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Abstract

Background

COVID-19 is rapidly spreading causing extensive burdens across the world. Effective vac-

cines to prevent COVID-19 are urgently needed.

Methods and findings

Our objective was to assess the effectiveness and safety of COVID-19 vaccines through

analyses of all currently available randomized clinical trials. We searched the databases

CENTRAL, MEDLINE, Embase, and other sources from inception to June 17, 2021 for ran-

domized clinical trials assessing vaccines for COVID-19. At least two independent reviewers

screened studies, extracted data, and assessed risks of bias. We conducted meta-analy-

ses, network meta-analyses, and Trial Sequential Analyses (TSA). Our primary outcomes
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included all-cause mortality, vaccine efficacy, and serious adverse events. We assessed

the certainty of evidence with GRADE. We identified 46 trials; 35 trials randomizing 219 864

participants could be included in our analyses. Our meta-analyses showed that mRNA vac-

cines (efficacy, 95% [95% confidence interval (CI), 92% to 97%]; 71 514 participants; 3 tri-

als; moderate certainty); inactivated vaccines (efficacy, 61% [95% CI, 52% to 68%]; 48 029

participants; 3 trials; moderate certainty); protein subunit vaccines (efficacy, 77% [95% CI,

−5% to 95%]; 17 737 participants; 2 trials; low certainty); and viral vector vaccines (efficacy

68% [95% CI, 61% to 74%]; 71 401 participants; 5 trials; low certainty) prevented COVID-

19. Viral vector vaccines decreased mortality (risk ratio, 0.25 [95% CI 0.09 to 0.67]; 67 563

participants; 3 trials, low certainty), but comparable data on inactivated, mRNA, and protein

subunit vaccines were imprecise. None of the vaccines showed evidence of a difference on

serious adverse events, but observational evidence suggested rare serious adverse events.

All the vaccines increased the risk of non-serious adverse events.

Conclusions

The evidence suggests that all the included vaccines are effective in preventing COVID-19.

The mRNA vaccines seem most effective in preventing COVID-19, but viral vector vaccines

seem most effective in reducing mortality. Further trials and longer follow-up are necessary

to provide better insight into the safety profile of these vaccines.

Introduction

COVID-19 is caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) [1].

Since the observation of the first patients with COVID-19 in Wuhan in 2019, the disease

quickly became a global pandemic [2]. As of September 6th, 2021 more than 221 million indi-

viduals developed COVID-19 and 4.6 million died globally [2].

Currently, there are only a few interventions hat seem able to benefit the clinical course of

COVID-19 [3]. Therefore, preventive measures are of vital importance to control COVID-19.

The scientific, medical, and industrial communities have embarked on efforts to develop safe

vaccines [4, 5]. At September 13th, 2021 about 104 vaccines are being tested in humans, with

33 having reached phase III trials [6]. Of these, five vaccines were abandoned due to either lack

of response or an undesirable adverse event (e.g., tested false positive for HIV), eight have been

approved for full use, and eleven have been authorized for early or limited use [6]. With the

rapid development, approval of vaccines for COVID-19, and the growing number of viral vari-

ants, there is a need for systematic reviews critically appraising the topic. We recently pub-

lished the first version of our review as a preprint, showing effects of mRNA and viral vector

vaccines [7].

The aim of this second version of our living systematic review is to assess the effectiveness

and safety of COVID-19 vaccines through analyses of all currently available randomized clini-

cal trials. We also narratively describe incidentally identified observational studies reporting

harms that we encountered during our search for trials [8].

Methods

This systematic review with meta-analyses was conducted in accordance with the reporting

guideline provided in the Preferred Reporting Items for Systematic Reviews and Meta-
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Analysis (PRISMA) statement [9, 10]. This review was carried out following recommendations

outlined in the Cochrane Handbook of Systematic Reviews of Interventions [11]. More details

on our methods can be found in our published protocol [8, 12].

Search strategy and selection criteria

An experienced information specialist performed weekly literature searches. For details

regarding databases, searches, and screening methods see our published protocol [8] or S1

File.

We searched for and included randomized clinical trials, irrespective of publication status,

year, and language. We included trials with any participant irrespective of prior exposure, age,

sex, comorbidities, immune status, and risk group [8].

We included any vaccine aiming to prevent COVID-19 irrespective of dose and duration of

administration. We included randomized clinical trials with any control group, i.e. vaccine

versus placebo, ‘active placebo’, no intervention, another vaccine aiming at preventing

COVID-19, or any other ‘active’ comparator [8].

Data analysis

Two authors independently screened and extracted data. Our primary outcomes were all-

cause mortality; vaccine efficacy defined by either preventing COVID-19 symptoms plus posi-

tive polymerase chain rection (PCR) test, preventing severe COVID-19 symptoms plus posi-

tive PCR test, or preventing positive PCR test only; and serious adverse events [10]. Our

secondary outcomes were health-related quality of life and adverse events not considered seri-

ous [8]. We used the trial results reported at maximum follow-up for all outcomes. We used

intention-to-treat data if provided by the trialists [8]. Several exploratory outcomes were pre-

defined in our protocol and will be presented in a subsequent publication [8].

Risk of bias assessment. Our risk of bias assessment was based on the Cochrane risk of

bias tool version 2 (RoB 2) [13].

Association measures. We calculated risk ratios (RRs) with 95% confidence interval (CI).

In meta-analysis, we also calculated the Trial Sequential Analysis-adjusted CIs. We used forest

plots to illustrate summary effect sizes of the comparative effectiveness among interventions.

Statistical synthesis. We undertook our analysis according to the Cochrane Handbook of

Systematic Reviews of Interventions [11], Keus and colleagues [14], and our eight-step assess-

ment [15]. We used Stata version 16.1 to analyse data using the metan command for meta-

analysis and network suite of commands for network meta-analysis [16–18]. We assessed our

intervention effects with both a random-effects (RE) meta-analysis (DerSimonian and Laird)

[19] and a fixed-effect (FE) meta-analysis (Mantel-Haenszel) [20] for each preventive compari-

son. We reported the more conservative point estimate of the two [8, 15]. We assessed three

primary outcomes and two secondary outcomes. We, therefore, considered a p value of 0.0167

or less as the threshold for statistical significance to adjust for multiplicity [8, 15].

We performed Trial Sequential Analysis on all outcomes, to calculate the diversity-adjusted

required information size (DARIS) and the cumulative Z-curve’s breach of relevant trial

sequential monitoring boundaries [21–23].

We performed a network meta-analysis as described in S1 File and our protocol [8].

We assessed heterogeneity through visual inspection of forest plots, using the I2 statistic

[11, 24, 25], and by estimating the between-study variance using the DerSimonian and Laird

method [26, 27]. We investigated heterogeneity through subgroup analyses.

Additional analyses. We performed subgroup analysis assessing different types of vac-

cines; trials at low compared with at high risk of bias; and trials without against with vested
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interests. To assess the potential impact of missing data, we performed sensitivity analyses

using ‘best-worst’ and ‘worst-best’ analysis [8, 15].

Summary of findings and assessment of certainty. We created summary of findings

tables including each of the prespecified outcomes (all-cause mortality, vaccine efficacy, seri-

ous adverse events, health-related quality of life, and non-serious adverse events) (Tables 1–4).

We used the five Grading of Recommendations, Assessment, Development, and Evaluation

(GRADE) considerations (bias risk of the trials, consistency of effect, imprecision, indirect-

ness, and publication bias) and CINeMA to assess confidence in the meta-analysis and net-

work meta-analysis findings, respectively [28–31]. We assessed imprecision using Trial

Sequential Analysis [8, 32, 33].

Results

46 trials met our inclusion criteria [34–65], of which 35 trials [34, 36–42, 44–50, 53–59, 61–65]

randomizing 219 864 participants provided data for our predefined meta-analyses. See

PRISMA flowchart (Fig 1) for details regarding the literature search and the selection of trials.

In most of the trials reporting data for our meta-analysis, the included participants were

adults. Two of the trials included children (<16 years) [55, 64], but none of the trials included

pregnant women or immunocompromised participants (e.g. cancer; on cancer drugs; etc.). All

included trials assessed a COVID-19 vaccine compared with placebo (n = 32) or a control vac-

cine not immunogenic towards COVID-19 (n = 3) [37, 45]. The included vaccines were based

on mRNA [34, 41, 42, 66]; viral vectors [37, 39, 43, 45, 47, 50, 52, 67]; protein-subunit [38, 53];

or inactivated virus [47–49, 51] (Table 5). The median follow-up range of assessment varied

from 35 to 92 days after randomization for all outcomes.

Ten trials were at overall low risk of bias [43, 47, 48, 67], seventeen trials were at overall

some concerns [34, 36, 38, 39, 41, 42, 46, 51–53], and eight trials were at overall high risk of

bias (S1 File) [37, 40, 45].

All-cause mortality

Inactivated vaccines. Six trials assessing inactivated vaccines reported on all-cause mor-

tality. Meta-analysis (FE) showed that these vaccines versus controls may result in a large

reduction of all-cause mortality, but the confidence interval was compatible with no effect

(risk ratio (RR), 0.48 [95% CI 0.12 to 1.97]; p = 0.31; I2 = 0.0%; 53 399 participants; very low

certainty; Fig 2).

mRNA vaccines. Five trials assessing mRNA vaccines reported on all-cause mortality.

Meta-analysis (RE) showed that these vaccines versus placebo may reduce all-cause mortality,

but the confidence interval was compatible with no effect (RR, 0.63 [95% CI 0.21 to 1.84];

p = 0.39; I2 = 0%; 75 926 participants; low certainty; Fig 2).

Protein-subunit vaccines. Four trials assessing protein-subunit vaccines reported on all-

cause mortality. Meta-analysis (FE) showed that these vaccines versus controls may result in a

reduction of all-cause mortality, but the confidence interval was compatible with no effect

(RR, 0.46 [95% CI 0.09 to 2.36]; p = 0.35; I2 = 0.0%; 15 634 participants; very low certainty; Fig

2).

Viral vector vaccines. Three trials assessing viral vector vaccines reported on all-cause

mortality. Meta-analysis (FE) showed that these vaccines versus controls may result in a large

reduction of all-cause mortality (RR, 0.25 [95% CI 0.09 to 0.67]; p = 0.01; I2 = 0.0%; 67 563 par-

ticipants; low certainty; Fig 2).

Trial sequential analysis and sensitivity analysis on mortality. Trial Sequential Analyses

showed that we did not have enough information to confirm that any of the vaccines reduced
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mortality with 20% or more. The sensitivity analyses showed that incomplete outcome data

bias had the potential to influence the results of all the vaccines (S1 File).

Network meta-analysis on mortality. Network meta-analysis on mortality included 7 tri-

als randomizing 168 701 participants comparing placebo, inactivated, mRNA, protein-subunit,

and viral vector vaccines. There was no evidence of violation of the transitivity assumption for

age and sex (Table 5). The network plot showed a star network without closed loops (S1 File).

All the individual vaccines except NVX-CoV2373-Novavax and Gam-COVID-Vac-Sput-

nik-V may decrease mortality, but their confidence intervals were compatible with no effect:

Table 1. Summary of findings (inactivated vaccines).

Inactivated vaccines versus placebo

Population: General population

Settings: Outpatient

Intervention: Inactivated vaccine (BBIBP-CorV, CoronaVac, Covaxin, and Vero Cell)

Comparison: Placebo

Outcomes Illustrative comparative risks� (95%

CI)

Relative

effect

(95% CI)

No of

participants

(studies)

Quality of the

evidence

(GRADE)

Comments

Assumed

risk

Corresponding risk

Control Vaccine

All-cause

mortality

maximum follow-

up

Study population 0.48 (0.12 to

1.97)

53 399 �⊝⊝⊝ Very

low

Downgraded one level for serious risk of bias

and two levels for very serious imprecision.

DARIS: 1 350 077

(Pc 0.03%; RRR 20%; alpha 1.67%; beta 10%;

diversity 0%)

10 per

100,000

4 per 100,000 (1 to 20)

Vaccine efficacy

Positive test plus

symptoms

maximum follow-

up

Study population 61% (52 to

68%)

48 029 (3) ���⊝
Moderate

Downgraded one level for serious risk of bias

DARIS: 69 896

(Pc 1.5%; RRR 50%; alpha 1.67%; beta 10%;

diversity 84.92%)

152 per

10,000

59 per 10,000 (49 to

73)

Serious adverse

events

maximum follow-

up

0.84 (0.68 to

1.06)

53 839 (7) ��⊝⊝ Low Downgraded one level for serious risk of bias

and one level for serious imprecision.

DARIS: 373 676

(Pc 0.55%; RRR 20%; alpha 1.67%; beta 10%;

diversity 41.4%)

55 per

10,000

47 per 10,000 (38 to

59)

Health-related

quality of life

maximum follow-

up

NA NA NA No trials assessed health-related quality of life

NA NA

Non- serious

adverse events

maximum follow-

up

5733 per

10,000

5848 per 10,000 (5274

to 6478)

1.02 (0.92 to

1.13)

54 239 (11) ���⊝
Moderate

Downgraded one level for serious risk of bias

DARIS: 63 233

(Pc 57.3%; RRR 20%; alpha 1.67%; beta 10%;

diversity 98.4%)

�The basis for the assumed risk (e.g., the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is

based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval. Pc: Proportion in control group with outcome. RR: Risk ratio. DARIS: Diversity-adjusted required information size. NA: Not applicable. NR:

Not reported.

GRADE Working Group grades of evidence.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

https://doi.org/10.1371/journal.pone.0260733.t001
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Ad26.COV2.S-Janssen (RR, 0.19 [95% CI, 0.01 to 6.65]), ChAdOx1 nCoV-19-Vaxzevria (RR,

0.21 [95% CI, 0.00 to 55.07]), BNT162b2-Corminarty (RR, 0.50 [95% CI 0.00 to 52.70]), Coro-

naVac (RR, 0.50 [95% CI 0.03 to 7.35]), mRNA-1273-Spikevax (RR, 0.67 [95% CI 0.01 to

37.52]), NVX-CoV2373-Novavax (RR, 1.00 [95% CI 0.00 to 218.18]), and Gam-COVID-Vac-

Sputnik-V (RR, 0.99 [95% CI 0.08 to 244.08). CINeMA was very low for all comparisons (S1

File). The between-study variance could not be estimated due to the small number of trials per

vaccine comparison.

Based on the surface under the cumulative ranking curves, the Ad26.COV2.S-Janssen vac-

cine had the greatest likelihood of being the most effective vaccine in reducing mortality (P-

Table 2. Summary of findings (mRNA vaccines).

mRNA vaccines versus placebo

Population: General population

Settings: Outpatient

Intervention: mRNA vaccine (mRNA-1273-Spikevax and BNT162b2-Corminarty)

Comparison: Placebo

Outcomes Illustrative comparative risks� (95%

CI)

Relative

effect

(95% CI)

No of

participants

(studies)

Quality of the

evidence

(GRADE)

Comments

Assumed

risk

Corresponding risk

Control Vaccine

All-cause mortality

maximum follow-

up

Study population 0.63 (0.21 to

1.84)

75 926 (5) ��⊝⊝ Low Downgraded one level for serious risk of bias

and one level for serious imprecision.

DARIS: 8 409 034

(Pc 0.018%; RRR 20%; alpha 1.67%; beta 10%;

diversity 0.0%)

18 per

100,000

12 per 100,000 (4 to

33)

Vaccine efficacy

Positive test plus

symptoms

maximum follow-

up

Study population 95% (92 to

97%)

71 514 (3) ���⊝
Moderate

Downgraded one level for serious risk of bias.

DARIS: 58 402

(Pc 1.1%; RRR 50%; alpha 1.67%; beta 10%;

diversity 0.0%)

109 per

10,000

5 per 10,000 (3 to 9)

Serious adverse

events

maximum follow-

up

1.10 (0.91 to

1.33)

75 926 (5) ��⊝⊝ Low Downgraded one level for serious risk of bias

and one level for serious imprecision.

DARIS: 211 042

(Pc 0.53%; RRR 20%; alpha 1.67%; beta 10%;

diversity 41.4%)

53 per

10,000

58 per 10,000 (48 to

70)

Health-related

quality of life

maximum follow-

up

NR NR NA No trials assessed health-related quality of life

NR NR

Non- serious

adverse events

maximum follow-

up

2634 per

10,000

4715 per 10,000 (3951

to 5584)

1.79 (1.50 to

2.12)

75 898 (5) ���⊝
Moderate

Downgraded one level for serious risk of bias.

DARIS: 408 514

(Pc 26.3%; RRR 20%; alpha 1.67%; beta 10%;

diversity 99.14%)

�The basis for the assumed risk (e.g., the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is

based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval. Pc: Proportion in control group with outcome. RR: Risk ratio. DARIS: Diversity-adjusted required information size. NA: Not applicable. NR:

Not reported. GRADE Working Group grades of evidence.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

https://doi.org/10.1371/journal.pone.0260733.t002

PLOS ONE Vaccines to prevent COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260733 January 21, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0260733.t002
https://doi.org/10.1371/journal.pone.0260733


score, 68.6%) followed by ChAdOx1 nCoV-19-Vaxzevria (P-score, 60.9%), CoronaVac (P-

score, 50.9%), mRNA-1273-Spikevax (P-score, 48.5%), BNT162b2-Corminarty (P-score,

48.2%), NVX-CoV2373-Novavax (P-score, 42.8%), Gam-COVID-Vac-Sputnik-V (P-score,

43.2%), and placebo (P-score, 37.1%) (Fig 3).

Analyses of all vaccines. When we analyzed all eighteen vaccines that reported on all-

cause mortality, meta-analysis (RE) suggested that the vaccines versus placebo result in a large

reduction of all-cause mortality (RR, 0.41 [95% CI 0.22 to 0.77]; p = 0.0049; I2 = 0.0%; 212 482

Table 3. Summary of findings (protein-subunit vaccines).

Protein-subunit vaccines versus placebo

Population: General population

Settings: Outpatient

Intervention: Protein-subunit (SCB-2019 and NVX-CoV2373-Novavax)

Comparison: Placebo

Outcomes Illustrative comparative risks� (95%

CI)

Relative effect

(95% CI)

No of

participants

(studies)

Quality of the

evidence

(GRADE)

Comments

Assumed

risk

Corresponding risk

Control Vaccine

All-cause

mortality

maximum follow-

up

Study population 0.46 (0.09 to

2.36)

15 634 �⊝⊝⊝ Very low Downgraded one level for serious risk of bias

and two levels for very serious imprecision.

DARIS: 6 901 325

(Pc 0.013%; RRR 20%; alpha 1.67%; beta

10%; diversity 0.0%)

13 per

100,000

6 per 100,000 (1 to

30)

Vaccine efficacy

Positive test plus

symptoms

maximum follow-

up

Study population 77% (-5 to

95%)

17 737 (2) ��⊝⊝Low Downgraded one level for serious risk of bias

and one level for serious imprecision.

DARIS: 154 351

(Pc 1.6%; RRR 20%; alpha 1.67%; beta 10%;

diversity 93.2%)

156 per

10,000

51 per 10,000 (8 to

164)

Serious adverse

events

maximum follow-

up

1.01 (0.66 to

1.55)

16 389 (4) ��⊝⊝ Low Downgraded one level for serious risk of bias

and one level for serious imprecision.

DARIS: 241 981

(Pc 0.50%; RRR 20%; alpha 1.67%; beta 10%;

diversity 41.4%)

50 per

10,000

51 per 10,000 (33 to

78)

Health-related

quality of life

maximum follow-

up

NA NA NA No trials assessed health-related quality of

life
NA NA

Non- serious

adverse events

maximum follow-

up

1978 per

1,0000

3678 per 10,000 (2413

to 5613)

1.86 (1.22 to

2.84)

16 959 (8) ���⊝Moderate Downgraded one level for serious risk of bias

DARIS: 280 894

(Pc 19.8%; RRR 20%; alpha 1.67%; beta 10%;

diversity 98.21%)

�The basis for the assumed risk (e.g., the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is

based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval. Pc: Proportion in control group with outcome. RR: Risk ratio. DARIS: Diversity-adjusted required information size. NA: Not applicable. NR:

Not reported.

GRADE Working Group grades of evidence.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

https://doi.org/10.1371/journal.pone.0260733.t003
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participants; low certainty; S1 File). TSA, however, showed that we did not have enough data

to confirm that the vaccines reduced mortality with 20% or more (S1 File).

Prevention of symptomatic COVID-19 participants with positive PCR test

Inactivated vaccines. Three trials assessing inactivated vaccines reported vaccine efficacy

on symptomatic COVID-19 participants. Meta-analysis (FE) showed that inactivated vaccines

versus placebo result in a large reduction of symptomatic COVID-19 participants (efficacy,

Table 4. Summary of findings (viral vector vaccines).

Viral vector vaccines versus control

Population: General population

Settings: Outpatient

Intervention: Viral vector vaccine (Ad26.COV2.S-Janssen, ChAdOx1 nCoV-19-Vaxzevria, and Gam-COVID-Vac-Sputnik-V)

Comparison: Control (placebo or MenACWY)

Outcomes Illustrative comparative risks� (95%

CI)

Relative effect

(95% CI)

No of

participants

(studies)

Quality of the

evidence

(GRADE)

Comments

Assumed

risk

Corresponding risk

Control Vaccine

All-cause

mortality

maximum follow-

up

Study population 0.25 (0.09 to

0.67)

67 563 (3) ��⊝⊝ Low Downgraded one level for serious risk of bias and

one level for serious imprecision.

DARIS: 1 092 776

(Pc 0.067%; RRR 20%; alpha 1.67%; beta 10%;

diversity 0.0%)

67 per

100,000

17 per 100,000 (6 to

45)

Vaccine efficacy

Positive test plus

symptoms

maximum follow-

up

Study population 69%, (44% to

83)

71 702 (5) ���⊝
Moderate

Downgraded one level for serious risk of bias

DARIS: 122 459

(Pc 1.2%; RRR 50%; alpha 1.67%; beta 10%;

diversity 88.35%)

117 per

10,000

36 per 10,000 (20 to

51)

Serious adverse

events

maximum follow-

up

0.82 (0.64 to

1.05)

68 640 (4) ��⊝⊝ Low Downgraded one level for serious risk of bias and

one level for serious imprecision.

DARIS: 319 505

(Pc 0.42%; RRR 20%; alpha 1.67%; beta 10%;

diversity 41.4%)

42 per

10,000

35 per 10,000 (27 to

44)

Health-related

quality of life

maximum follow-

up

NR NR NA No trials assessed health-related quality of life

NR NR

Non- serious

adverse events

maximum follow-

up

1854 per

10,000

2243 per 10,000

(1854 to 2706)

1.21 (1.00 to

1.46)

8 909 (3) �⊝⊝⊝ Very

low

Downgraded one level for serious risk of bias and

two levels for very serious imprecision DARIS: 32

620

(Pc 18.5%; RRR 20%; alpha 1.67%; beta 10%;

diversity 83.3%)

�The basis for the assumed risk (e.g., the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is

based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval. Pc: Proportion in control group with outcome. RR: Risk ratio. DARIS: Diversity-adjusted required information size. NA: Not applicable. NR:

Not reported.

GRADE Working Group grades of evidence.

High quality: Further research is very unlikely to change our confidence in the estimate of effect.

Moderate quality: Further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low quality: Further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low quality: We are very uncertain about the estimate.

https://doi.org/10.1371/journal.pone.0260733.t004
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61% [95% CI 52% to 68%]; p<0.0001; I2 = 80.5%; 48 029 participants; moderate certainty; Fig

4). Visual inspection of the forest plot and I2 suggested evidence of substantial heterogeneity.

mRNA vaccines. Three trials assessing mRNA vaccines reported vaccine efficacy on

symptomatic COVID-19 participants. Meta-analysis (RE) showed that mRNA vaccines versus

placebo result in a large reduction of symptomatic COVID-19 participants (efficacy, 95% [95%

CI 92% to 97%]; p<0.0001; I2 = 0.0%; 71 514 participants; moderate certainty; Fig 4).

Protein-subunit vaccines. Two trials assessing protein-subunit vaccines reported vaccine

efficacy on symptomatic COVID-19 participants. Meta-analysis (RE) showed that protein-sub-

unit vaccines versus placebo may result in a large reduction of symptomatic COVID-19 partic-

ipants, but the confidence interval was compatible with no effect (efficacy, 77% [95% CI −5%

Fig 1. PRISMA flowchart.

https://doi.org/10.1371/journal.pone.0260733.g001
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Table 5. Randomized clinical trials included in systematic review of vaccines against COVID-19.

Source–First

author and year

of publication

Trial registration Trial

phase

Vaccine name 1 Developer/Investigator Number

randomized 2
Overall

risk of bias

2

mRNA Vaccines

Baden et al, 2020 NCT04470427 3 mRNA-1274/ Spikevax Moderna, Inc 30420 Some

concerns

Walsh et al, 2020

18-55y 30μg

NCT04368728 1 BNT162b2/ Comirnaty BioNTech SE, Pfizer Inc. 195 Some

concerns

Walsh et al, 2020

65-85y 30μg

Some

concerns

Mulligan et al,

2020

NCT04368728 1/2 BNT162b1 45 Some

concerns

Polack et al, 2020 NCT04368728 3 BNT162b2/ Comirnaty 43548 Some

concerns

Li et al, 2021 ChiCTR2000034825,

NCT04523571

1 BNT162b1 BioNTech, Shanghai Fosun Pharmaceutical

Development

144

Viral Vector Vaccines

Madhi et al, 2021 NCT04444674,

PACTR202006922165132

1/2 ChAdOx1 nCoV-19/

AZD 1222/Vaxzevria

University of Oxford, AstraZeneca 2026 Low risk of

bias

Ramasamy et al,

2020

NCT04400838,

ISRCTN15281137

2/3 ChAdOx1 nCoV-19/

AZD 1222/Vaxzevria

560 Some

concerns

Folegatti et al,

2020

NCT04324606 3 ChAdOx1 nCoV-19/

AZD 1222/Vaxzevria

1067 Low risk of

bias

Voysey et al, 2020

UK

NCT04400838,

ISRCTN89951424

3 ChAdOx1 nCoV-19/

AZD 1222/Vaxzevria

20675 (received

all doses of

intervention)

High risk

of bias

Voysey et al, 2020

Brazil

High risk

of bias

Logunov et al,

2021

NCT04530396 3 Gam-COVID-Vac/

Sputnik V

Gamaleya Research Institute of Epidemiology

and Microbiology

21977 Some

concerns

Stephenson et al,

2021

NCT04505722 1 Ad26.COV2.S/ Janssen

COVID-19 Vaccine/JNJ-

78436735/Ad26COVS1

Janssen Pharmaceuticals 25

Sadoff et al, 2020 NCT04436276 1/2 Ad26.COV2.S/ Janssen

COVID-19 Vaccine/JNJ-

78436735/Ad26COVS1

402 Low risk of

bas

Sadoff et al, 2021 NCT04505722 3 Ad26.COV2.S/ Janssen

COVID-19 Vaccine/JNJ-

78436735/Ad26COVS1

43783 Some

concerns

Cai Zhu et al,

2020

NCT04341389,

NCT04341390

2 Ad5-nCOV/ Convidicea CanSinoBIO 508 Some

concerns

Protein Subunit Vaccines

Keech et al, 2020 NCT04368988 1/2 NVX-CoV2373 Novavax Inc. 125 Some

concerns

Shinde et al, 2021 NCT04533399 1/2 NVX-CoV2373 4406 High risk

of bias

Formica et al,

2021

NCT04368988 1/2 NVX-CoV2373 1288 Some

concerns

Heath et al, 2021 NCT04583995 3 NVX-CoV2374 15187

Richmond et al,

2021 18-54y

NCT04405908 1 SCB-2019 Clover Biopharmaceuticals, Coalition for

Epidemic Preparedness Innovations

151 Some

concerns

Richmond et al,

2021 55-75y

Some

concerns

Goepfert et al,

2021

NCT04537208 1/2 CoV2 preS dTM Sanofi Pasteur, GlaxoSmithKline 441 Some

concerns

(Continued)
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to 95%]; p = 0.06; I2 = 92.6%; 17 737 participants; low certainty; Fig 4). Visual inspection of the

forest plot and I2 suggested substantial evidence of heterogeneity.

Viral vector vaccines. Five trials assessed viral vector reported vaccine efficacy on symp-

tomatic COVID-19 participants. Meta-analysis (RE) showed that viral vector vaccines versus

placebo likely result in a large reduction of symptomatic COVID-19 participants (efficacy,

Table 5. (Continued)

Source–First

author and year

of publication

Trial registration Trial

phase

Vaccine name 1 Developer/Investigator Number

randomized 2
Overall

risk of bias

2

Yang et al, 2021

phase 1

NCT04445194 1 ZF2001 Anhui Zhifei Longcom Biopharmaceutical

Co., Ltd, Institute of Microbiology—Chinese

Academy of Sciences

50 Some

concerns

Yang et al, 2021

phase 2

NCT04466085 2 900 Some

concerns

Ward et al, 2020 NCT04450004 1 CoVLP Medicago Inc. 180

Gobeil et al, 2021 NCT04636697 2 CoVLP 588 Some

concerns

Chappell et al,

2021

NCT04495933 1 SARS-CoV-2 sclamp

vaccine

The University of Queensland, Syneos

Health, CSIRO Manufacturing, Seqirus,

Coalition for Epidemic Preparedness

Innovations

120

Inactivated Virus Vaccines

Ella et al, 2021 NCT04471519 1 BBV152/Covaxin Bharat Biotech 375 Some

concerns

Wu et al 2021

phase 1

NCT04383574 1 CoronaVac Sinovac Biotech 422 Low Risk

of Bias

Wu et al, 2021

phase 2

2 Low Risk

of Bias

Zhang et al, 2020 NCT04352608 1/2 CoronaVac 744 Some

concerns

Han et al, 2021 NCT04551547 1/2 CoronaVac 72 phase 1 480

phase 2

Bueno et al, 2021 NCT04651790 3 CoronaVac 434 High risk

of bias

Xia et al, 2020

phase 1

ChiCTR2000031809 1 BBIBP-CorV/ Vero cell Bejing Institute of Biological Products/

Sinopharm (CNBG)

320 Low Risk

of Bias

Xia et al, 2020

phase 2

2 Low Risk

of Bias

Pu et al, 2020 CTR20200943,

NCT04412538

1 SARS-CoV-2 inactivated

vaccine

Institute of Medical Biology, Chinese

Academy of Medicine Science

192 High risk

of bias

Che et al, 2020 NCT04412538 2 SARS-CoV-2 inactivated

vaccine

750 Some

concerns

Palacios et al,

2021

NCT04456595 3 CoronaVac Fundação Butantan and São Paulo Research

Foundation

12408 Low Risk

of Bias

Pan et al, 2021 ChiCTR2000038804,

ChiCTR2000039462

1/2 KCONVAC Shenzhen Kangtai Biological Products Co.

Ltd, Beijing Minhai Biotechnology

60 phase 1 500

phase 2

Some

concerns

Al Kaabi et al,

2021

NCT04510207;

ChiCTR2000034780

3 WIV04, HB02 Sinopharm China National Biotec Group

Company Limited, Wuhan Institute of

Biological Products Co. Ltd., the Beijing

Institute of Biological Products Co. Ltd

40411 Low risk of

bias

1 If multiple names were used at different stages of development, all of them are listed.
2 If not number randomized it is noted differently.

https://doi.org/10.1371/journal.pone.0260733.t005
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Fig 2. COVID-19 vaccines versus placebo on all-cause mortality.

https://doi.org/10.1371/journal.pone.0260733.g002
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69% [95% CI 44% to 83%]; p = 0.0001; I2 = 85.7%; 70 865 participants; moderate certainty; Fig

4). Visual inspection of the forest plot, I2, and estimation of between-study variance (τ2 = 0.38)

indicated substantial heterogeneity.

Subgroup analyses of the different vaccines (favoring the Gam-COVID-Vac-Sputnik-V vac-

cine) and regarding vested interests (favoring without vested interests) showed evidence of dif-

ferences (p<0.05) (S1 File).

Network meta-analysis on prevention of symptomatic COVID-19 participants with

positive PCR test. Network meta-analysis on vaccine efficacy included eleven trials random-

izing 205 916 participants comparing placebo/control with inactivated, mRNA, protein-sub-

unit, or viral vector vaccines. There was no evidence of violation of the transitivity assumption

for age and sex (Table 5).

All vaccines were more effective than placebo. The two mRNA vaccines (mRNA-1273-Spi-

kevax and BNT162b2-Corminarty) and the viral vector vaccine, Gam-COVID-Vac-Sputnik-

V, were likely superior to the remaining vaccines. Three vaccines achieved a vaccine efficacy

superior to the minimum clinical important effectiveness of 50% compared with placebo:

BNT162b2-Corminarty (efficacy, 95% [95% CI 83% to 99%]), mRNA-1273-Spikevax (efficacy,

95% [95% CI 80% to 99%]), and Gam-COVID-Vac-Sputnik-V (efficacy, 90% [95% CI 63% to

97%]). Five vaccines did not achieve a vaccine efficacy which was significantly superior to

Fig 3. Rank heat plot for all-mortality and vaccine efficacy on symptomatic COVID-19 and on severe COVID-19.

https://doi.org/10.1371/journal.pone.0260733.g003

PLOS ONE Vaccines to prevent COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260733 January 21, 2022 13 / 23

https://doi.org/10.1371/journal.pone.0260733.g003
https://doi.org/10.1371/journal.pone.0260733


50%: NVX-CoV2373-Novavax (efficacy, 77% [95% CI 39% to 91%]), Vero Cell (efficacy, 75%

[95% CI 38% to 90%]), Ad26.COV2.S-Janssen (efficacy, 66% [95% CI −17% to 90%]), Corona-

Vac (efficacy, 50% [95% CI −73% to 86%]), and ChAdOx1 nCoV-19-Vaxzevria (efficacy, 56%

[95% CI 4% to 80%]). CINeMA was very low for all comparisons (S1 File).

Fig 4. COVID-19 vaccine efficacy on preventing symptomatic COVID-19 participants with positive PCR.

https://doi.org/10.1371/journal.pone.0260733.g004
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Based on the surface under the cumulative ranking curves, the BNT162b2-Corminarty vac-

cine had the greatest likelihood of being the most effective vaccine in reducing symptomatic

COVID-19 (P-score, 90.6%) (Fig 3). It was followed by mRNA-1273-Spikevax (P-score,

88.8%), Gam-COVID-Vac-Sputnik-V (P-score, 76.5%), NVX-CoV2373-Novavax (P-score,

50.7%), Vero Cell (P-score, 49.4%), Ad26.COV2.S-Janssen (P-score, 37.7%), ChAdOx1 nCoV-

19-Vaxzevria (P-score, 28.5%), CoronaVac (P-score, 25.1%), and placebo (P-score, 2.7%).

Prevention of severe COVID-19 symptoms with positive PCR test or prevention of posi-

tive PCR test only. Vaccine efficacies on prevention of asymptomatic and severe disease are

presented in the supplementary material (S1 File).

Serious adverse events. Inactivated vaccines. Seven trials assessing inactivated vaccines

reported on serious adverse events. Meta-analysis (RE) showed that inactivated vaccines versus

placebo may decrease serious adverse events slightly, but the confidence interval was also com-

patible with no effect (RR, 0.84 [95% CI 0.68 to 1.06]; p = 0.15; I2 = 0.0%; 53 839 participants;

low certainty; S1 File).

mRNA vaccines. Five trials assessing mRNA vaccines reported on serious adverse events.

Meta-analysis (RE) showed that mRNA vaccines versus placebo may increase serious adverse

events slightly, but the confidence interval was also compatible with no effect (RR, 1.10 [95%

CI 0.91 to 1.33]; p = 0.31; I2 = 0.0%; 75 926 participants; low certainty; S1 File).

Protein-subunit vaccines. Four trials assessing protein-subunit vaccines reported on serious

adverse events. Meta-analysis (RE) showed that these vaccines versus placebo have little or no

effect on serious adverse events (RR, 1.01 [95% CI 0.66 to 1.55]; p = 0.97; I2 = 0.0%; 16 389 par-

ticipants; low certainty; S1 File).

Viral vector vaccines. Four trials assessing viral vector reported on serious adverse events.

Meta-analysis (FE) showed that viral vector vaccines versus control may decrease serious

adverse events, but the confidence interval was also compatible with no effect (RR, 0.82 [95%

CI 0.64 to 1.05]; p = 0.12; I2 = 0.0%; 68 640 participants; low certainty; S1 File).

Health-related quality of life. None of the included trials assessed health-related quality of life.

Non-serious adverse events. Inactivated vaccines. Eleven trials assessing inactivated vac-

cines reported on adverse events considered non-serious. Meta-analysis (RE) showed that

inactivated vaccines versus placebo have little or no effect on adverse events not considered

serious (RR, 1.02 [95% CI 0.92 to 1.13]; p = 0.67; I2 = 92.4%; 54 239 participants; moderate cer-

tainty; S1 File).

mRNA vaccines. Five trials assessing mRNA vaccines reported on adverse events considered

non-serious. Meta-analysis (RE) showed that mRNA vaccines versus placebo likely result in a

large increase of adverse events not considered serious (RR, 1.79 [95% CI 1.50 to 2.12];

p<0.0001; I2 = 94.7%; 75 898 participants; moderate certainty; S1 File).

Protein-subunit vaccines. Seven trials assessing protein-subunit vaccines reported on adverse

events considered non-serious. Meta-analysis (RE) showed that protein-subunit vaccines versus

placebo result in a large increase of adverse events not considered serious (RR, 1.86 [95% CI 1.22

to 2.84]; p = 0.004; I2 = 87.2%; 16 959 participants; moderate certainty; S1 File).

Viral vector vaccines. Three trials assessing viral vector vaccines reported on adverse events

considered non-serious. Meta-analysis (RE) showed that viral vector vaccines versus control

may increase of adverse events not considered serious, but the confidence interval was also

compatible with no effect (RR, 1.21 [95% CI 1.00 to 1.85]; p = 0.05; I2 = 80.9%; 8 909 partici-

pants; very low certainty; S1 File).

Discussion

The assessed vaccines (Ad26.COV2.S-Janssen, BNT162b2-Corminarty, ChAdOx1 nCoV-

19-Vaxzevria, CoronaVac, Gam-COVID-Vac-Sputnik-V, mRNA-1273-Spikevax,

PLOS ONE Vaccines to prevent COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0260733 January 21, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0260733


NVX-CoV2373-Novavax, and Vero Cell) all seem to be effective in preventing symptomatic

COVID-19. Network meta-analysis suggests that the mRNA vaccines (mRNA-1273-Spikevax

and BNT162b2-Corminarty) and the viral vector vaccine, Gam-COVID-Vac-Sputnik-V,

could be superior to the remaining vaccines in preventing symptomatic COVID-19.

Our pairwise meta-analysis showed that the viral vector vaccines decreased mortality. Net-

work meta-analysis suggested that the viral vector vaccine Ad26.COV2.S-Janssen was most

effective in reducing mortality. All COVID-19 vaccines were more likely to reduce mortality

than placebo or control, but longer follow up and more participants are needed to confirm this

with a higher degree of certainty.

All vaccines, except inactivated vaccines, increased the risk of having a non-serious adverse

event. We found no difference on serious adverse events, for any of the included vaccines

(Ad26.COV2.S-Janssen, BNT162b2-Corminarty, CoronaVac, Gam-COVID-Vac-Sputnik-V,

mRNA-1273-Spikevax, NVX-CoV2373-Novavax, and Vero Cell), but our Trial Sequential

Analyses indicated that we did not have enough data to reject any differences.

Our results should been seen together with observational evidence suggesting rare serious

adverse events associated with the vaccines [68]. The results of our review is supported by the

first nationwide observational studies showing high vaccine efficacy of BNT162b2-Corminarty

and of BNT162b2-Corminarty and ChAdOx1 nCoV-19-Vaxzevria against COVID-19 hospital

admissions [69, 70].

We included 35 trials randomizing a total of 219 864 participants that contributed to our

analyses. Of these trials, ten were at overall low risk of bias, seventeen at overall some concerns,

and eight trials at overall high risk of bias. The certainty of evidence according to GRADE ran-

ged from very low to moderate for the pairwise meta-analyses and the CINeMA were very low

for all our network meta-analyses.

Most trials compared vaccines versus placebo. A few trials compared the vaccine versus a

control vaccine not active towards SARS-CoV2 (MenACWY) [37, 40, 45]. Only trials assessing

inactivated, mRNA, protein-subunit, and recombinant viral vector vaccines contributed to the

assessment of our primary outcomes.

We found very similar results for efficacy of vaccine prevention for the two mRNA-based

vaccines. This is not surprising as the construction differs only in details of the formulation of

nanoparticles used for protection of the mRNA. In contrast, marked heterogeneity was

observed regarding the three adenovector-based vaccines. Again, this is perhaps not surprising

as the adenoviral backbones are different: ChAdOx1 nCoV-19, Ad26, or Ad5. Preclinical stud-

ies in mice and non-human primates have pointed to significant variation in the capacity of

different adenoviral backbones to induce adaptive immunity [71–73]. Another cause could be

the fact that the vaccines were not compared head-to-head in the same populations under sim-

ilar conditions.

The emergence of SARS-CoV-2 variants of concern like in the UK (alpha/B.1.1.7), South

Africa (B.1.351/Beta), India (B.1617.1/Kappa and B.1.617.2/Delta), Brazil (B.1.1.284/Gamma),

USA (B.1.427 and B.1.429 / Epsilon), and Peru (C.37/Lambda) draws attention to increased

transmissibility, higher disease severity, and evasion of the immune system through mutations

in the spike protein [74–77]. This should be taken into consideration when trying to compare

vaccine efficacies derived from studies carried out at different time-points and/or locations.

The efficacy of existing vaccines against emerging variants needs to be closely monitored and

the adaptability of the vaccines to potential immunity evading mutations needs to be assessed.

The trials in our systematic review did not include pregnant participants. Pregnant women

constitute a vulnerable group for COVID-19 [78, 79]. Systematic reviews of observational

studies showed that compared to pregnant women without COVID-19, pregnant women with

this infection may require more frequent admissions to intensive care units (odds ratio (OR),
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1.62 [95% CI 1.33 to 1.96]) and invasive ventilation (OR,1.88 [95% CI 1.36 to 2.60]) [78, 79].

For these reasons, many countries like the USA [80–82] and Israel [83] are presently assessing

vaccine effectiveness in pregnant women. The World Health Organization (WHO) recom-

mended mRNA vaccines only to pregnant women at highest risk after consultation with their

physician [84], and trials are ongoing [85, 86].

Our review has several strengths. Our methodology was described in detail in a protocol

published before the literature searches were initiated [8]. We systematically assessed the risks

of systematic errors through bias risk assessments, we conducted Trial Sequential Analyses to

control random errors and guide our GRADE assessments of the domain ‘imprecision’, and

we adjusted our thresholds for statistical significance to control the risks of random errors

[15]. Our review is to our knowledge the first review to perform network meta-analysis com-

paring the different COVID-19 vaccines. It is also more updated than previous systematic

reviews [7, 87, 88]. Our living systematic review will be continually updated to incorporate rel-

evant new evidence as it becomes available [8, 89, 90].

Our review also has limitations. Most of the larger phase III trials presented only interim

analyses. The follow-up ranged from only 35 to 92 days. A longer follow-up would most likely

yield more events and lead to more robust conclusions. Moreover, the trials did not report vac-

cine efficacy similarly. They used different cut-offs, follow-up durations, and definitions of

vaccine efficacy. Especially the efficacy of preventing severe COVID-19 was not equally

reported for the different vaccines. Furthermore, most trials only reported efficacy in the

group of participants followed more than two weeks after the last vaccination and only

reported adverse events for a confined time. Accordingly, we may look at biased results. More-

over, reporting of adverse events was variably and insufficient in several trials.

The trials were conducted in different countries. The participants of the different trials

could therefore have been exposed to different variants of SARS-CoV2. We were unable to

fully extract comparable data from the ChAdOx1 nCoV-19-Vaxzevria trials due to the lack rel-

evant data from the individual trials, as the trials reported their results in a meta-analysis [37,

45, 52, 91].

Conclusion

Our systematic review shows that the inactivated vaccines, mRNA vaccines, protein-subunit

vaccines, and viral vector vaccines are effective in preventing infection with SARS-CoV2. Cur-

rent evidence shows that mRNA vaccines seem most effective in preventing COVID-19, but

viral vector vaccines seem most effective in reducing mortality. The inactivated vaccine (Coro-

naVac), mRNA vaccines (mRNA-1273-Spikevax and BNT162b2-Corminarty), protein-sub-

unit vaccine (NVX-CoV2373-Novavax), and viral vector vaccines (Gam-COVID-Vac-

Sputnik-V, ChAdOx1 nCoV-19-Vaxzevria, and Ad26.COV2.S- Janssen) do not seem to

increase the risk of serious adverse events according to published randomized trials. Most of

the vaccines increase the risk of adverse events not considered serious. Our results may help

guide authorities when deciding what vaccines to incorporate into their vaccine programs

weighing our results against the potential rare events seen in observational studies.
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