework for identifying the association

between genotypes and phenotypes.

Smooth functional principal component analysis

We first briefly introduce the smooth functional principal component analysis (FPCA) for

genetic variant data [54]. We first review the definition of genetic variant profiles. Let t be the

position of a genetic variant within a genomic region and T be the length of the genomic

region being considered. For convenience, we rescale the region from [0,T] to [0,1]. We can

view t as a continuous variable in the interval [0,1] because the density of genetic variants is

high. We define the genotype function of the i-th individual as

xiðtÞ ¼

2 MM

1 Mm

0 mm

; i ¼ 1; � � � ; n ð1Þ

8
>><

>>:

where M is an allele at the genomic position t and n is the number of sampled individuals.

Although the FPCA can also be applied to function-valued phenotypes, for example, RNA-seq

data, this paper will focus on genotype function, assuming that the phenotypes are scale

variables.

A key step of the FPCA is that the functional data are projected into a finite-dimensional

space of FPCs or eigenfunction [51, 54]. Let βj(t),j = 1,2,. . . be a set of FPCs which can be

obtained from solving integral eigenequation (details are referred to the book [51] or paper

[54]). Similar to Fourier series or wavelet expansions, the genotype profile function xi(t) can be

expanded in terms of orthogonal FPCs where FPCs were taken as basis functions:

xiðtÞ ¼
XJ

j¼1
xijbjðtÞ; ð2Þ

where ξij is the FPC score of the ith individual which can be estimated by

xij ¼

Z

T
xiðtÞbjðtÞdt; ð3Þ
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where integral was calculated numerically [51]. FPCs were constructed from genotype func-

tions for each gene and contained linkage disequilibrium information. Each individual has a

number of FPC scores. The FPC scores can represent the original genotype functions. FPCs

can efficiently compress the data. For example, in the TwinsUK data set, 2,633,479 common

SNPs and 2,249,090 rare SNPs and 33,746 genes were included in the FPCA analysis. The

FPCA analysis was performed for each gene. On average, 2.5 FPCs each gene can account for

90% of common variant variation and 2.7 FPCs each gene can account for 90% of rare variant

variation.

Matrix factorization

Consider a data matrix A 2 Rn×q consisting of n samples with q features (variables). The data

matrix A represents the genotype data, the FPC scores or the phenotype data. The phenotype

data include both continuous and discrete values. The ith row of A is a vector of q features for

the ith sample, and the jth column of A is a vector of the jth feature across the set of n samples.

Matrix factorization is used as a general framework to embed the genetic and phenotype data

into the low dimensional vector space to reduce the data dimension and remove anomalous or

noise data points [55]. To accomplish this, we first seek the best rank-l approximation to the

matrix A by factorizing it into a product of two low rank matrices.

Let G 2 Rn×l and H 2 Rl×q. Assume that the rank of A is r. Therefore, r�min(n,q). Matrix

factorization attempts to minimize the approximation error:

min
G;H

kA � GHk2

F; ð4Þ

where k.kF denotes the Frobenius norm of a matrix.

A solution to problem (4) can be found by truncating the singular value decomposition

(SVD) of Aij [55]. Let the SVD of A be given by

A ¼ ULVT ; ð5Þ

where U = [u1,. . .,ur] 2 Rn×r, V = [v1,. . .,vr] 2 Rq×r, UTU = Ir×r, VTV = Ir×r, and Λ = diag(λ1,. . .,

λr) 2 Rr×r with λ1� λ2� . . .� λr> 0. The columns of U and V are referred to as the left and

right singular vectors of A, respectively, and λ1,. . ., λr are referred to as the singular values of

A.

Let Λl = diag(λ1,. . .,λl), Ul = [u1,. . .,ul] and Vl = [v1,. . .,vl]. Define G ¼ UlL
1=2

l and

H ¼ L
1=2

l Vl. The best rank-l approximation to the matrix A or the l-rank matrix factorization

of A is then given by [55]

A � GH: ð6Þ

The matrix factorization compresses the q features (variables) in the original data set to l<
q new features and hence reduces the data dimension.

Canonical correlation analysis

An alternative to multivariate linear regression analysis, the CCA is a popular analytic platform

for genetic pleiotropic analysis. The goal of CCA is to seek optimal correlation between linear

combinations of two sets of variables: the set of traits and the set of SNPs. The CCA measures

the strength of association between the multiple SNPs and the traits. The pairs of linear combi-

nations are called canonical variates and their correlations are called canonical correlations

[56].
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Consider a phenotype matrix Y = [Y1,. . .,Yk] with k traits and genotype matrix X = [X1,. . .,

Xp] with p SNPs or FPC scores. We assume that p + k variables Z = [XT,YT]T jointly have the

covariance matrix

Szz ¼
Sxx Sxy

Syx Syy

" #

:

Let

R2 ¼ S� 1=2

yy SyxS
� 1

xx SxyS
� 1=2

yy ð7Þ

and

K ¼ S� 1=2

xx SxyS
� 1=2

yy :

The SVD of K is

K ¼ ULVT ; ð8Þ

where Λ = diag(λ1,. . .,λq) and q = min(p,k) is the smaller number of variables in the two geno-

type-phenotype datasets.

It is well known that the canonical vectors are

A ¼ S� 1=2

xx U;

B ¼ S� 1=2

yy V;
ð9Þ

and the vector of canonical correlations are

CC ¼ ½l1; . . . ; lq�
T
: ð10Þ

A squared canonical correlation measures the proportion of variance linearly shared by the

two sets of canonical variates derived from the input genotype-phenotype data sets.

Canonical correlations between the genotype and phenotypes measure the strength of their

association. The CCA produces multiple canonical correlations. But we wish to use a single

number to measure the association of the genetic variation with the multiple traits. We pro-

pose to use the summation of the square of the singular values as a measure to quantify the

association of the genetic variation within a gene or genomic region with the multiple traits:

r ¼
Xq

i¼1
l

2

i ¼ TrðL2
Þ ¼ TrðR2Þ: ð11Þ

To test the association of the genetic variation in a gene or genomic region is equivalent to

test independence between the two genotype-phenotype datasets X and Y or to test the hypoth-

esis that each variable in the set X is uncorrelated with each variable in the set Y. The null

hypothesis of no association of the genotype data X with the phenotype dataset Y can be for-

mulated as

H0 : Sxy ¼ 0:

The likelihood ratio for testing H0: ∑xy = 0 is

Lr ¼
jSzzj

jSxxjjSyyj
¼
Yq

i¼1
ð1 � l

2

i Þ; ð12Þ

which is equal to the Wilks’ lambda Λ defined in the multivariate linear regression model.
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This demonstrates that testing for association using multivariate linear regression can be

treated as special case of CCA [57].

We usually define the likelihood ratio test statistic for testing the association as:

TCCA ¼ � N
Xq

i¼1
logð1 � l

2

i Þ: ð13Þ

For small l
2

i , TCCA can be approximated by N
Xq

i¼1
l

2

i ¼ Nr, where r is the measure of asso-

ciation of the genetic variation in the gene or genomic region with the multiple traits. The

stronger the association, the higher the power that the test statistic can test the association.

Under the null hypothesis H0: ∑xy = 0, TCCA is asymptotically distributed as a central w2
pk.

When sample size is large, Bartlett (1939) suggests using the following statistic for hypothesis

testing:

TCCA ¼ � ½N �
ðqþ 3Þ

2
�
Xq

i¼1
logð1 � l

2

i Þ: ð14Þ

Quadratically regularized matrix factorization and canonical correlation

analysis

The power of the test statistics in CCA depends on the squared canonical correlations or eigen-

values of the matrix R2. We wish to increase the power via changing distribution of the canonical

correlations and data reduction. In matrix factorization, for fixed rank l, we want to approximate

the matrix A by the product of two factor matrices G and H as accurately as possible. However,

the Frobenius norm of the matrices G and H may be large. We need to balance the approxima-

tion accuracy and the Frobenius norm of the factor matrices. Specifically, we add the Frobenius

norm of the factor matrices to the objective in Eq (4). The optimization problem (4) is now

transformed to the quadratically regularized matrix factorization problem:

min
G;H

F ¼ kA � GHk2

F þ mkGk2

F þ mkHk2

F: ð15Þ

From Eq (5), the matrices G and H have the forms:

G ¼ UlL
1=2

l and H ¼ L
1=2

l Vl; ð16Þ

where Λl = diag(τ1,. . .,τl,0,. . .,0). The matrices G and H are determined by τj. Seeking the

matrices G and H to optimize the objective function in Eq (15) is equivalent to finding solu-

tions τj to minimize the objective function in Eq (15).

Using techniques in (55), we can show that the solution to optimization problem (15) is

tj ¼ ðlj � mÞ
þ
; ð17Þ

where (a)+ = max(a,0) and λj is defined in Eq (8).

In practice, a singular value is selected as a penalty parameter μ such that the sum from the

selected singular value to the smallest singular value accounted for 20% of total singular values.

Define the matrix Λl as

Ll ¼ diagððl1 � mÞ
þ
; . . . ; ðll � mÞ

þ
Þ:

Then, factor matrices G ¼ UlL
1=2

l and H ¼ L
1=2

l Vl are the solution to the minimization

problem (15). We use truncation of the SVD to keep only the top l singular values and soft-

thresholding on the singular values to change distribution of the singular values. When μ
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increases beyond some singular values λm, l − m + 1 singular values of GH will disappear. Ana-

lytically, we can easily show that

l1 � m

l1 � mþ l2 � mþ . . .þ ll � m
>

l1

l1 þ l2 þ . . .þ ll
:

In other words, increasing μ will move up the proportion of the first singular value in the

total of singular values.

The phenotype data consist of 756 samples with 46 traits. The initial largest singular value

and total singular values of the phenotype data are 73.97 and 1030.14 respectively. S1 Fig

shows that the proportion of the first singular value in the total of singular values is an increas-

ing function of threshold μ. This clearly demonstrates that adding quadratic regularization

results in changing the distribution of the singular values of the factor matrices. Therefore, we

can expect that regularized matrix factorization for data reduction will increase the power to

detect association of the genetic variation with the traits.

Quadratically regularized matrix factorization and CCA have broad applications. There are

a number of ways to use the quadratically regularized matrix factorization for data reduction

in the association analysis which are briefly summarized as follows.

1. Continuous phenotypes and NGS genotype data (dimension reduced genotype data using

FPCA-gene-based association study).

We can first apply the quadratically regularized matric factorization to both multiple phe-

notype data and FPC score data in a gene or genomic region and then use CCA for associa-

tion analysis of multiple traits. This analysis will be referred to as quadratically regularized

FCCA (QRFCCA) for multiple trait association analysis. If only a single trait is considered,

the quadratically regularized matrix factorization is only applied to the FPC score in the

gene.

2. Continuous phenotypes and multiple SNPs.

Quadratically regularized matrix factorization is first applied to both multiple phenotypes

and SNPs for data reduction and then CCA is used for multiple trait association analysis.

This procedure is referred to as QRMCCA.

3. Continuous phenotypes and a single SNP.

Quadratically regularized matrix factorization is first applied to multiple phenotypes and

then CCA is used for multiple trait association analysis. This procedure is referred to as

QRSCCA.

4. Both functional phenotype such as RNA-seq data and functional genotype data such as

NGS data. FPCA is first applied to both functional phenotype and genotype data to obtain

FPC scores for both phenotypes and genotypes. Quadratically regularized matrix factoriza-

tion is applied to FPC scores of both functional phenotype and genotype data. Finally, CCA

is used for multiple trait association analysis. This procedure is referred to as QRBFCCA.

Quadratically recognized matrix factorization can also be applied to the K or R2 matrix in

the CCA. The test statistics then use the singular values of the reduced K or R2 matrix to test

association of genetic variation with a trait.

To adjust for covariates, we first regress phenotypes on the covariates. If the covariates are

the same for all traits, then the multivariate regression will be used to simultaneously regress

all the phenotypes to the covariates. Otherwise, we regress each trait to the covariates individu-

ally. The residuals are then taken as one set of variables (similar to phenotypes) for CCA.
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Connection between the strength of association and heritability

Next we study the relationships between the association of the genetic variation within a gene

or genomic region with the multiple traits and the heritability of quantitative traits. For sim-

plicity, we assume that the genetic variation is the only major contribution to the phenotypic

variation and we will not consider the covariates. In Supplemental note A, we show that the

narrow heritability is equal to the measure of association r of the genetic variation within a

gene or genomic region with the multiple traits defined in Eq (11).

Relationship among CCA, kernel CCA, functional CCA, cross-

covariance operator, dependence measure and other association tests

In supplemental note B, we use reproducing kernel Hilbert spaces (RKHS) as a general frame-

work and the covariance operator as a general tool for unifying CCA, kernel CCA, functional

CCA and other association analyses including GAMuT. Many multivariate and functional sta-

tistical methods such as regression, CCA, kernel regression, kernel CCA, functional regression

and functional CCA can be used to test the association of genetic variants with the phenotypes.

In supplemental note B, we develop a unified framework for association tests to reveal the rela-

tionships among various multivariate and functional association tests.

In Supplemental Note B, we define two kernels Kx = (K(Xi,Xj))m×m, Ky = (K(Yi,Yj))m×m,

G ¼ Im � 1

m 1m, and centered kernels: ~Kx ¼ GKxG and ~Ky ¼ GKyG. Using the centered kernels

we can define the dependence measure as (N39):

1

m2
Trace ð~Kx

~KyÞ; ð18Þ

which is the basis for the GAMuT test [25]. In Supplemental note B, we show that the KCCA is

quite similar to the kernel independent test and that the association measure in the KCCA is

exactly equal to the dependence measure.

Finally, we consider the FCCA. In Supplemental note B, we unify multivariate association

tests and functional association tests. Suppose that the FPC scores form a feature space. In sup-

plemental note B, we define the feature maps from the original functional data to the FPC

score feature space. We show that the dependence measure in the FPC score-based kernel

analysis is asymptotically equal to the association measure of the FCCA. This implies that the

FCCA is a specific kernel analysis that uses the FPC score to define the kernels instead of

directly using the genotype data to define the kernels.

Results

Null distribution of test statistics

To examine the null distribution of test statistics for association analysis of multiple traits, we

performed a series of simulation studies to compare their empirical levels with the nominal

ones. We calculated the type I error rates for rare alleles, and both rare and common alleles.

We first assumed the model for multiple traits:

Yi ¼ mþ εi; i ¼ 1; . . . ; n;

where Yi = [yi1,. . .,yik], k is the number of traits, μ is a vector of overall means, and εi is distrib-

uted as N(0,S), where ∑ is a k × k residual correlation matrix. We similarly model the correla-

tion matrix as in Broadaway et al [25]. We also consider three scenarios of low residual

correlation among phenotypes with pair-wise correlation selected from a uniform (0.1, 0.2)

distribution, moderate residual correlation with pair-wise correlation selected from a uniform
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(0.2, 0.4) distribution, and high residual correlation with pair-wise correlation selected from a

uniform (0.4, 0.7) distribution.

We randomly generated 1,000,000 haplotypes with gene C16orf62 from 659 samples of

European origin in The 1000 Genome Project. 1,000 SNPs with 600 rare variants (frequencies

ranging from 0.0005 to 0.01) and 400 common variants (frequencies larger than 0.01) were

randomly selected from C16orf62 gene. The number of sampled individuals for type 1 error

simulations from populations of 500,000 individuals ranged from 500 to 2,000. A total of

10,000 simulations were repeated. The type 1 error rates were estimated as the proportion of

the datasets under the null distribution in which the P-values were less than or equal to the sig-

nificance level.

Tables 1 and 2 summarized the type 1 error rates of the eleven statistics: QRFCCA, Sparse

CCA (SCCA) [49], GAMuT [25], MSKAT [50], FCCA, Kernel CCA (KCCA), CCA, A Unified

Score-Based Association Test (USAT)[53], PCA (applying to both phenotypes and genotypes),

MANOVA (multivariate ANOVA applied to multiple phenotypes and multiple SNS) and

minP (minimum of P-values for testing the association of single SNP with multiple pheno-

types) for testing the association of rare variants, and both rare and common variants, within a

genomic region with 15 high correlated traits, respectively, at the nominal levels α = 0.05, α =

0.01, α = 0.001, α = 0.0001, and α = 0.00001. Tables S1-S16 showed type 1 error rates of the

eleven statistics for testing the association of rare variants, and both rare and common variants

with 5, 10 and 15 traits under three scenarios: low, moderate and high correlations. These

tables showed that the estimated type 1 error rates of the QRFCCA across a range of assump-

tions were not appreciably different from the nominal levels α = 0.05, α = 0.01, α = 0.001, α =

0.0001, and α = 0.00001. We also observed that the type 1 error rates of other ten statistics, in

most scenarios, were appropriate.

Power evaluation

To evaluate the performance of the QRFCCA in association analysis, we used simulated data

to estimate power of eleven statistics for testing the association of a gene or a genomic region

with the traits. We simulated 5, 10 and 15 traits with low, moderate and high correlations. An

additive genetic model was used to summarize all genetic effects of causal variants in the gene

or genomic region.

Table 1. Type 1 error rates of 11 statistics for testing the association of rare variants in a gene with 15 high correlated traits.

Sample Size Nominal Level QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT minP

0.05 0.0492 0.0477 0.0524 0.0513 0.0399 0.0494 0.0473 0.0495 0.0442 0.0484 0.0284

0.01 0.0099 0.0097 0.0104 0.0101 0.0074 0.0102 0.0097 0.0096 0.0095 0.0095 0.0058

500 0.001 0.0011 0.0011 0.001 0.001 0.0008 0.0009 0.001 0.001 0.001 0.001 0.0007

0.0001 0.0001 0.0001 0.00009 0.0001 0.00009 0.00009 0.00009 0.00009 0.0001 0.0001 0.0001

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.05 0.0497 0.0514 0.0548 0.0477 0.0595 0.0512 0.0464 0.0501 0.0485 0.0484 0.0253

0.01 0.0099 0.0106 0.0106 0.0099 0.0116 0.0105 0.0107 0.0095 0.0099 0.0107 0.0053

1000 0.001 0.001 0.001 0.0011 0.0011 0.0011 0.001 0.001 0.001 0.0009 0.001 0.0005

0.0001 0.00009 0.00009 0.00009 0.00008 0.00009 0.00009 0.00009 0.0001 0.00009 0.0001 0.00009

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.05 0.0498 0.0461 0.0526 0.0486 0.0598 0.0497 0.0496 0.0533 0.0417 0.0469 0.0271

0.01 0.0096 0.0104 0.0113 0.0098 0.0123 0.0106 0.0106 0.0099 0.0099 0.01 0.005

2000 0.001 0.0009 0.001 0.0011 0.001 0.0014 0.001 0.0009 0.001 0.0009 0.001 0.0005

0.0001 0.00011 0.0001 0.0001 0.0001 0.00011 0.0001 0.0001 0.0001 0.00011 0.0001 0.0001

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

https://doi.org/10.1371/journal.pcbi.1005788.t001
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For each individual, 5, 10, 15 quantitative traits were simulated by the summation of genetic

effects and the residual correlation between the traits. Let h2
k be the narrow heritability of the

kth trait. Assume that each SNP had a 2% chance to be associated with a trait and its genetic

effect on the kth trait was equal to the

ffiffiffiffiffiffiffi
h2
k

MAF

q

multiplied by the number of minor alleles where

MAF denoted the frequency of the minor allele. This indicates that the genetic effect of causal

variants was inversely proportional to its minor allele frequency.

We did not assume that the gene of interest was associated with all traits. For each of five

traits, ten traits and fifteen traits, we consider three scenarios: (1) the gene of interest was truly

associated with three of five assessing traits, six of ten assessing traits and eight of fifteen assess-

ing traits (the gene was associated with 53.3% of traits); (2) the gene of interest was truly associ-

ated with two of five assessing traits, four of ten assessing traits and six of fifteen assessing

traits (the gene was associated with 40% of traits); and (3) the gene of interest was truly associ-

ated with one of five assessing traits, two of ten assessing traits and three of fifteen assessing

traits (the gene was associated with 20% of traits). We consider two significant levels: α = 0.05

and α = 0.00001.

The residual correlation was simulated from a multivariate distribution with mean zero and

covariance matrix

1 � h2
1

r12
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where the correlation between traits rij was randomly generated with uniform distribution:

low correlation [0.1–0.2], moderate correlation [0.2–0.4] and high correlation [0.4–0.7]. In

Table 2. Type 1 error rates of 11 statistics for testing the association of common and rare variants in a gene with 15 highly correlated traits.

Sample Size Nominal Level QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT minP

0.05 0.0518 0.0519 0.0492 0.0516 0.0404 0.0497 0.0473 0.0482 0.049 0.0488 0.0276

0.01 0.0095 0.0105 0.0103 0.0103 0.0076 0.0094 0.01 0.0097 0.0104 0.0103 0.0057

500 0.001 0.001 0.0009 0.001 0.0009 0.0008 0.001 0.001 0.001 0.0009 0.001 0.0006

0.0001 0.00011 0.00011 0.00012 0.00012 0.00011 0.0001 0.00011 0.00011 0.0001 0.0001 0.0001

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.05 0.0503 0.0467 0.055 0.0522 0.0579 0.0484 0.0513 0.0495 0.0442 0.0491 0.028

0.01 0.0097 0.0099 0.0105 0.0099 0.0109 0.0095 0.0097 0.0099 0.0096 0.0096 0.0055

1000 0.001 0.001 0.001 0.0011 0.001 0.0012 0.001 0.0011 0.001 0.0009 0.0011 0.0005

0.0001 0.00013 0.00012 0.00012 0.00013 0.00012 0.0001 0.00012 0.00011 0.00014 0.0001 0.00011

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

0.05 0.05 0.0512 0.0556 0.053 0.0694 0.0517 0.0534 0.0479 0.0481 0.0513 0.0266

0.01 0.0102 0.0096 0.0113 0.0098 0.0125 0.0099 0.0106 0.0096 0.0096 0.0097 0.0052

2000 0.001 0.001 0.001 0.0011 0.001 0.0012 0.001 0.001 0.001 0.001 0.001 0.0005

0.0001 0.00013 0.00011 0.00011 0.00012 0.0001 0.0001 0.0001 0.0001 0.00012 0.0001 0.00011

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001

https://doi.org/10.1371/journal.pcbi.1005788.t002

Pleiotropic analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005788 October 17, 2017 11 / 33

https://doi.org/10.1371/journal.pcbi.1005788.t002
https://doi.org/10.1371/journal.pcbi.1005788


summary, the genetic model for power evaluation is given by

½ y1 � � � yK �

¼ ½ x1 � � � xq � �
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where yi represented phenotypes, xj was an indicator variable for coding the genotype of the jth

SNP in the gene, taking values 0, 1, 2 to represent the number of minor alleles at the SNP. αij

denoted the genetic effect that followed a normal distribution with Nð0;
ffiffiffiffiffiffiffi
h2
i

MAFj

r

Þ, where h2
i

denoted the narrow heritability of the ith trait, MAFj denoted the frequency of the minor allele

at the jth SNP, bij in the matrix represented the probability of the jth SNP being the causal vari-

ant for the ith trait and followed a binomial distribution B(1,0.02). Notation � denoted an ele-

ment-wise matrices multiplication, ti * B(1,0.6),ti * B(1,0.4),ti * B(1,0.2) represented the

probability of the gene being tested contributing the genetic effect to the ith trait for scenarios

1, 2 and 3, respectively, and h2
i denoted the heritability of the ith trait and followed a uniform

distribution U(0.005,0.015), εi, i = 1,. . .,K denoted residuals and followed a multivariate nor-

mal distribution as defined above.

The genotype data in type 1 error calculations were also used for power evaluation. A total

of 10,000 simulations were repeated for the power calculations.

We first compared the power of QRFCCA with ten other competing statistics that are

described in type 1 error rate calculations for testing the association of rare variants with multi-

ple continuous traits. Power was estimated as a function of sample sizes. Figs 1–3 plotted the

power of the curves as a function of sample sizes of the eleven statistics for collectively testing

the association of all rare variants in the gene with 10 low, moderately and highly correlated

traits for scenario 1, respectively, at the significance level α = 0.05. The power curves of eleven

statistics for testing the association of the gene including only rare variants with 5 and 15 low,

moderately and highly correlated traits for scenario 1, respectively, were plotted in Fig S2–S4,

Fig S5–S7. The power of the curves as a function of sample sizes of the eleven statistics for col-

lectively testing the association of all rare variants in the gene with 10 low, moderately and

highly correlated traits for scenarios 2 and 3, respectively, were plotted in Fig S8–S13. We

observed several remarkable features. First, we clearly observed that the QRFCCA had highest

power among all eleven statistics, followed by SCCA for most scenarios considered. Second, in

general, the power of the FCCA was higher than that of the KCCA and the GAMuT, but their

differences were very small. Third, we often observed that the sparse CCA had higher power

than the classical CCA. Fourth, the power of the MSKAT was often higher than that of

GAMuT.

Next we investigated whether the power pattern of the eleven statistics for testing the associ-

ation of the gene with only rare variants would still hold when testing the association of the
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gene with both rare and common variants. Figs 4–6 presented the power curves of eleven sta-

tistics for testing the association of the gene including both rare and common variants with 10

low, moderately and highly correlated traits for scenario 1 at the significance level α = 0.05,

respectively. Fig S14-S16 and Fig S17-S19 showed the power curves of the eleven statistics for

testing the association of the gene including both rare and common variants with 5 low, mod-

erately, and highly correlated traits, and 15 low, moderately, and highly correlated traits for

scenario 1, respectively. We also presented the power curves of the eleven statistics for testing

the association of the gene including both rare and common variants with 10 low, moderately,

and highly correlated traits for the scenarios 2 and 3, respectively, in Figure S20-S25. We first

observed that the power of the QRFCCA in any cases was much higher than that of all other

ten statistics. Then, we observed that differences in power between the QRFCCA and other ten

statistics for the common variants were much higher than for the rare variants and their differ-

ences increased as the correlation between traits increased or the number of the traits which

the gene was associated with increased. We also observed that the power of all statistics for test-

ing the association of common variants was higher than that of all statistics for testing the asso-

ciation of rare variants. Finally we observed the power of the classic CCA, manova, PCA and

min P was very low.

To show that the dimension reduction of the QRFCCA for the phenotype will also improve

the power of the test, we presented Fig S26 that showed the power of eleven statistics for testing

the power of a single common variant with 15 low correlated traits as a function of sample

sizes. We observed that the QRFCCA still had higher power than all other ten statistics for

Fig 1. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of all rare variants in the gene with 10 traits with low correlations for the scenario 1 at the

significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g001
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testing the association of the single common variant with multiple traits due to its efficient

dimension reduction, followed by kernel CCA. Since the MSKAT and GAMuT did not pro-

vide tools for efficiently reducing the dimension of the phenotypes, the power of the MSKAT

and GAMuT were much smaller than that of the QRFCCA, and even smaller than that of ker-

nel CCA.

Finally, we presented Fig S27-S32 showing the power curves of the eleven statistics for test-

ing the association of the gene including rare variants only, and both rare and common vari-

ants with 15 highly correlated traits in scenarios 1, 2 and 3, at the significance level α =

0.00001, respectively. Again, we still observed that the power of the QRFCCA was the highest

among eleven statistics. However, when the significance level was reduced from α = 0.05 to α
= 0.00001 the power of all statistics was reduced. We also observed that when the significance

level was reduced, the simulations were unstable. In this case, we need to increase the number

of simulations.

These figures demonstrated that the QRFCCA substantially outperformed the ten other sta-

tistics and the difference in power between the QRFCCA and other statistics for the both rare

and common variants was much larger than that for the rare variants only. This demonstrated

that the regularization in singular vectors plays a more important role in association analysis

of both rare and common variants than that in association analysis of only rare variants.

Fig 2. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of all rare variants in the gene with 10 traits with moderate correlations for the scenario 1

at the significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g002
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Application to real data examples

Investigation of the contribution of the entire allelic spectrum of genetic variation to multiple

traits are still at its infancy. The systematic searching for both common and rare variants asso-

ciated with large number of traits is essential for unraveling the genetic architecture of complex

diseases. To further evaluate the performance, the QRFCCA and ten other statistics were

applied to the UK-10K dataset. The UK-10K Cohorts project used a low read depth whole-

genome sequencing (WGS) to assess the contribution of the genetic variants to the sixty-four

different traits [58]. However, missing phenotypes were found in many individuals. To ensure

no missing phenotypes in individuals, we included 765 individuals with 2,240,049 SNPs in

33,746 genes, and shared 46 traits in 13 major phenotypic groups which covered a wide range

of traits (Table S17) in the analysis. We took the rank-based inverse normal transformation of

the phenotypes [59] as trait values. Principal components (PCs) can be used for covariates to

adjust for the impact of population structure.

Association analysis of rare variants

We first studied the association of genes with only rare variants (MAF� 0.01). The total num-

ber of genes with only rare variants tested for association was 33,746. A p-value for declaring

significant association after applying the Bonferroni correction for multiple tests was

1.48 × 10−6. To examine the behavior of the test statistics, we plotted the QQ plot of the

QRFCCA with one FPC, FCCA with one FPC, PCA and GAMuT using a linear kernel in Fig 7

Fig 3. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of all rare variants in the gene with 10 traits with high correlations for the scenario 1 at the

significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g003
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and the QQ plot of the MSKAT, KCCA, SCCA, CCA, MANOVA and USAT in Fig S33,

assuming no PC adjustment. The QQ plots showed that the false positive rate of the QRFCCA

and FCCA for testing the association of the gene with 46 traits in some degree was controlled.

However, the behavior of the QQ plot of KCCA and SCCA was weird.

The total number of genes consisting of only rare variants significantly associated with

the 46 traits with and without PC adjustment using QFCCA, FCCA, PCA, SCCA, KCCA,

MSKAT, GAMuT, CCA, USAT and MANOVA, were shown in Table 3. A list of P-values of

top 25 genes with rare variants only significantly associated with 46 traits using QRFCCA was

summarized in Table 4. A list of P-values of 54 remaining genes significantly associated with

46 traits using QRFCCA were summarized in Table S18. We observed that the list of 79 signifi-

cant genes identified by QFCCA included all 59 significant genes using FCCA, all 8 significant

genes using SCCA, all 3 significant genes using KCCA, 19 significant genes using MSKAT,

and 8 significant genes using PCA. The Manhattan plot showing genome-wide p-values of

association with 46 traits calculated using QRFCCA is presented in Fig 8.

To further assess the performance of the QFCCA and GAMuT, we presented Tables S19

and S20. Table S19 summarized the top ten genes ranked using GAMuT where p-values calcu-

lated by both GAMuT and QRFCCA were also listed. None of ten genes reached genome-wide

significance levels by the GAMuT. However, we noticed that 7 of top ten genes ranked by

GAMuT were significantly associated with the 46 traits identified by QFCCA. Although we

observed that the p-value of RNU6-1229P calculated by GAMuT was smaller than that calcu-

lated by QRFCCA, we did not find any significant SNPs within RNU6-1229P (Fig S34). This

Fig 4. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of the gene including both rare and common variants with 10 traits with low correlations

for the scenario 1 at the significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g004
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may imply that association was spurious. In Table S20, we listed p-values of all SNPs within

gene ADAM19. We observed that QRFCCA identified significance of ADAM19 with a p-value

less than 6.07 × 10−11 and at least 4 SNPs in ADAM19 had very small p-values and two addi-

tional SNPs had p-values that were close to the threshold p-value of genome-wide significance

(Fig S34). However, the GAMuT missed to identify significance of ADAM19.

To characterize the pleiotropic pattern, we presented the heat map showing the pattern of

cross phenotype association of genes with rare variants only and the most important pleiotro-

pic effects of the genes (Fig 9). Table S21 summarizes the number of traits which a single gene

was associated with (p-value� 0.05). In Table S21, we also listed the p-values for testing the

association of the gene with all 46 traits. All p-values in Fig 9 and Table S21 were calculated

using QRFCCA. We observed two remarkable features. First, we observed that 5 genes were

significantly associated with 3 traits, 10 genes were significantly associated with 2 traits, and 39

genes were significantly associated with one trait at the genome-wide significance level after

Bonferroni correction. The remaining 25 genes did not reach the genome-wide significance

with any trait. However, we observed that these genes still showed mild association with multi-

ple traits. Second, we observed that multiple genes were significantly associated with single

phenotype (Table S22). For example, 345 genes were significantly associated with creatinine,

108 genes with HOMA-IR, 20 genes with HOMA-B, 72 genes with HsCRP, 21 genes with glu-

cose, 15 genes with insulin, 14 genes with GGT, and 11 genes with VLDL.

Some results can be confirmed in the literature. Throughout this section, all p-values were

calculated using QRFCCA. We found that 30 out of 79 genes (38.0%) with rare variants

Fig 5. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of the gene including both rare and common variants with 10 traits with moderate

correlations for the scenario 1at the significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g005
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significantly associated with 46 traits were reported association with some of them in the litera-

tures. For example, PNOC which was associated with the 46 traits (p-value� 1.63 × 10−12),

HOMA-IR (p-value� 1.2 × 10−7) and triglycerides (p-value� 9.15 × 10−9) was reported to be

associated with insulin resistance [60] and triglycerides [61]. MIR409 which was associated

with the 46 traits (p-value� 2.77 × 10−10), weight (p-value� 1.65 × 10−6), Hip (p-value� 7.19

× 10−7) and total lean mass (p-value� 2.15 × 10−6) was used as a weight loss biomarker [62].

GAPDH which showed an association with the 46 traits (p-value� 2.96 × 10−8) and specifically

with creatinine (p-value� 3.45 × 10−8) was reported to be associated with creatinine [63].

MLN that demonstrated association with the 46 traits (p-value� 9.47 × 10−8) and showed a

strong association with glucose (p-value� 6.24 × 10−11) played an important role in control-

ling the rise rate of glucose level [64]. JUN, which was associated with the 46 traits (p-value�

1.25 × 10−7) and showed a strong association with creatinine (p-value� 3.43 × 10−20), was

reported to be correlated with the serum creatinine level [65]. COMP which showed signifi-

cance with the 46 traits p-value� 4.83 × 10−7) and a strong association with specific trait creat-

inine (p-value� 9.58 × 10−15) was also reported an association with creatinine [66].

Association analysis of common variants

Next we studied the association of genes with only common variants (MAF� 0.05). The total

number of genes with only common variants tested for association was 33,166. The p-value to

declare the significant association after applying Bonferroni correction for multiple tests was

Fig 6. The power of curves as a function of sample sizes of 11 statistics for collectively testing the

association of the gene including both rare and common variants with 10 traits with high correlations

for the scenario 1 at the significance level α = 0.05.

https://doi.org/10.1371/journal.pcbi.1005788.g006
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1.51 × 10−6. To examine the behavior of the test statistics, we plotted the QQ plot of the

QRFCCA, FCCA, PCA and GAMuT using a linear kernel in Fig 10 and the QQ plot of the

KCCA, MSKAT, SCCA, CCA, MANOVA and USAT in Fig S35. Similar to rare variants, the

QQ plots for common variants showed that the false positive rate of the QRFCCA and FCCA

for testing the association of the gene with 46 traits in some degree was controlled. However,

the behavior of the QQ plot of KCCA and SCCA was not satisfied.

Fig 7. QQ plot of QRFCCA, FCCA, PCA and GAMuT with 95% confidence interval for rare variants. The negative logarithm of the observed (y

axis) and the expected (x axis) P value is plotted for each gene (dot), and the red line indicates the null hypothesis of no true association.

https://doi.org/10.1371/journal.pcbi.1005788.g007

Table 3. Number of genes with only rare variants significantly associated with 46 traits.

QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

No adjusted 79 59 0 8 0 0 0 14 6 48

Adjusted 77 54 0 0 0 0 0 8 6 41

Overlapped 66 53 0 0 0 0 0 6 6 39

Proportion 83.50% 90% 43% 100% 81%

https://doi.org/10.1371/journal.pcbi.1005788.t003
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The total number of genes significantly associated with the 46 trait that were identified

using ten statistics with and without PC adjustment were listed in Table 5. Table 6 listed P-

value of top 25 genes with common variants only significantly associated with 46 traits that

were discovered using QRFCCA. Table S23 summarized remaining 42 genes with common

variants only significantly associated with 46 traits that were identified using QRFCCA. Similar

to rare variants, we observed that a list of 67 significant genes identified by QRFCCA included

all the 55 significant genes identified using FCCA. However, unlike rare variants, only one sig-

nificant gene was shared between the QRFCCA and KCCA. We observed from Table 5 that

the QRFCCA, FCCA substantially outperformed other seven statistics and that the impact of

population structure on the QRFCCA, FCCA and KCCA was small.

To assess whether the QRFCCA for testing the association of genes including common vari-

ants only with multiple traits was appropriate or not, we presented Fig S36 which shows the

p-values of all SNPs within gene REG1B. We observed in Fig S36 that more than 11 SNPs in

REG1B with p-values� 0.0001 jointly made contributions to the strong association of REG1B
with the 46 traits with p-value� 1.65 × 10−116. The QRFCCA can catch the features of genetic

variation. In Fig S36 we listed the p-values of all SNPs within the gene XXbac-BPG154L12.4.

From Fig S36, we also observed that although the GAMuT treated XXbac-BPG154L12.4 as asso-

ciated with the 46 traits (p-value� 2.55 × 10−6), none of SNPs were even weakly associated

with the 46 traits. We should point out that the QRFCCA did not find any, even mild association

Table 4. A list of P-values of top 25 genes with rare variants only significantly associated with 46 traits using QRFCCA.

Statistical Method

Gene QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

CTC-498M16.2 5.7E-22 2.9E-19 1.9E-02 1.3E-03 9.3E-01 1.5E-02 4.7E-02 2.6E-01 1.2E-06 2.5E-04

TRAJ22 2.2E-20 7.2E-18 1.0E-05 1.0E-06 8.6E-01 2.6E-01 3.6E-01 1.5E-12 8.6E-07 2.3E-10

AP000351.10 2.1E-18 3.9E-16 2.5E-02 1.9E-03 6.8E-01 1.7E-01 2.8E-01 7.4E-01 1.3E-06 4.0E-03

HAR1B 7.8E-18 2.5E-15 2.3E-01 1.0E-06 8.4E-01 9.9E-01 9.5E-01 8.3E-02 3.1E-01 1.6E-01

IGHVII-20-1 7.5E-16 1.9E-15 1.1E-01 1.2E-03 9.5E-01 1.1E-01 3.5E-01 2.2E-01 4.5E-03 2.5E-04

RP11-4F5.2 9.9E-16 6.1E-13 1.2E-04 2.1E-03 9.7E-01 4.7E-01 7.2E-01 9.9E-01 3.6E-01 5.5E-05

RNVU1-17 3.9E-13 4.8E-13 6.0E-06 1.2E-03 8.2E-01 7.4E-01 9.9E-01 5.5E-02 3.0E-01 1.0E-07

PNOC 1.6E-12 2.9E-12 5.4E-05 1.0E-06 8.8E-01 3.9E-03 9.0E-02 7.5E-01 3.1E-01 2.5E-08

COTL1P1 8.7E-12 1.4E-11 5.4E-03 7.5E-04 8.2E-01 2.0E-03 1.5E-02 6.2E-01 3.2E-06 4.3E-06

LINC00273 4.4E-11 1.8E-09 1.7E-05 9.0E-04 8.2E-01 9.1E-06 7.1E-05 6.5E-12 2.9E-03 4.9E-13

snoU13 5.0E-11 1.3E-10 9.0E-03 6.9E-03 8.7E-01 2.2E-01 5.8E-01 9.8E-01 1.1E-02 8.2E-04

ADAM19 6.1E-11 8.6E-09 8.2E-01 1.0E-06 8.8E-01 9.7E-01 9.5E-01 1.2E-01 6.9E-01 1.7E-01

CTD-2026G6.2 1.9E-10 9.3E-10 3.2E-02 2.3E-03 9.8E-01 9.3E-01 9.3E-01 6.4E-02 4.1E-01 4.4E-02

MIR409 2.8E-10 5.4E-10 1.3E-01 4.1E-04 1.0E+00 8.9E-04 2.0E-02 2.1E-03 5.1E-03 3.2E-08

RP1-276E15.1 3.1E-10 4.6E-10 6.1E-03 5.2E-03 8.7E-01 9.5E-01 9.7E-01 4.3E-01 8.5E-01 3.3E-03

HMGN1P6 4.5E-10 3.8E-08 8.3E-06 1.0E-02 8.2E-01 9.8E-01 9.3E-01 1.2E-02 4.7E-01 1.1E-05

HOXA7 2.2E-09 3.2E-09 8.8E-02 1.0E-06 9.4E-01 4.2E-01 8.0E-01 7.2E-01 9.9E-03 1.6E-02

RNA5SP99 2.4E-09 1.4E-09 6.3E-04 2.1E-04 9.4E-01 6.9E-01 9.8E-01 8.3E-01 6.5E-01 1.2E-09

AC021660.1 2.7E-09 2.5E-09 7.8E-06 1.8E-04 7.7E-01 6.6E-02 4.4E-01 1.3E-01 9.7E-01 3.4E-04

RP11-561N12.1 3.1E-09 9.1E-08 5.5E-06 1.1E-04 8.9E-01 2.4E-01 8.4E-01 2.1E-02 3.0E-01 3.0E-08

FBXL5 4.5E-09 9.9E-08 6.6E-06 6.8E-04 9.9E-01 9.2E-01 9.9E-01 9.2E-03 3.5E-01 6.4E-04

PPIAP23 5.4E-09 5.5E-09 1.7E-05 4.3E-04 1.0E+00 5.3E-02 4.2E-01 2.9E-05 4.0E-01 2.2E-11

HOXB2 7.0E-09 2.2E-09 9.5E-06 1.0E-06 1.0E+00 8.4E-01 9.1E-01 2.4E-02 6.3E-01 6.1E-09

RP11-170N16.1 7.1E-09 3.6E-07 6.0E-04 6.2E-03 1.0E+00 9.2E-01 9.4E-01 5.5E-05 9.4E-01 1.5E-03

AC008694.3 1.4E-08 5.0E-07 2.4E-06 1.4E-03 9.6E-01 9.3E-01 9.9E-01 1.1E-05 8.8E-01 6.6E-05

https://doi.org/10.1371/journal.pcbi.1005788.t004
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(p-value� 0.3175). The Manhattan plot showing genome-wide p-values of association of genes

consisting of only common variants with the 46 traits calculated using QRFCCA was presented

in Fig 11.

To unravel the genetic pleiotropic structure of common variants, we presented the gene/

phenotype association heat map that demonstrated the most important pleiotropic relations

between a single gene and multiple traits (Fig 12) and summarized the number of traits a

single gene affected in Table S24. All p-values in Fig 12 and Table S24 were calculated using

QRFCCA. We observed that one gene significantly influenced 6 traits; 2 genes, 5 traits; 4

genes, 4 traits; 6 genes, 3 traits; 17 genes, 2 traits and 20 genes, one trait. The remaining 17

genes did not reach the genome-wide significance with any trait. However, we observed

that these genes still made genetic contributions to multiple traits. The significant associa-

tion of the remaining 17 genes with the 46 traits was due to summation of the mild genetic

effects on multiple traits of a single gene.

We also analyze the association of all common SNPs in one gene with one trait for all the 46

traits. The results were summarized in Table S25. We observed that 34 genes were significantly

associated with creatinine, 29 genes with HsCRP, 23 genes with HOMA-IR, 23 genes with

HOMA-B, 9 genes with glucose, 8 genes with insulin, 7 genes with GGT, and 6 genes with VLDL.

The distributions of the number of genes consisting of only common variants associated with

Fig 8. Manhattan plot showing the genome-wide P values of association of the genes consisting of only rare

variants with the 46 traits calculated using QRFCCA. The axis x represented the chromosomal positions of 33,746

genes and axis y showed their −log10P values. The horizontal red line denotes the thresholds of P = 1.48 × 10−6 for

genome-wide significance after Bonferroni correction.

https://doi.org/10.1371/journal.pcbi.1005788.g008
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traits were similar to that of rare variants although the number of genes associated with common

variants was smaller than the number of genes associated with rare variants.

Finally, we reported computation times of whole genome association testing for 10 test sta-

tistics as in Table 7 where Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz was used for calcula-

tions. We observed from Table 7 that less than 2 and half hours to complete whole exome

association analysis of 46 traits were needed for QRFCCA. We also observed that the computa-

tional times of QRFCCA were much less than that of SCCA, USAT, MANOVA, GAMuT and

CCA, but larger than that of PCA,KCCA and MSKAT.

Throughout this section, all genes included common variants only in the analysis. The litera-

ture confirmed many gene-trait associations which were identified in this study. We found that

58.2% of identified genes (39 out of 67 genes) with common variants only were reported associ-

ation with some of 46 traits in the literatures. For example, REG1B, which showed the most

Fig 9. Cross phenotype association heat map (46 traits/79 genes with rare variants only). The horizontal axis denotes the traits and

the vertical axis denotes the genes. The color represented P-values. The smaller the P-value the deeper the red color.

https://doi.org/10.1371/journal.pcbi.1005788.g009
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significant association with the 46 traits (p-value� 1.65 × 10−116), has been reported to be asso-

ciated with glucose [67] (our analysis identified an association with p-value� 1.31 × 10−21), the

production of insulin [68] (our analysis identified an association with insulin with p-value�

1.81 × 10−24 and HOMA-IR with p-value� 5.02 × 10−94), and triglyceride whose increment has

deleterious effects on the function of islet beta cells [69] (our analysis showed an association

Fig 10. QQ plot of QRFCCA, FCCA, PCA and GAMuT with 95% confidence interval for common variants. The negative logarithm of the observed

(y axis) and the expected (x axis) P value is plotted for each gene (dot), and the red line indicates the null hypothesis of no true association.

https://doi.org/10.1371/journal.pcbi.1005788.g010

Table 5. Number of genes with only common variants significantly associated with 46 traits.

QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

No adjusted 67 55 0 9 0 0 0 0 31 0

Adjusted 62 53 0 0 0 0 0 0 31 0

Overlapped 60 51 0 0 0 0 0 0 31 0

Proportion 90% 93% 100%

https://doi.org/10.1371/journal.pcbi.1005788.t005

Pleiotropic analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005788 October 17, 2017 23 / 33

https://doi.org/10.1371/journal.pcbi.1005788.g010
https://doi.org/10.1371/journal.pcbi.1005788.t005
https://doi.org/10.1371/journal.pcbi.1005788


with triglyceride with p-value� 1.81 × 10−24). LEF1, which was associated with the 46 traits (p-

value� 7.44 × 10−83), has been related to insulin resistance [70] (the analysis demonstrated an

association with HOMA-B with p-value� 7.17 × 10−52) and heart failure [71–73] (the analysis

showed an association with HsCRP with p-value� 1.22 × 10−122 and Homocysteine with p-

value� 2.24 × 10−14).DYNC1H1, which was associated with the 46 traits (p-value� 3.46 × 10−58),

HOMA-IR (p-value� 4.76 × 10−108), insulin (p-value� 2.83 × 10−28), glucose (p-value� 1.07

× 10−10) and creatinine (p-value� 2.57 × 10−9), has been associated with hyperinsulinemia, hyper-

glycemia, the progress of glucose intolerance [74], and the blood creatinine level [75]. DOCK7,

which presented associations with the 46 traits (p-value� 4.42 × 10−57), HsCRP (p-value� 3.66 ×
10−53) and BMI (p-value� 9.36 × 10−7), has been associated with heart disease and ischemic stroke

[76] and overweight and obesity[77]. Gene GBF1, which was associated with the 46 traits (p-value

� 6.30 × 10−28), HOMA-B (p-value� 2.91 × 10−17), has been reported to be involved in insulin

resistance and type 2 diabetes [78]. METAP2, which showed strong association with the 46 traits

(p-value� 2.62 × 10−20), HOMA-B (p-value� 3.14 × 10−32), HOMA-IR (p-value� 3.17 × 10−17)

and insulin (p-value� 8.61 × 10−10), has demonstrated associations with insulin resistance and

insulin levels [79]. Gene GRN, which presented associations with the 46 traits (p-value� 1.63 ×
10−16), HOMA-IR (p-value� 2.28 × 10−29) and insulin (p-value� 7.89 × 10−10), has been repo-

rted to associate with insulin resistance in type 2 diabetes patients [80] and the blood insulin lev-

els [81]. Finally, gene USP44, which showed associations with the 46 traits (p-

Table 6. A list of P-value of 25 genes with common variants only significantly associated with 46 traits using QRFCCA.

Statistical Method

Gene QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

REG1B 1.6E-116 7.4E-113 4.3E-01 1.3E-03 5.2E-01 1.0E+00 9.2E-01 3.0E-02 9.6E-01 4.0E-01

RP11-665C14.1 1.4E-93 8.2E-75 3.0E-01 4.6E-04 2.6E-01 9.8E-01 1.0E+00 3.9E-01 9.5E-01 2.7E-03

ZNF160 2.0E-91 6.7E-84 4.8E-02 5.6E-05 3.1E-01 9.0E-01 9.4E-01 1.3E-01 9.6E-01 1.1E-01

LEF1 7.4E-83 1.8E-82 2.8E-03 1.0E-06 7.0E-01 9.5E-01 9.7E-01 2.3E-03 9.9E-01 5.9E-01

DYNC1H1 3.5E-58 4.2E-48 5.4E-02 4.1E-03 6.6E-01 9.2E-01 9.4E-01 5.4E-01 9.4E-01 4.0E-03

DOCK7 4.4E-51 6.9E-50 1.7E-01 8.0E-06 9.4E-01 9.1E-01 9.7E-01 1.2E-01 9.5E-01 1.6E-01

SHC3 7.6E-42 2.2E-41 1.4E-02 4.2E-05 8.7E-02 9.7E-01 9.4E-01 1.3E-01 9.9E-01 1.1E-04

Y_RNA 1.9E-36 1.3E-29 4.0E-03 3.5E-05 4.5E-01 1.0E+00 1.0E+00 7.9E-01 9.7E-01 2.5E-03

CTD-2122P11.1 1.6E-33 2.9E-31 7.4E-01 1.5E-05 2.3E-01 9.7E-01 9.8E-01 5.3E-01 9.9E-01 7.6E-03

GBF1 6.3E-28 2.3E-28 6.5E-02 4.5E-04 9.7E-01 9.7E-01 9.7E-01 8.4E-02 9.0E-01 2.4E-02

RP1-8B22.1 1.7E-27 4.1E-26 3.0E-02 7.3E-04 1.8E-01 1.0E+00 1.0E+00 5.0E-02 9.2E-01 2.3E-01

VPS13D 2.6E-26 1.5E-27 7.9E-01 1.9E-03 8.6E-01 9.8E-01 1.0E+00 8.9E-01 9.4E-01 7.6E-01

RP11-68I3.2 3.2E-24 4.9E-24 2.2E-01 1.5E-05 1.0E+00 9.0E-01 9.6E-01 1.6E-02 9.9E-01 3.1E-01

SLC13A3 8.5E-24 2.0E-24 5.3E-01 9.0E-06 4.2E-01 9.9E-01 9.3E-01 7.9E-02 9.4E-01 2.4E-01

RP11-167N24.3 4.3E-23 1.0E-22 7.8E-01 1.1E-03 2.1E-01 9.2E-01 9.2E-01 6.3E-01 9.8E-01 1.0E-01

UBA6 5.3E-22 4.8E-22 2.0E-01 1.2E-03 4.9E-01 9.0E-01 1.0E+00 2.8E-01 9.2E-01 7.9E-01

GAN 1.5E-21 1.0E-20 7.3E-02 3.0E-05 6.6E-01 9.7E-01 9.3E-01 2.9E-01 9.6E-01 1.2E-01

RP4-794H19.2 4.1E-21 1.3E-20 7.5E-01 1.6E-04 8.2E-02 9.3E-01 1.0E+00 9.1E-01 9.5E-01 5.5E-01

RP11-142I20.1 5.3E-21 8.5E-21 1.5E-01 4.3E-05 8.9E-01 9.3E-01 9.9E-01 3.4E-01 9.5E-01 3.1E-02

METAP2 2.6E-20 1.6E-20 6.8E-01 2.5E-05 5.2E-01 9.6E-01 9.4E-01 4.4E-01 9.4E-01 2.2E-04

SLCO1C1 5.9E-20 1.7E-19 7.5E-01 4.0E-06 3.8E-01 9.9E-01 9.1E-01 5.5E-02 9.1E-01 3.4E-03

AC105443.2 2.5E-17 3.4E-17 5.6E-02 1.2E-04 2.5E-01 9.6E-01 9.7E-01 2.6E-02 9.8E-01 1.8E-04

GRN 1.6E-16 7.8E-16 5.0E-01 1.0E-03 1.2E-01 1.0E+00 1.0E+00 3.5E-02 9.6E-01 5.2E-01

INTS12 1.7E-16 1.2E-16 1.8E-02 1.0E-06 4.8E-01 9.7E-01 9.6E-01 3.3E-01 9.5E-01 7.0E-01

RP11-323I15.5 9.3E-16 2.0E-16 1.6E-01 5.0E-06 6.7E-01 9.7E-01 9.5E-01 3.5E-01 9.1E-01 6.5E-01

https://doi.org/10.1371/journal.pcbi.1005788.t006
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value� 3.49 × 10−14), HsCRP (p-value� 1.81 × 10−31) and HOMA-IR (p-value� 7.75 × 10−11),

has been reported to associate with congenital heart disease [82], the increment of the HsCRP

in congenital heart disease patient and insulin resistance [83].

Discussion

Investigating the pleiotropic effects of the genetic variants can provide important information

to allow a deeper understanding of the complex genetic structures of health and disease. How-

ever, the identification of complete pleiotropic structures of high dimensional genotype-phe-

notypes poses great statistical and computational challenges. To meet these challenges, we

have addressed several issues to overcome the critical barriers in advancing the development

of novel statistical methods and computational algorithms for genetic pleiotropic analysis.

The first issue is to explore deep architectures of genotype-phenotype data in cross-pheno-

type association analysis. The traditional single trait and multiple trait analysis usually use

genotype data in their raw form. These methods do not transform the raw data into a suitable

internal representation in which association analysis can be used for distinguishing disease

patterns from health patterns. DNA sequences and genetic variants are highly correlated and

Fig 11. Manhattan plot showing the genome-wide P values of association of the genes consisting of only common variants

with the 46 traits calculated using QRFCCA. The axis x represented the chromosomal positions of 33,746 genes and axis y

showed their −log10P values. The horizontal red line denotes the thresholds of P = 1.51 × 10−6 for genome-wide significance after

Bonferroni correction.

https://doi.org/10.1371/journal.pcbi.1005788.g011
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hierarchically organized in the genome. Exploring multiple levels of representation of the

genetic variants and efficiently using correlation information in the data can increase the

power to detect the association of the genetic variants with phenotypes. Multiple levels of

representation of genetic variants consist of several steps: (1) FPCA, (2) matrix factorization,

(3) quadratic regularization, and (4) CCA. The FPCA changes the raw genetic variants to the

functional principal component representation that captures the linkage disequilibrium

Fig 12. Cross phenotype association heat map (46 traits/67 genes with common variants only). The horizontal axis denotes the traits

and the vertical axis denotes the genes. The color represented P-values. The smaller the P-value the deeper the red color.

https://doi.org/10.1371/journal.pcbi.1005788.g012

Table 7. Computational time (seconds)of 10 statistics for gene-based whole genome association analysis of 46 traits.

QRFCCA FCCA GAMuT SCCA USAT MANOVA CCA PCA KCCA MSKAT

Rare 8629 8471 85176 11036838 691793 39766 39863 1550 2248 2014

Common 9037 8895 87245 11246642 724529 40021 39964 1498 2358 2105

https://doi.org/10.1371/journal.pcbi.1005788.t007
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features. The matrix factorization is to embed the functional principal component scores into

the low dimensional vector space. It compresses the functional principal component score

data to a few new features that are another level of representation of genetic variants. Qua-

dratic regularization further compresses the data and changes the representation of functional

principal component scores. Finally, CCA is used as an effective tool for two-view dimension

reduction. QRFCCA combines dimension reduction in different levels of data representations.

Multiple levels of representation of genetic variants are effective at leveraging data structure.

This can be evidenced from the analysis of less derived traits. Our results showed that the sig-

nificance decreased when the derived traits were removed from the analysis. Utilizing the data

structure is a key component of the proposed QRFCCA method. Using less derived traits will

decrease the dependence among traits and hence the QRFCCA analysis will use less correla-

tion information among the traits and hence slightly reduce the significance. Multiple levels of

representation of genetic variants are a philosophy. We borrow this concept from deep learn-

ing methods that are representation methods with multiple levels of representations, each

transferring the representation at one level into a representation at another level.

Specifically, to fully utilize the linkage disequilibrium information of genetic variants across

the genomic region and efficiently reduce the dimension of the data, we proposed a new para-

digm of association analysis that consists of three steps to combine multilevel data reduction

and CCA. The first step is to apply FPCA to the original data for dimension reduction. The

FPCA decomposes the genetic data into several functional components. Each functional com-

ponent contains functional information of genetic variants across the genomic region, pre-

serves the orders of genetic variants along the genomic and returns all possible pair-wise and

high order linkage disequilibrium. If the phenotypes are function-valued physiological traits or

RNA-seq data, the FPCA can also be applied to the phenotype data. The second step is to use

quadratically regularized matrix factorization for further compressing the FPC scores into low

rank representation and removing noisy data points. As a result, the FPCA and matrix factori-

zation extracted useful genetic and phenotype information and deeply learned the internal

genetic and phenotype representation. The third step is to apply CCA to the extracted FPC

scores. Large scale simulations and real data analysis demonstrated that QRFCCA substantially

outperformed all ten other statistics and FCCA outperformed some of multivariate statistics.

The second issue is to develop a general framework for unifying association analysis, which

provides a theoretic basis to evaluate various statistical methods for association analysis and

design the guidance for developing novel statistics for testing the association of genetic variants

with phenotypes. We used reproducing kernel Hilbert spaces (RKHS) as a general framework

and the covariance operator as a general tool for unifying CCA, kernel CCA, functional CCA,

dependence measure-based independence tests and other association analyses including

GAMuT. We showed that multivariate linear regression are equivalent to the classical CCA.

Covariance is a key measure to assess linear association. Its extension to covariance operator

provides a tool for quantifying the nonlinear association and derives kernel-based dependence

measures and independence tests which form the basis for the GAMuT test. We also show that

the KCCA is quite similar to the kernel independent test. Finally, we considered the FCCA. To

unify multivariate association tests and functional association tests, we used RKHS as a general

framework for the formulation of the functional CCA. We showed that the dependence mea-

sured in the FPC score-based kernel analysis is asymptotically equal to the association measure

of the FCCA. The FCCA also use the kernel-based dependence measure to develop association

tests. Unlike the KCCA and GAMuT test where the kernels are selected by users, the FCCA

uses the FPC scores as the feature space and derives the kernels from the data. This was why

large-scale simulations and real data showed that in general, the FCCA outperformed the

GAMuT, MSKAT and KCCA. Our FPC scores were generated via two steps. The first step
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used Fourier or wavelet expansions to derive eigenfunctions. The second step was to generate

the FPC scores from the eigenfunctions. In the literature, some authors used one step FPCA to

directly derive FPC scores from the Fourier or wavelet expansions. Our experiences showed

that the number of functional principal components using two step FPCA was, in general,

smaller than that directly derived from the Fourier or wavelet expansions. Therefore, two step

FPCA had higher power than the one step FPCA.

The third issue is how to reveal pleiotropic structure of the genetic variants and quantify

the degree of pleiotropy. Pleiotropy is a widely used word to indicate that a gene affects multi-

ple traits. However, the nature and extent of pleiotropy is less precisely defined. Recently,

Schaid et al, 2016 [84] gave the formal testing for pleiotropy. They proposed that formal test of

pleiotropy should assume a null hypothesis that one or fewer traits are associated with a genetic

variant. Unlike the definition of Schaid et al. our null model of the pleiotropy of a gene is the

absence of any traits which the gene was associated with. If Schaid et al (2016) definition of a

formal test of pleiotropy is used the proposed test is not a pleiotropy tool.

The fourth issue is the cross-phenotype association analysis with next-generation sequenc-

ing. The popular methods for cross-phenotype association analysis is to assess the influence of

a single variant on multiple distinct phenotypes. These methods work very well for cross-phe-

notype association analysis of common variants, but are not suitable for testing the association

of rare variants with multiple phenotypes. To illustrate the urgent need to develop gene-based

statistical methods for cross-phenotype association analysis of rare variants, we searched the

variants across the genome for significant associations with the multiple phenotypes. We

found that 21,272 rare variants were significantly associated with the 46 traits at the genome-

wide significance level after Bonferroni correction. It is highly unlikely that so many rare vari-

ants affected the 46 traits. To overcome this limitation, we developed the QRFCCA for gene-

based cross-phenotype association analysis. The QRFCCA can be applied to both multivariate

phenotypes, function-valued phenotypes and NGS genotype data. Since the genotype profiles

of the common variants and rare variants have different patterns, to increase the power of the

tests, we take the association tests of common variants and rare variants separately. We found

that the significant genes with common variants only were not overlapped with the significant

genes with rare variants only. In pleiotropic analysis, we should conduct cross-phenotype anal-

ysis for both common and rare variants and separately. The QRFCCA provides a powerful tool

to accomplish this task.

To provide a guidance for cross phenotype association studies, we comprehensively evalu-

ated the current existing statistics for cross-phenotype association by using large-scale simula-

tions and real data analysis. In all simulated cases, when the sample size reached 2,000, the

power of the QRFCCA varies between 80% and 90%. We found that the proposed QRFCCA

not only substantially outperformed all other widely used competing statistics, but also was

very flexible. The QRFCCA can be used for association analysis of both common variants and

rare variants, and any phenotypes including quantitative or qualitative, multivariate or func-

tion-valued phenotypes.

We performed cross-phenotype association analysis of a largest number of traits with NGS

data up to the present time. We identified 79 genes including rare variants only which were

significantly associated with the 46 traits and 67 genes including common variants only which

were significantly associated with the 46 traits. These two sets of genes were not overlapped.

Some of gene-phenotype association can be confirmed in the literature. We found that the

largest number of the traits which a gene significantly affected at the genome-wide significance

level was six and three in the cross-phenotype association analysis of common and rare vari-

ants, respectively. We also discovered that the largest number of traits which a gene affected

with the P-value < 0.05 was 18 and 16 in the cross-phenotype association analysis of common
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and rare variants, respectively. In the single trait association analysis, we found that a large

number of genes significantly affected creatinine (genes with rare variants: 345, genes with

common variants: 34), HsCRP (genes with rare variants: 72, gene with common variants: 29)

and HOMA-IR (genes with rare variants: 108, genes with common variants: 24).

The results presented in this paper are preliminary. The greatest lengths of the genes that

were significantly associated with the 46 traits for rare and common variants in the real data

analysis were 131Kb and 42Kb, respectively. The proposed methods may not have power to

detect the association of the genes with lengths longer than these numbers. The number of

basis functions for genotype profile expansion is an important factor for the power of the

FPCA-based tests. We have not performed theoretical analysis to determine the appropriate

number of basic functions for genotype profile expansions. We resort to ad hoc approaches to

select the number of basis function in the expansions. The current pleiotropic analysis cannot

identify the global causal structure of pleiotropy, which will decrease our power to unravel

mechanisms underlying complex traits. To overcome this limitation, causal inference tools

should be explored for cross-phenotype association analysis. The purpose of this paper is to

stimulate further discussions regarding the great challenges we are facing in the pleiotropy

analysis of high dimensional phenotypic and genomic data produced by modern sensors and

next-generation sequencing.
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