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Abstract: India, the second largest agro-based economy with year-round crop cultivation, generates
a large amount of agricultural waste, including crop residues. In the absence of adequate sustainable
management practices, approximately 92 seems a very small number of metric tons of crop waste
is burned every year in India, causing excessive particulate matter emissions and air pollution.
Crop residue burning has become a major environmental problem causing health issues as well
as contributing to global warming. Composting, biochar production and mechanization are a few
effective sustainable techniques that can help to curtail the issue while retaining the nutrients present
in the crop residue in the soil. The government of India has attempted to curtail this problem, through
numerous measures and campaigns designed to promote sustainable management methods such
as converting crop residue into energy. However, the alarming rise of air pollution levels caused by
crop residue burning in the city of Delhi and other northern areas in India observed in recent years,
especially in and after the year of 2015, suggest that the issues is not yet under control. The solution to
crop residue burning lies in the effective implementation of sustainable management practices with
Government interventions and policies. This manuscript addresses the underlying technical as well
as policy issues that has prevented India from achieving a long-lasting solution and also potential
solutions that have been overlooked. However, effective implementation of these techniques also
requires us to look at other socioeconomic aspects that had not been considered. This manuscript
also discusses some of the policy considerations and functionality based on the analyses and current
practices. The agricultural waste sector can benefit immensely from some of the examples from other
waste sectors such as the municipal solid waste (MSW) and wastewater management where collection,
segregation, recycling and disposal are institutionalized to secure an operational system. Active
stakeholder involvement including education and empowerment of farmers along with technical
solutions and product manufacturing can also assist tremendously. Even though the issue of crop
residue burning touches many sectors, such as environment, agriculture, economy, social aspects,
education, and energy, the past governmental efforts mainly revolved around agriculture and energy.
This sectorial thinking is another barrier that needs to be broken. The government of India as well as
governments of other developing countries can benefit from the emerging concept of nexus thinking
in managing environmental resources. Nexus thinking promotes a higher-level integration and
higher level of stakeholder involvement that goes beyond the disciplinary boundaries, providing a
supporting platform to solve issues such as crop residue burning.
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1. Introduction

The agricultural industry plays a major role in the overall economic growth of the world. However,
there is limited discussion on the management of agricultural waste in the published literature. It could
be related to the fact that agriculture industry is not regulated as the municipal solid waste (MSW).
The MSW is mainly governed by public entities such as municipalities and hence the generation and
management data are collected, recorded, and analyzed in the public domain. Agricultural waste is
predominantly handled by the owners of the agricultural land which is predominantly in the private
sector, with little public sector involvement.

The growing demand for food in developing countries have led to tremendous increase in food
production around the world. Hence, agro-based activities represent profitable businesses, both in
developing as well as developed countries. The multitude of agricultural activities increases the
amount of agro-products produced and this has led to an overall increase in environmental pollution
and waste generation. The nature of the activities deployed, and the waste generated depends on
the geographical and cultural factors of a country. Large stretches of wasteland have been converted
to arable lands due to developments in water management systems, modern agro-technologies and
large-scale agrochemical deployment [1]. These measures have resulted in global environmental
pollution and increased complexity in the disposal of agricultural waste. However, the national
agencies are continuously developing policies and possible options to manage these wastes, which
includes their conversion to reusable resources.

Waste materials derived from various agricultural operations are defined as agricultural wastes.
As per the United Nations, agricultural waste usually includes manure and other wastes from farms,
poultry houses and slaughterhouses; harvest waste; fertilizer run-off from fields; pesticides that enter
water, air or soils; salt and silt drained from fields [1–3]. According to the world energy council,
in addition to all above, agricultural waste can also comprise of spoiled food waste [4]. The harvest
waste, which is more popularly termed as crop residue can contain both the field residues that are
left in an agricultural field or orchard after the crop has been harvested and the process residues that
are left after the crop is processed into a usable resource. Stalks and stubble (stems), leaves, and seed
pods are some common examples for field residues. Sugarcane bagasse and molasses are some good
examples for process residue [2,4–6].

According to the Indian Ministry of New and Renewable Energy (MNRE), India generates on an
average 500 Million tons (Mt here after) of crop residue per year [7]. The same report shows that a
majority of this crop residue is in fact used as fodder, fuel for other domestic and industrial purposes.
However, there is still a surplus of 140 Mt out of which 92 Mt is burned each year [7]. Table 1 compares
the agricultural waste generated by selected Asian countries in Mt/year [7,8]. It is also interesting to
note that the portion burnt as agricultural waste in India, in volume is much larger than the entire
production of agricultural waste in other countries in the region.

Table 1. Agricultural waste generation in India compared to other select nations in the same region [7,8].

Country Agricultural Waste Generated (million tons/year)

India 500
Bangladesh 72
Indonesia 55
Myanmar 19

Waste from the agricultural industry can be beneficially utilized in various agro-based applications
and other industrial processing. However, the cost of collection, processing and transportation can
be much higher than the revenue from the beneficial use of such waste. The classic example of
how economic reasons have prevented attaining the sustainable use of agricultural waste and led to
environmental chaos in India, is the focus of this manuscript. This topic is important to the wider
audience beyond India for two reasons: first, crop residues are an important constituent of agricultural
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waste that can actually be used for the benefit of the society due to its organic composition. The other
important reason is that the volume of crop residue, with unsustainable management practices create
high adverse environmental impacts, that go far beyond India [9]. Specifically, India is the second
largest producer of rice and wheat in the world, two crops that usually produce large volume of residue.

2. Crop Residue: Composition and Decomposing Mechanisms

General types of crop residues produced by the main cereal crops and sugar cane are summarized
in the Table 2. These crop residues, specifically as a field residue is a natural resource that traditionally
contributed to the soil stability and fertility through ploughing directly into the soil, or by composting.
Good management of field residues can also increase irrigation efficiency and erosion control. However,
the mass scale and rapid pace of crop production have imposed economic and practical limitations to
such traditional sustainable practices. It is a common practice in many of the developing countries,
especially in Asia to burn the surplus crop residue [10,11]. While burning creates environmental issues,
ploughing field residue into the ground for millions of hectares within a short time requires new and
expensive technical assistance.

Table 2. Crop residues produced by major crops [12,13].

Source Composition

Rice Husk, bran
Wheat Bran, straw
Maize Stover, husk, skins
Millet Stover

Sugarcane Sugarcane tops, bagasse, molasses

Plant biomass is mainly comprised of cellulose, hemicellulose and lignin with smaller
amounts of pectin, protein extractives, sugars, and nitrogenous material, chlorophyll and inorganic
waste [14–16]. Compared to cellulose and hemicellulose, lignin provides the structural support
and it is almost impermeable. Lignin resist fermentation as it is very resistant to chemical and
biological degradation [17–19]. The non-food-based portion of crops such as the stalks, straw and
husk are categorized under lignocellulosic biomass [16]. The major agricultural crops grown in the
world—maize, wheat, rice and sugarcane, respectively, account for most of the lignocellulosic biomass.
Lignocellulosic biomass composed of cellulose, hemicellulose, and lignin, are increasingly recognized
as a valuable commodity, due to its abundant availability as a raw material for the production
of biofuels.

The crop residues generated due to agricultural activities are exploited by several countries in
different ways. They are utilized in processed or unprocessed form, depending on the end use.
The possible options include its use as animal feed, composting, production of bio-energy and
deployment in other extended agricultural activities such as mushroom cultivation [20,21]. According
to Lohan et al. [22], many countries such as China, Indonesia, Nepal, Thailand, Malaysia, Japan,
Nigeria and Philippines utilize their crop residues to generate bio energy and compost.

Numerous researchers have worked on lignocellulosic biomass pretreatment techniques for
bio-fuel conversion [23–25]. Because of its resistance to chemical and biological degradation by fungi,
bacteria and enzymes, the lignin layer is usually pretreated or acted upon by the lignin degrading
microorganisms to break down the lignin layer and degrade cellulose and hemicellulose matter to the
corresponding monomers and sugars for effective biomass to fuel conversion [16]. The pretreatment
could be mechanical, chemical, physico-chemical and biological. These methods result in increase of
the accessible surface area, porosity and decrease in crystallinity of cellulose and hemicellulose and
degree of polymerization.

The management of agricultural waste using microbes could also be an excellent option for the
detoxification of the soil and mitigation of environmental pollution [26]. Microbial populations
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degrade the complex substances present in the biomass to simpler ones that can be reused or
recycled through environmental processes. The techniques adopted can either be aerobic or anaerobic,
depending on the nature of bacteria, fungi or algae involved in the degradation [27]. The microbial
degradation techniques reduce the soil toxicity, promote plant growth through provision of growth
accelerating metabolites and provide plant nutrients through sequestration from soil [28]. Thus,
the bioremediation of the agricultural waste could be effectively carried out by anaerobic and aerobic
processes, through some of the associated techniques like composting, vermicomposting, biogas
production, bio-methanation and bio pile farming [26].

Anaerobic digesters can turn biomass into biogas, a renewable energy source, containing
approximately 50% methane, and a final solid residue usable as a fertilizer rich in nutrients. Anaerobic
digestion is a promising valorization technology due to its ability to convert almost all sources
of biomass, including different types of organic waste, slurry and manure into highly energetic
biogas [29]. It is an effective and environmentally attractive pathway and promising option for
recycling agricultural by-products because these contain high percentage of biodegradable materials.
Anaerobic digestion involves microbial conversion in aqueous environment and could be processed
without any pretreatment [30,31]. Further it encompasses a complex biological process, involving
anaerobic degradation of the biomass. The degradation and conversion continue in individual phases
carried out by different groups of specific symbiotic micro-organisms [16,32]. It involves controlled
substrate and methanogenic bacteria for methane fermentation. The anaerobic digestion proceeds
through three phases, with the hydrolytic bacteria degrading polymeric organic matter into monomers
(sugars, amino acids) in the first phase. Followed by monomer degradation to fatty acids, (acetate,
formate) as the second stage and in the third phase, the acids are reduced to carbon dioxide and
methane by acetotrophs, methylotrophs and hydrogenotrophs bacteria [16,31].

The past governmental interventions mainly focus on the use of crop residue as a source of energy:
in the form of biogas as well as a supplement for thermal power plants [33–37]. Biogas generated
through anaerobic biodegradation of municipal solid waste and agricultural waste, contains around
40–70% methane, this is usually augmented to natural gas quality with a methane content of 70–99%.
Further it can be injected into the natural gas grid or used as fuel for transportation [38]. The methane
production potential of wheat straw ranges from 0.145 m3/kg to 0.390 m3/kg for dry organic mass
fed to the digester [39–41]. Rice straw has a methane production potential ranging from 0.241 m3/kg
to 0.367 m3/kg [42]. Deublin and Steinhauser [32] reported a biogas production potential of around
0.550 to 0.620 m3/kg for rice straw biomass with around 50% methane content. Similarly, the reported
biochemical methane production from sugarcane biomass varies from 0.266–0.314 m3/kg [42].

3. Crop Residue Burning in India: Statistics

India, with 17% of the world population and an agrarian background generates large volumes of
food grains such as rice and wheat for domestic consumption as well as for export [7,43]. According to
the Directorate of Economics and Statistics, in 2012–2013, India generated 361 Mt of sugarcane, 94 Mt
of wheat and 105 Mt of rice (Table 3). Of the various crops grown, majority crop residue of rice, wheat
and sugarcane are burned. These crops have large returns on investment making it highly impossible
for the farmers to find alternative crops, which produces lower crop residues [7].

Table 3. Crop Production Estimate of Major Crops in India [7]

Crop Estimate of Production (Mt)

Rice 105
Wheat 94

Sugarcane 361
Oil seeds 30
Cotton 35

Jute 11
Pulses 17
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National policy for management of crop residues (NPMCR) [7] provides the details of the
state-wise statistics of crop residue generated and excess residue burned. Based on NPMCR [7],
it is evident that the generation of crop residues is highest in the state of Uttar Pradesh (60 Mt) followed
by the other states Punjab (51 Mt) and Maharashtra (46 Mt) with a grand total of 500 Mt per year out
of which 92 Mt is burned. Rice and wheat contribute nearly 70% of the crop residues. Out of the total
waste generated, the surplus residue refers to the waste that remains after utilizing the residue for
various other purposes. A part of the surplus waste is burned, and the remains are left in the field.

Based on Jain et al. [43], and the Intergovernmental Panel on Climate Change (IPCC), the highest
contribution to the amount of residue burned on the farm is from the states of Uttar Pradesh, followed
by Punjab and Haryana. According to IPCC, over 25% of the total crop residues were burnt on the farm.
Jain et al. [43], also reported that the fraction of crop residue burned ranged from 8–80% for paddy
waste across all states. Among different crop residue, major contribution was 43% of rice, followed by
wheat to around 21%, sugarcane to 19% and oilseed crops around 5% [43,44].

The Ministry of Agriculture attributes the increase in the on-farm crop residue burning to the
shortage of human labor [7]. Jitendra et al. [45], reported that 80% of the crop residue burning took
place during the post-harvest period of April-May and November-December. The reason behind this
is attributed to the crop patterns used to ensure higher economic returns which leaves limited time
between two consecutive crop cultivations. Some farmers even resort to a cycle of three crops a year
with a short gap between harvesting and sowing.

4. Adverse Impact of Crop Residue Burning on the Environment

The burning of crop residues generates numerous environmental problems. The main adverse
effects of crop residue burning include the emission of greenhouse gases (GHGs) that contributes to the
global warming, increased levels of particulate matter (PM) and smog that cause health hazards, loss
of biodiversity of agricultural lands, and the deterioration of soil fertility [22]. Crop residue burning
significantly increases the quantity of air pollutants such as CO2, CO, NH3, NOX, SOX, Non-methane
hydrocarbon (NMHC), volatile organic compounds (VOCs), semi volatile organic compounds (SVOCs)
and PM [46,47]. This basically accounts for the loss of organic carbon, nitrogen, and other nutrients,
which would otherwise have retained in soil [7,43]. Jain et al. [43] reported that burning of 98.4 Mt
of crop residue has resulted in emission of nearly 8.57 Mt of CO, 141.15 Mt of CO2, 0.037 Mt of SOx,
0.23 Mt of NOx, 0.12 Mt of NH3 and 1.46 Mt NMVOC, 0.65 Mt of NMHC, 1.21 Mt of PM during
2008–2009, where CO2 is 91.6% of the total emissions. Remaining 8.43% consisted of 66% CO, 2.2%
NO, 5% NMHC and 11% NMVOC [43].

The PM emitted from burning of crop residues in Delhi is 17 times that from all other sources
such as vehicle emissions, garbage burning and industries [45]. As such the residue burning in the
northwest part of India contributes to about 20% of organic carbon and elemental carbon towards
the overall national budget of emission from agricultural waste burning [22]. Hayashi et al. [21]
and Gupta et al. [48] predicted that cumulative CO, CO2, N2O and NOx emissions from rice and
wheat straw burning are 0.11, 2.306, 0.002 and 0.084 Mt respectively. Street et al. [49], have estimated
that approximately 730 Mt of biomass was burned annually from both anthropogenic and natural
resources in Asia and 18% of that is from India. Crop burning increases the PM in the atmosphere and
contributes significantly to climate change. One contributor to global climate change is the release
of fine black and also brown carbon (primary and secondary) that contributes to the change in light
absorption [10,50–52].

Usually PM in the air is categorized as PM2.5 and PM10 based on the aerodynamic diameter and
chemical composition (PM2.5 or fine, particulate matter with aerodynamic diameter <2.5 µm and PM10

or coarse, particulate matter with aerodynamic diameter <10 µm). Lightweight particulate matter
can stay suspended in the air for a longer time and can travel a longer distance with the wind [43,53].
The effect of particulate matter gets worsened by the weather conditions, as the particles are lightweight,
stay in air for a longer time and causes smog. The annual contribution of PM2.5 due to burning of
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paddy residue in the Patiala district of Punjab was estimated to be around 60 to 390 mg/m3 [22].
During the period of October 2017, smoke from crop residue burning in Punjab and Haryana blows
across northern India and Pakistan. With the onset of cooler weather in November, the smoke, mixed
with fog, dust, and industrial pollution, forms a thick haze. Wind usually helps disperse air pollution,
and the lack of it, worsens the problem for several days as was the case during November 2017.
Several major cities—including Lahore, New Delhi, Lucknow, and Kanpur—faced elevated levels of
pollution [54]. On 7 November 2017, the Moderate Resolution Imaging Spectro-Radiometer (MODIS)
of NASA’s Aqua satellite captured a natural-color image of haze and fog blanketing the northen states
region of India (Figure 1).
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The WHO standard for permissible levels of PM2.5 in the air is 10 µg/m3, and according to the
India’s National Ambient Air Quality Standard, the permissible level for PM2.5 is set at 40 µg/m3.
However, the National Capital territory of Delhi recorded a mean value of 98 µg/m3, which is at least
twice more than the Indian standard and ten times higher than the WHO standard [55]. In addition to
the emission of gases and aerosols, there is continuous deterioration of soil fertility due to burning.
Heat from burning of residues raises the soil temperature and causes depletion of the bacterial and
fungal population. The residue burning increases the subsoil temperatures to nearly 33.8–42.2 ◦C at
10 mm depth [48], and long-term effects can even reach up to 15 cm of the top soil. Frequent burning
reduces nitrogen and carbon potential of the soil and kills the microflora and fauna beneficial to the soil,
and further removes the large portion of the organic matter. With crop burning the carbon-nitrogen
equilibrium of the soil is completely lost [56,57]. According to NPMCR [7], it is reported that burning
of one ton of straw accounts for the loss of entire amount of organic carbon, 5.5 kg of nitrogen, 2.3 kg
of phosphorous, 25 kg of potassium and 1.2 kg of sulphur. On an average crop residue of different
crops contain approximately 80% of nitrogen (N), 25% of phosphorus (P), 50% of sulphur (S) and 20%
of potassium (K). If the crop residue is retained in the soil itself, it can enrich the soil with C, N, P and
K as well.

5. Government Intervention

Stringent measures to mitigate crop burning and further to regulate crop waste management
require involvement of the appropriate Government agencies. Several attempts were made by the
Government of India to introduce and educate the agricultural community about the best practices
of agricultural waste management through Government-initiated projects. Numerous forums and
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proposals were also formulated by environmentalists and Government officials to curb crop residue
burning and to promote the usage of alternative sustainable management methods. Some of the
laws that are in operation pertaining to crop residue burning are: The Section 144 of the Civil
Procedure Code (CPC) to ban burning of paddy; The Air Prevention and Control of Pollution Act, 1981;
The Environment Protection Act, 1986; The National Tribunal Act, 1995; and The National Environment
Appellate Authority Act, 1997. Particularly, in the states of Rajasthan, Uttar Pradesh, Haryana and
Punjab stringent measures have been taken by the National Green Tribunal (NGT) to limit the crop
residue burning [22,57].

5.1. Initiative towards Biogas Plants

Biogas plants are a progressive step taken by the Government of India to curb crop burning and
to prevent pollution. The biogas technologies have been in vogue since the 1970s and several programs
are run by the National Biogas and Manure Management Program-off grid biogas power generation
program to provide renewable energy for electricity generation, cooking and lighting purpose. These
programs were implemented by the Government under the “waste to energy mission”. This is also a
part of India’s action plan on climate change [33,34,36,37].

Large scale industrial biogas plants generate 5000 m3 of bio gas per day. Nearly 400 off-grid biogas
power plants have been set up with a power generation capacity of 5.5 MW [34,37,58]. Currently
there are 56 biogas-based power plants operational in India, the majority of them are in the states of
Maharashtra, Kerala and Karnataka [59]. Small family type biogas plants have also been introduced in
the rural areas, which can generate 1 to 10 m3 biogas per day. Nearly five million family biogas plants
have been installed by MNRE under the biogas development program.

Recent developments in technology have opened the possibility of using paddy straw and other
crop residue other than dung and vegetable waste for biogas generation in an integrated approach.
Urja, [60] reported the setting up of a biogas plant combined with commercial farms and processing
units that was set up in Fazilka, Punjab as a novel initiative towards green energy. This plant generates
biogas using rice straw through bio-methanation technology. The biogas plant having been certified by
the premier academic institutes like the Indian Institute of Technology, Delhi and Punjab Agricultural
University, generates around 4000 m3 of biogas from 10 tons of agricultural residue [60]. In another
biogas enterprise, a 12 MW rice-straw power plant can consume 120,000 tons of stubble collected from
nearly 15,000 farmers [61,62]. These private enterprises generated around 700,000 jobs for the farming
population. As per Sood [62], the secondary users such as bio-gas plants offered farmers Rs. 600 to Rs.
1600 (8 to 22 USD) per ton of straw. Through some of these measures implemented by the Government
agencies and private sectors, crop burning has been reduced but not completely stopped.

5.2. National Schemes and Policies

The Government of India recently directed the National Thermal Power Corporation (NTPC) to
mix crop residue pellets (nearly 10%) with coal for power generation [63]. This helped the farmers
with a monetary return of approximately Rs. 5500 (77 USD) per ton of crop residue. These lucrative
measures are yet to be in action and it can be profitably exploited by the farmers.

Few measures, associated with bio-composting are run by the Indian government. The Rashtriya
Krishi Vikas Yogna (RKVY), State Plan Scheme of Additional Central Assistance launched in August
2007 is a government initiative, as a part of the 11th Five Year Plan by the Government of India [64].
Under this scheme eight demonstration and training projects were established in different villages
of Azamgarh and Marinath Bhanjam districts of eastern Uttar Pradesh. Around 456 farmers were
trained for agro-waste bio-conversion and bio-compost production. These large-scale efforts supported
farmers in gaining economic advantages [64].

In addition to above, the Ministry of Agriculture of India recently developed a National Policy for
Management of Crop Residue (NPMCR) [7]. The following are the main objectives of the NPMCR, [7]:
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(1) Promote the technologies for optimum utilization and in-situ management of crop residue, to
prevent loss of valuable soil nutrients, and diversify uses of crop residue in industrial applications.

(2) Develop and promote appropriate crop machinery in farming practices such as modification of
the grain recovery machines (harvesters with twin cutters to cut the straw). Provide discounts
and incentives for purchase of mechanized sowing machinery such as the happy seeder, turbo
seeder, shredder and baling machines.

(3) Use satellite-based remote sensing technologies to monitor crop residue management with the
National Remote Sensing Agency (NRSA) and Central Pollution Control Board (CPCB).

(4) Provide financial support through multidisciplinary approach and fund mobilization in various
ministries for innovative ideas and project proposals to accomplish above.

No significant information is reported in the literature yet on any new interventions by the
government to achieve objectives 1, 2, or 4 above, however, the new policy did help with the objective
3 on monitoring and enforcing the measures taken by the Central Government in collaboration with
the State Governments. One such example comes from Punjab. In an effort to identify and locate
the exact crop burning locations, the Punjab Pollution control Board (PPCB) and the Environmental
Prevention and Control Authority (EPCA) (National Agency) used remote sensing techniques and
aerial surveillance. The burning areas were identified as red dots in the imagery. A typical case is
shown in the aerial photograph taken on November of 2015 (Figure 2), which depicts the farming lands
in Punjab and Haryana after the rice harvesting period. Localized red spots seen indicate the areas of
crop burning [65]. Also, during the same year the crop burning problem became dominant and gained
national and international attention after the NASA alert and subsequent alarming rise of air pollution
levels in the city of Delhi. As a consequence, states like Rajasthan, Punjab and Haryana imposed fines
between Rs. 2500 to Rs. 15,000 (35 to 210 USD) on farmers indulging in crop-burning [45]. The National
Green Tribunal, a government enterprise, established under the National Green Tribunal Act laid
down stringent directives to the states to curb crop burning through recycling initiatives and spread
proper awareness among the people.

Int. J. Environ. Res. Public Health 2019, 16, x 8 of 18 

 

No significant information is reported in the literature yet on any new interventions by the 
government to achieve objectives 1, 2, or 4 above, however, the new policy did help with the objective 
3 on monitoring and enforcing the measures taken by the Central Government in collaboration with the 
State Governments. One such example comes from Punjab. In an effort to identify and locate the exact 
crop burning locations, the Punjab Pollution control Board (PPCB) and the Environmental Prevention 
and Control Authority (EPCA) (National Agency) used remote sensing techniques and aerial surveillance. 
The burning areas were identified as red dots in the imagery. A typical case is shown in the aerial 
photograph taken on November of 2015 (Figure 2), which depicts the farming lands in Punjab and 
Haryana after the rice harvesting period. Localized red spots seen indicate the areas of crop burning 
[65]. Also, during the same year the crop burning problem became dominant and gained national and 
international attention after the NASA alert and subsequent alarming rise of air pollution levels in the 
city of Delhi. As a consequence, states like Rajasthan, Punjab and Haryana imposed fines between Rs. 
2500 to Rs. 15,000 (35 to 210 USD) on farmers indulging in crop-burning [45]. The National Green 
Tribunal, a government enterprise, established under the National Green Tribunal Act laid down 
stringent directives to the states to curb crop burning through recycling initiatives and spread proper 
awareness among the people. 

 
Figure 2. Crop burning areas in Punjab and Haryana, as captured by NASA [65]. 

With the vigilance of government agencies, the states of Punjab and Haryana have witnessed a 
reduction of 38% and 25% in crop stubble burning, respectively. Punjab Pollution Control Board 
through the satellite imageries from the Punjab Remote Sensing Centre, were also able to locate the crop 
burning areas and levy fine on the farmers [66,67]. The total recorded current cases for the year of 2018 
was 1816 compared to 4710 for the year of 2017 with nearly 38% reduction [66]. Similar actions were 
implemented by the Haryana Government, which witnessed a 25% reduction. Some of the farmers 
in these states were awarded incentives, rewards and subsidies for practicing the control measures [67]. 

6. Sustainable Management Practices for Crop Residue 

As discussed in the previous section, most of the government interventions thus far have mainly 
focused on the energy production out of crop residue, particularly biogas production. Specifically, in 
the states of Tamil Nadu, Bihar, Assam, West Bengal and Jammu and Kashmir, were crop residues are 
being used as a source for animal feed [22]. Some of the residues are processed to be used in construction 
applications, such as the use of rice husk ash in cement mixes. Banana peels and sugarcane waste are being 
utilized in the paper industry, while husk and bagasse ash are utilized for mushroom cultivation [4]. 

Alternative measures have long been suggested by scientists and agriculturalists over the past 
decade to counter crop residue burning, but due to a lack of awareness and social consciousness 

Figure 2. Crop burning areas in Punjab and Haryana, as captured by NASA [65].

With the vigilance of government agencies, the states of Punjab and Haryana have witnessed
a reduction of 38% and 25% in crop stubble burning, respectively. Punjab Pollution Control Board
through the satellite imageries from the Punjab Remote Sensing Centre, were also able to locate the
crop burning areas and levy fine on the farmers [66,67]. The total recorded current cases for the year of
2018 was 1816 compared to 4710 for the year of 2017 with nearly 38% reduction [66]. Similar actions
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were implemented by the Haryana Government, which witnessed a 25% reduction. Some of the
farmers in these states were awarded incentives, rewards and subsidies for practicing the control
measures [67].

6. Sustainable Management Practices for Crop Residue

As discussed in the previous section, most of the government interventions thus far have mainly
focused on the energy production out of crop residue, particularly biogas production. Specifically, in
the states of Tamil Nadu, Bihar, Assam, West Bengal and Jammu and Kashmir, were crop residues
are being used as a source for animal feed [22]. Some of the residues are processed to be used in
construction applications, such as the use of rice husk ash in cement mixes. Banana peels and sugarcane
waste are being utilized in the paper industry, while husk and bagasse ash are utilized for mushroom
cultivation [4].

Alternative measures have long been suggested by scientists and agriculturalists over the past
decade to counter crop residue burning, but due to a lack of awareness and social consciousness among
the farmers these measures have not been fully implemented. This could be one of the reasons why
biogas production has prospered while other alternatives such as using crop residue as raw material
for animal feed, paper industry, construction industry have not become very popular. If a solution
involves making another product out of crop residue, such a product should have a secured market
for this solution to succeed. In certain cases, logistic issues in transportation of the materials to larger
distances also adds to the cost. In this context, it is believed that the best alternatives could be the
ones that makes end-products to be used by the agricultural industry itself, and on-site if possible.
In this section information on three such agricultural applications that have either been overlooked or
skipped due to various reasons are presented. They are: composting, biochar, and in-situ management
through mechanical intensification.

6.1. Composting

Composting is not a new concept to India. While small scale backyard composting and making
compost from organic material in MSW is common, there is no information in the literature to prove that
it is also the case for the agriculture industry in India. In a recent publication Hettiarachchi et al. [68]
discussed the common challenges faced by the organic waste composting projects. Challenges are
mostly not technical but economical as the end-product does not always secure a steady market. This is
one of the challenges the agricultural community does not have to worry about if they make compost
on-site out of their own crop residue as it can be easily fed back to the same agricultural lands.

The high organic content in crop residue makes it an ideal raw material for compost similar
to animal manure and food waste. Composting is the natural process of rotting or decomposition
of organic matter by micro-organisms under controlled conditions [69]. As a rich source of organic
matter, compost plays an important role in sustaining soil fertility and thereby helping to achieve
sustainable agricultural productivity. Addition of compost to the soil improves physio-chemical and
biological properties of the soil and can completely replace application of agricultural chemicals such
as fertilizer and pesticides. Higher potential for increased yields and resistance to external factors
such as drought, disease and toxicity are the beneficial effects of compost amended soil [69–71]. These
techniques also help in higher nutrient uptake, and active nutrient cycling due to enhanced microbial
activity in the soil.

Composting is mediated by different micro-organisms actuating in aerobic environment. Bacteria,
fungi, acitnomycetes, algae, and protozoa are naturally present in organic biomass or added artificially
in order to facilitate decomposition [72]. It is the biological maturity under aerobic condition, where
organic matter of animal or plant origin is decomposed to materials with shorter molecular chains.
More stable, hygienic, humus rich compost, beneficial for agricultural crops and for recycling of soil
organic matter is ultimately formed [73].
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During composting, the organic matter is acted upon in two phases (i) degradation and
(ii) maturation. The first phase of degradation starts with breakdown of easily degradable organics
like sugars, amino and organic acids. The aerobic microorganisms consume oxygen and release carbon
dioxide and energy. The first thermophilic phase is dominated by high temperature, high pH and
humidity, essential for activating the microorganisms and proceeds for several weeks to months [74].
During this phase, it is also ensured that the substrate is properly cooled with sufficient supply of
oxygen [75]. The second phase continues for few weeks, with breakdown of more complex organic
molecules followed by decrease in microbial population. There is a change from thermophilic to
mesophilic phase with a decrease in temperature to 40–45 ◦C [73,75–77]. Further at the final stage,
temperature declines to an ambient value and the system becomes biologically less active. Finally,
a dark brown to black color soil-like material is produced. This soil-like material also exhibits an
increased humus content and decreased carbon-nitrogen ratio with a neutralized pH [69]. Aerobic
composting is affected by many factors, such as the amount of oxygen, moisture content, nutrient
supply, temperature, pH and lignin content. The nutrient supply or ratio of C:N should be optimum
in the range of 20:1 to 40:1 for proper growth of microorganisms. The temperature plays a vital role
during composting, higher temperatures in the thermophilic range contributes to the destruction of the
pathogens and disinfects the organic matter [78]. Eventually the biomass is transformed to a material
rich in nutrients, which can improve the structural characteristics of the soil [79]. Aerobic process also
involves a large release of energy [80,81].

Pratap Singh and Prabha [64] reported an experimental and observational bio-composting study
performed in Uttar Pradesh, India. Wheat straw, rice straw, vegetable crops, leaves of garden plants
constituted the total weight of the biomass for this study. The final bio-compost contained 45% of
total solids, 26.7% organic matter, 15.3% carbon and 1.36% total nitrogen reflecting a rich compost of
carbon and organic matter. They found a significant increase in the agronomic properties of the rice
and wheat crops they experimented. Nutrients like nitrogen (N) and phosphorous (P) provided to the
crops by the bio-compost is of significant importance to the crop production strategy [82]. This also
increases the microbial population and native microflora and fauna necessary for the soil health [83,84].
The same study reported that a one-inch thick bio compost layer added approximately 1.0 ton/ha of
total Nitrogen, 13.3 ton/ha of carbon, 24 t/ha of organic carbon and 1.02 t/ha of organic nitrogen in
the soil besides imparting nutrients such as P, K, Ca, Mg, S, Iron, Zn, etc., [64].

6.2. Production of Biochar

As a measure for controlling GHG emissions, the agricultural research community is constantly
looking for ways to effectively enhance natural rates of carbon sequestration in the soil. This has made
an increased interest in applying charcoal, black carbon and biochar as soil amendment to stabilize
soil organic content. These techniques are viewed as a viable option to mitigate the GHG emissions
while considerably reducing the volume of agricultural waste. The process of carbon sequestration
essentially requires increased residence time and resistance to chemical oxidation of biomass to CO2

or reduction to methane, which leads to reduction of CO2 or methane release to the atmosphere [35].
The partially burnt products are pyrogenic carbon/carbon black and becomes a long-term carbon sink
with a very slow chemical transformation, ideal for soil amendment [85,86].

Biochar is a fine-grained carbon rich porous product obtained from the thermo-chemical
conversion called the pyrolysis at low temperatures in an oxygen free environment [87]. It is a mix of
carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulphur (S) and ash in different proportions [88].
When amended to soil, highly porous nature of the biochar helps in improved water retention
and increased soil surface area. It mainly interacts with the soil matrix, soil microbes, and plant
roots [89], helps in nutrient retention and sets off a wide range of biogeochemical processes. Many
researchers have reported an increase in pH, increase in earthworm population and decreased fertilizer
usage [90,91].



Int. J. Environ. Res. Public Health 2019, 16, 832 11 of 19

Specifically, biochar is used in various application such as the water treatment, construction
industry, food industry, cosmetic industry, metallurgy, treatment of waste water and many other
chemical applications. In India currently, the biochar application is limited and mainly seen in in
villages and small towns. Based on its wide applicability, it could be more valuable to promote biochar
method in India.

6.3. In-Situ Management with Mechanical Intensification

In-situ application of the crop residue is adopted by many farmers as it is a natural process.
This method also imparts certain benefits to the soil. There are two main way of conducting field
applications, but both methods involve leaving crop residue on the farmland after harvesting. How
they differ is based on what happens with tillage in the next season. In the first method, planting in
the next season is carried out without tillage or with less tillage and in the other method crop residue
is incorporated into the soil by mechanical means during tillage [92]. While in-situ management of
crop residues can offer long-term cost savings on equipment and labor, both methods need special
(new) equipment, e.g., machinery for crop residue incorporation into soils or no-till seeing equipment.

Crop residue retention with no-tillage is mostly practiced in the North America and about 40%
of the cropland across the United States alone is cultivated with no-till practice [92]. This method
has many advantages for the soil such as cooling effect, increased moisture, source of carbon, and
erosion protection. However, this method also finds some negative implications for example, microbial
infestation, formation of phytotoxins and nutrient immobilization. This results in a reduced yield
which may warrant additional use of agricultural chemicals [92,93]. For improving the soil organic
matter, crop residue is incorporated into the soil by plowing. Adding nitrogen fertilizers while plowing
at a depth of 20–30 cm can enrich the soil with humus and prevent nitrogen depression [92].

The National Policy for Management of Crop Residue [7] specifically mentions in-situ
management through methods such as direct incorporation into soils and mulching as methods that
should be promoted in India not only to control crop residue burning but also to prevent environmental
degradation in the croplands. Any specific follow-ups or government-supported interventions since
the establishment of this national policy, has not yet been reported in the literature. However, it is
worth noting that the National conference on Agriculture for Kharif Campaign that took place in 2017,
re-emphasized on the same facts and listed mechanization practices to avoid crop residue burning
among the recommendations made by the focus groups [94].

7. Discussion

In the previous sections of this manuscript we showed that crop residue burning has become an
environmental catastrophe, not only for India but for the Asian region as well. Then the policy and
implementation steps taken by the Indian government were briefly presented. Using crop residue
for making compost/biochar or incorporating into soils were also briefly introduced as they are
three key technical solutions, that have not yet been widely considered by the policy sector in India.
The sequence of the process of understanding the crop burning issues, looking for potential solutions,
and implementation the solutions, seem very logical. However, the smog experienced by millions of
people in the country (Figure 1) each year clearly suggests that the crop burning issue has not been
sufficiently addressed by any of the previous interventions. The question that needs to be asked is
“why not?” The answers to this question will help identify better alternatives for implementation.
The key policy-related and/or functionality issues identified based on above analysis are presented in
the following sub sections.

7.1. The Need for a Running Mechanism

When MSW is generated in households it is properly managed. This is in line with the popular
term “Polluter Pays” used in the environmental law which simply explains who should be responsible
for producing pollution [95]. Fortunately, community living has already formed a mechanism to
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manage MSW. The MSW generated by the households in a community is collected, treated and
disposed (or at least supposed to be) by the municipality. This implies that there exists a known
process to handle the MSW, irrespective of how efficient or sustainable it is. The responsibility of
keeping the community clean and safe rests with the municipality and the residents pay taxes and/or
other fees as their contribution. It is also worth noting that before intervention by local and municipal
governments, MSW was also burned in urban and peri-urban communities.

When crop residue is produced by the farmers, who should take the responsibility of managing
it? As per the Polluter Pays principle, it should be the farmer. This often works well with large-scale
agricultural businesses, and especially in the developed countries where environmental laws are strictly
enforced. However, when it comes to small-scale farming in developing countries, the individual
farmers do not have the capacity, or the means to handle their own waste. Going by the MSW example,
what is lacking here is a mechanism of an organized effort, such as the municipality, to manage the
crop residue. However, government intervention could provide the necessary support for the farmers
in establishing an organized network. For example, the local government/municipality can establish a
service to manage the crop residue for a reasonable fee charged to the farmer. Until farmers get used
to the concept, it is even worth considering providing such service at a government subsidized price.

Based on the needs of the community or the region, the Government agencies can offer different
options such as to collect and transport the crop residue from the fields to where it is needed/utilized
as a raw material such as a composting, biogas, biochar manufacturing plant. Alternatively, the same
entity can establish a service to rent the machinery for those who need equipment to incorporate the
crop residue into the soil before the next season. The local government does not necessarily have to
take the responsibility. Instead it can be delegated to a community organization such as a farmers’
association, based on the educational and organizational skills of the farmer community. This method
has been in use for many years in some water-stressed countries where water distribution must be
overseen and controlled. Some of the examples of community involvement in managing recycled
wastewater as irrigation water is described in Hettiarachchi and Ardakanian [96].

7.2. Empowering Stakeholders

As discussed, before, the Indian government has initiated some pilot projects to raise awareness
about crop residue burning and to promote its sustainable utilization as a resource. While these efforts
should be praised, one should also question why the efforts have not made any significant impact yet.
One reason could be due to the difference between how much work is done by the government versus
how much of it was felt or understood by the farming communities. Educating and empowering
the farming stakeholders are crucially important steps to make a significant impact. While there is
information on implementation of pilot projects, the literature does not provide details on how these
projects were communicated to the stakeholders. As of now the thinking of the farmers has been
shaped up by what they have seen for generations: they are only responsible for producing crops,
but the crop residue is not their responsibility and it is ok to get rid of it with the least cost option.
This thinking needs to change, and the farmers should feel responsible for the residue they produce,
which is only possible through proper awareness raising campaigns. However, raising the technical
knowledge does not mean much until it is packaged with a practical solution to answer their questions
on how to handle the crop residue without costing a fortune, or even better, how to make money out
of it by using it as a resource. For example, technical knowledge on how to incorporate residue into
soils and how much nutrients they can receive by that, will not make a significant impact, when they
find out the equipment that they must rent for such operations cost thousands of Rupees (14 USD).
The farmers also should be educated about the advantage of reduced agrochemical cost due to the
utilization of crop residue in agricultural land. Therefore, awareness raising campaigns should always
run parallel to implementation of a practical solution that empowers them not only technically, but
also economically.
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7.3. Avoid Sectorial Thinking: Focus on Nexus Thinking

It is true that the culprit is in the agricultural sector. However, is the issue completely an
agricultural issue? Based on what was discussed in the previous paragraphs, crop residue burning is
an issue that goes way beyond agriculture. Some of the issues such as the environmental impact is
clearly visible, thanks to smog. But for the farmers who cannot afford to spend more money on proper
management of crop residue, it has always been an economic issue which is relatively invisible. When
the price for equipment rental is thousands of rupees (14 USD) versus the price of a box of matches is
a just a few rupees (0.01 USD), from the economic standpoint of the farmer, it is an easy decision to
make even if they are knowledgeable about the environmental damage it can cause.

However, what really happens in the big picture is that the farmers are burning a resourceful
biomass due to a combination or economic and social issues such as lack of education or awareness.
Even though crop residue burning touches upon many sectors, such as environment, agriculture,
economy, social aspects, education, and energy, the governmental efforts are mainly revolving only
around the agriculture and energy. This sectorial thinking does not help much as exhibited by the slow
progress with the previous governmental interventions. Waste material that can be resourceful to the
agriculture (soil/food) and the energy sectors gets wasted simply because of sectorial thinking.

This is where the government of India can benefit on the emerging concept of nexus thinking
in managing environmental resources. What nexus thinking promotes is a higher-level integration
that goes beyond the disciplinary boundaries [97]. One excellent example is the wastewater recycling.
Wastewater that originates in the waste sector, is used by many water stressed countries for irrigation
purpose after treatment (and in some unfortunate cases, without treatment). This way waste is
helping to alleviate the water supply issues faced by the water sector and water demand issues in
the agricultural sector. In addition, crops also benefit from the nutrients recycled though wastewater,
when used wisely [96]. Compost, biochar, or biogas can be best examples to explain how the nexus
thinking can be put to good use while combatting crop residue burning.

8. Summary and Conclusions

The mechanization in farming practices, increased share of arable areas for farming with new
irrigation schemes, and the use of agrochemicals have contributed to the exponential increase of
agricultural production as well as agricultural waste in many countries. The sustainable management
of agricultural waste has become a great challenge, especially for developing countries such as India
with an increasing population, production rates and economic growth. Crop residues are one branch of
agricultural wastes that have posed especial challenges due to their vast volume and lack of capacities
to manage them. Taking the fact into account that rice and wheat that usually produce the majority
of crop residue being the major staples of India, the large-scale cultivation of these crops to feed the
ever-increasing population has obviously led to generation of large quantities of crop residue, that the
country is not able to cope up with.

On an average 500 Mt of crop residue is generated yearly in India. While a majority of it is used
for fodder, raw material for energy production, etc., still there is a huge surplus of 140 Mt out of which
92 Mt is burnt each year, mainly in the northern states such as Punjab, Haryana and Uttar Pradesh.
Especially the small-scale farmers resort to burning of crop waste as it is an inexpensive alternative
due to the lack of technical awareness and lack of proper disposal opportunities. Large scale burning
of crops increases CO2, CO, N2O and NOx in the atmosphere and has led to shocking increase in the
air pollution. There was an alarming deterioration of the air quality in the northern India to nearly
twice the permissible Indian standard and ten times higher than the WHO standard.

The Indian Government has attempted many interventions to curtail the amount of crop residue
burning through different campaigns. May such past attempts involved advocacy and encouragement
to use crop residue in the energy sector as a raw material. The Indian Agricultural Research institute
(IARI), Indian Ministry of New and Renewable Energy (MNRE) are continuously promoting research
and innovative measures to handle crop waste without burning. The National policy for management
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of crop residue (NPMCR) recently formulated by the Central Government, has laid out policies and
regulations to be undertaken by the local agencies to curb crop burning and initiatives towards
sustainable management practices. As a result, the National Remote Sensing Agency (NRSA) and the
Central Pollution Control board (CPCB) now monitor crop burning through aerial surveillance and
penalize farmers who burn crops. However, there is little evidence in the publish literature to support
the effective control of the situation, most likely due to the lack of education, awareness programs,
and stakeholder engagement in the implementation of the policies and initiatives. Continued air
pollution especially in the months of November and December suggest that above policies have not
fully prevented crop burning.

The real reasons behind the crop residue burning have more socioeconomic roots rather than
agricultural or waste management ones. Any solutions involving long-haul transportation, expensive
technology, or high capital investment are less likely to succeed. In this context, sustainable solutions
that involve methods to feed the nutrients in the crop residue back into the same crop lands have
better promise to be successful. Relatively overlooked bio-based products such as biogas, biochar and
in-situ management with mechanical intensification are recognized as viable option for crop waste
utilization. Large scale harnessing of methane gas from the waste, through biogas plants should be
practiced. The Government agencies and private enterprises could develop a natural gas grid to utilize
this bio gas. Guidelines could be formulated for composting in rural areas and enforce on all farmers
through farmers association. The mechanization in harvesting can considerably reduce crop residue,
and the equipment needed could be rented or given in subsidy by the local bodies to the farmers.

There are three key policy-related and/or functionality issues related crop residue management
that need to be taken into consideration for any future interventions. They are: (1) The need to think of
a self-running mechanism, rather than isolated ones; (2) Empowering stakeholders; and (3) Avoiding
sectorial thinking, and if possible, lean towards nexus thinking. Individual small-scale farmers do
not have the capacity to establish a long-lasting solution. The local government, the municipality,
or a farmers’ association should fill this void and launch community programs to assist such as
equipment rentals, waste transportation, and possible linking of waste to where it can be needed as
raw materials. Educating the farming community and other related stakeholders is crucially important
to bring them out of generational thinking that they are used to that the waste management is not their
responsibility. It is even more important to empower them with technical as well as socioeconomic
assistance. They should be educated about the advantage of reduced agrochemical cost due to the
utilization of compost and the extra revenue they can receive through other type of recovery programs
such as energy production. The last, but perhaps the most important piece of the puzzle is the sectorial
thinking of the curtailing of the crop residue burning issues only to agricultural sector and energy,
even though it touches upon many other sectors, such as environment, economy, social aspects, and
education. This sectorial thinking can be overcome by embracing nexus thinking, which promotes a
higher-level integration that goes beyond the disciplinary boundaries.

Author Contributions: Conceptualization, J.N.M.; Methodology, H.H.; Investigation, S.B.; Software, Validation,
Resources, Data Curation and Visualization, not applicable; Analysis, J.N.M., S.B. and H.H.; Writing, S.B. and
H.H.; Review & editing, J.N.M., S.B. and H.H.

Funding: This research received no external funding.

Acknowledgments: This manuscript was submitted as part of an ongoing collaboration between, New Jersey
Institute, United Nations University and SRM Institute of Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Nagendran, R. Agricultural Waste and Pollution. Waste 2011, 341–355. [CrossRef]
2. United Nations. Glossary of Environment Statistics, Studies in Methods; Series F, 67; Department for Economic

and Social Information and Policy Analysis, Statistics Division: New York, NY, USA, 1997; Volume 96.

http://dx.doi.org/10.1016/B978-0-12-381475-3.10024-5


Int. J. Environ. Res. Public Health 2019, 16, 832 15 of 19

3. OECD (Organisation for Economic Co-operation and Development). 2001. Available online: https://stats.
oecd.org/glossary/detail.asp?ID=77 (accessed on 10 November 2018).

4. Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank:
Washington, DC, USA, 2012.

5. Agamuthu, P. Challenges and Opportunities in Agro-waste Management: An Asian Perspective.
In Proceedings of the Meeting of First Regional 3R Forum in Asia, Tokyo, Japan, 11–12 November 2009.

6. Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural Waste Concept, Generation, Utilization and
Management. NIJOTECH 2016, 35, 957–964. [CrossRef]

7. NPMCR. Available online: http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf (accessed on
6 March 2019).

8. Jeff, S.; Prasad, M.; Agamuthu, P. Asia Waste Management Outlook. UNEP Asian Waste Management Outlook;
United Nations Environment Programme: Nairobi, Kenya, 2017.

9. Ross, S. Countries That Produce the Most Food, Investopedia. 2018. Available online: https://www.
investopedia.com/articles/investing/100615/4-countries-produce-most-food.asp#ixzz5WRqV85mY
(accessed on 10 November 2018).

10. Gadde, B.; Bonnet, S.; Menke, C.; Garivait, S. Air pollutant emissions from rice straw open field burning in
India, Thailand and the Philippines. Environ. Pollut. 2000, 157, 1554–1558. [CrossRef] [PubMed]

11. Mendoza, T.C.; Mendoza, B.C. A review of sustainability challenges of biomass for energy, focus in the
Philippines. Agric. Technol. 2016, 12, 281–310.

12. Phonbumrung, T.; Khemsawas, C. Agricultural Crop Residue. In Proceedings of the Sixth Meeting
of Regional Working Group on Grazing and Feed Resources for Southeast Asia, Legaspi, Philippines,
5–9 October 1998; pp. 183–187.

13. Arvanitoyannis, I.S.; Tserkezou, P. Wheat, barley and oat waste: A comparative and critical presentation of
methods and potential uses of treated waste. Int. J. Food Sci. Technol. 2008, 43, 694–725. [CrossRef]

14. Sjöström, E. Wood Chemistry: Fundamentals and Applications; Academic Press: San Diego, CA, USA, 1993.
15. Jorgensen, H.; Kristensen, J.B.; Felby, C. Enzymatic conversion of lignocellulose into fermentable sugars:

Challenges and opportunities. J. Biofuels Bioprod. Bioref. 2007, 1, 119–134. [CrossRef]
16. Chandra, R.; Takeuchi, H.; Hasegawa, T. Methane production from lignocellulosic agricultural crop wastes:

A review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 2012, 16,
1462–1476. [CrossRef]

17. Taherzadeh, M.J. Ethanol from Lignocellulose: Physiological Effects of Inhibitors and Fermentation
Strategies. Ph.D. Thesis, Biotechnology, Chemical Reaction Engineering, Chalmers University of Technology,
Gothenburg, Sweden, 1999.

18. Palmqvist, E.; Hahn-Hägerdal, B. Fermentation of lignocellulosic hydrolysates II: Inhibitors and mechanisms
of inhibition. J. Bioresour. Technol. 2000, 74, 25–33. [CrossRef]

19. Perez, J.; Dorado, J.M.; Rubia, T.D.; Martinez, J. Biodegradation and biological treatment of cellulose,
hemicellulose and lignin: An overview. J. Int. Microbiol. 2002, 5, 53–56. [CrossRef] [PubMed]

20. Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.F. The possible contribution of agricultural crop residues to
renewable energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677.
[CrossRef]

21. Hayashi, K.; Ono, K.; Kajiura, M.; Sudo, S.; Yonemura, S.; Fushimi, A.; Saitoh, K.; Fujitani, Y.; Tanab, K. Trace
gas and particle emissions from open burning of three cereal crop residues: Increase in residue moistness
enhances emissions of carbon monoxide, methane, and particulate organic carbon. Atmos. Environ. 2014, 95,
36–44. [CrossRef]

22. Lohan, S.K.; Jat, H.S.; Yadav, A.K.; Sidhu, H.S.; Jat, M.L.; Choudhary, M.; Jyotsna Kiran, P.; Sharma, P.C.
Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 2018,
81, 693–706. [CrossRef]

23. Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for pre-treatment of lignocellulosic biomass for
efficient hydrolysis and biofuel production. J. Ind. Eng. Chem. 2009, 48, 3713–3729. [CrossRef]

24. Bruni, E.; Jensen, A.P.; Angelidaki, I. Comparative study of mechanical, hydrothermal, chemical and
enzymatic treatments of digested biofibers to improve biogas production. J. Bioresour. Technol. 2010, 101,
8713–8717. [CrossRef] [PubMed]

https://stats.oecd.org/glossary/detail.asp?ID=77
https://stats.oecd.org/glossary/detail.asp?ID=77
http://dx.doi.org/10.4314/njt.v35i4.34
http://agricoop.nic.in/sites/default/files/NPMCR_1.pdf
https://www.investopedia.com/articles/investing/100615/4-countries-produce-most-food.asp#ixzz5WRqV85mY
https://www.investopedia.com/articles/investing/100615/4-countries-produce-most-food.asp#ixzz5WRqV85mY
http://dx.doi.org/10.1016/j.envpol.2009.01.004
http://www.ncbi.nlm.nih.gov/pubmed/19201513
http://dx.doi.org/10.1111/j.1365-2621.2006.01510.x
http://dx.doi.org/10.1002/bbb.4
http://dx.doi.org/10.1016/j.rser.2011.11.035
http://dx.doi.org/10.1016/S0960-8524(99)00161-3
http://dx.doi.org/10.1007/s10123-002-0062-3
http://www.ncbi.nlm.nih.gov/pubmed/12180781
http://dx.doi.org/10.1016/j.rser.2012.11.060
http://dx.doi.org/10.1016/j.atmosenv.2014.06.023
http://dx.doi.org/10.1016/j.rser.2017.08.057
http://dx.doi.org/10.1021/ie801542g
http://dx.doi.org/10.1016/j.biortech.2010.06.108
http://www.ncbi.nlm.nih.gov/pubmed/20638274


Int. J. Environ. Res. Public Health 2019, 16, 832 16 of 19

25. Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P. Pretreatment methods to
improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010, 183, 1–15. [CrossRef] [PubMed]

26. Garg, S. Bioremediation of Agricultural, Municipal, and Industrial Wastes. Handb. Res. Inventive Bioremediat.
Tech. 2017. [CrossRef]

27. Franchi, E.; Agazzi, G.; Rolli, E.; Borin, S.; Marasco, R.; Chiaberge, S.; Barbafieri, M.
Exploiting hydrocarbon-degrader indigenous bacteria for bioremediation and phytoremediation of a
multi-contaminated soil. Chem. Eng. Technol. 2016, 39, 1676–1684. [CrossRef]

28. Gkorezis, P.; Daghio, M.; Franzetti, A.; Van Hamme, J.D.; Sillen, W.; Vangronsveld, J. The Interaction
between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective.
Front. Microbiol. 2016, 7, 1836. [CrossRef] [PubMed]

29. Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization.
Bioresour. Technol. 2009, 1000, 5478–5484. [CrossRef] [PubMed]

30. Ward, A.J.; Hobbs, P.J.; Holliman, P.J.; Jones, D.L. Review: Optimization of the anaerobic digestion of
agricultural resources. Bioresour Technol. 1999, 79, 28–40.

31. Meegoda, J.N.; Li, B.; Patel, K.; Wang, L.B. A Review of the Processes, Parameters, and Optimization of
Anaerobic Digestion. Int. J. Environ. Res. Public Health 2018, 15, 2224. [CrossRef] [PubMed]

32. Deublein, D.; Steinhauser, A. Biogas from Waste and Renewable Sources: An Introduction; Wiley-VCH Verlag
GmbH & Co. KGaA: Weinheim, Germany, 2008.

33. Shukla, P.R. Biomass Energy Strategies for Aligning Development and Climate Goals in India; Environmental
Assessment Agency: The Hague, The Netherlands, 2007.

34. Ministry of New and Renewable Energy (MNRE). Strategic Plan for New and Renewable Energy Sector for
the Period 2011–2017. In Energy; Ministry of New and Renewable Energy: New Delhi, India, 2011.

35. Srinivasarao, C.H.; Venkateswarlu, B.; Lal, R.; Singh, A.K.; Sumanta, K. Sustainable management of soils of
dryland ecosystems for enhancing agronomic productivity and sequestering carbon. Adv. Agron. 2013, 121,
253–329.

36. Sinha, A. Four New Missions to Boost Response to Climate Change; The Indian Express: New Delhi, India, 2015.
37. Ministry of New and Renewable Energy (MNRE). Annual Report, 2015–2016. In Energy; Ministry of New

and Renewable Energy: New Delhi, India, 2015.
38. Mittal, S.; Ahlgren, E.; Shukla, P. Barriers to biogas Dissemination in India: A review. Energy Policy 2017, 112,

361–370. [CrossRef]
39. Sharma, S.K.; Mishra, I.M.; Sharma, M.P.; Saini, J.S. Effect of particle size on biogas generation from biomass

residues. J. Biomass 1988, 17, 251–263. [CrossRef]
40. Weiland, P. Production and energetic use of biogas from energy crops and wastes in Germany. Appl. Biochem.

Biotechnol. 2003, 109, 263–274. [CrossRef]
41. Moller, H.B.; Sommer, S.G.; Ahring, B.K. Methane productivity of manure, straw and solid fractions of

manure. J. Biomass Bioenergy 2004, 26, 485–495. [CrossRef]
42. Deren, C.W.; Snyder, G.H. Biomass production and biochemical methane potential of seasonally flooded

inter-generic and inter-specific saccharum hybrids. J. Bioresour. Technol. 1991, 36, 179–184. [CrossRef]
43. Jain, N.; Bhatia, A.; Pathak, H. Emission of Air Pollutants from Crop Residue Burning in India. Aerosol Air

Qual. Res. 2014, 14, 422–430. [CrossRef]
44. Sahai, S.; Sharma, C.; Singh, S.K.; Gupta, P.K. Assessment of Trace Gases, Carbon and Nitrogen Emissions

from Field Burning of Agricultural Residues in India. Nutr. Cycl. Agroecosyst. 2011, 89, 143–157.
45. Jitendra and Others. India’s Burning Issues of Crop Burning Takes a New Turn, Down to Earth. 2017. Available

online: https://www.downtoearth.org.in/coverage/river-of-fire-57924 (accessed on 7 September 2018).
46. Mittal, S.K.; Susheel, K.; Singh, N.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Ambient air quality during wheat

and rice crop stubble burning episodes in Patiala. Atmos. Environ. 2009, 43, 238–244. [CrossRef]
47. Zhang, H.; Hu, D.; Chen, J.; Ye, X.; Wang, S.X.; Hao, J.; Wang, L.; Zhang, R.; Zhi, A. Particle Size Distribution and

Polycyclic Aromatic Hydrocarbons emissions from Agricultural Crop Residue Burning. Environ. Sci. Technol.
2011, 45, 5477–5482. [CrossRef] [PubMed]

48. Gupta, P.K.; Sahai, S.; Singh, N.; Dixit, C.K.; Singh, D.P.; Sharma, C. Residue burning in rice-wheat cropping
system: Causes and implications. Curr. Sci. India 2004, 87, 1713–1715.

http://dx.doi.org/10.1016/j.jhazmat.2010.06.129
http://www.ncbi.nlm.nih.gov/pubmed/20708333
http://dx.doi.org/10.4018/978-1-5225-2325-3
http://dx.doi.org/10.1002/ceat.201500573
http://dx.doi.org/10.3389/fmicb.2016.01836
http://www.ncbi.nlm.nih.gov/pubmed/27917161
http://dx.doi.org/10.1016/j.biortech.2008.12.046
http://www.ncbi.nlm.nih.gov/pubmed/19217772
http://dx.doi.org/10.3390/ijerph15102224
http://www.ncbi.nlm.nih.gov/pubmed/30314318
http://dx.doi.org/10.1016/j.enpol.2017.10.027
http://dx.doi.org/10.1016/0144-4565(88)90107-2
http://dx.doi.org/10.1385/ABAB:109:1-3:263
http://dx.doi.org/10.1016/j.biombioe.2003.08.008
http://dx.doi.org/10.1016/0960-8524(91)90177-L
http://dx.doi.org/10.4209/aaqr.2013.01.0031
https://www.downtoearth.org.in/coverage/river-of-fire-57924
http://dx.doi.org/10.1016/j.atmosenv.2008.09.068
http://dx.doi.org/10.1021/es1037904
http://www.ncbi.nlm.nih.gov/pubmed/21615081


Int. J. Environ. Res. Public Health 2019, 16, 832 17 of 19

49. Streets, D.G.; Yarber, K.F.; Woo, J.H.; Carmichael, G.R. An Inventory of Gaseous and Primary Aerosol
Emissions in Asia in the Year 2000. J. Geophys. Res. 2003, 108, 8809–8823. [CrossRef]

50. Jiang, H.; Frie, A.L.; Lavi, A.; Chen, J.; Zhang, H. Brown Carbon Formation from Nighttime Chemistry
of Unsaturated Heterocyclic Volatile Organic Compounds. Environ. Sci. Technol. Lett. Artic. ASAP 2019.
[CrossRef]

51. Washenfelder, R.A.; Attwood, A.R. Biomass burning dominates brown carbon absorption in the rural
southeastern United States. Geophys. Res. Lett. 2015, 42, 653–664. [CrossRef]

52. Hatch, L.E.; Luo, W.; Pankow, J.F.; Yokelson, R.J.; Stockwell, C.E.; Barsanti, K.C. Identification and
Quantification of Gaseous Organic Compounds Emitted from Biomass Burning using Two-Dimensional Gas
Chromatography-time-of-flight Mass Spectrometry. Atmos. Chem. Phys. 2015, 15, 1865–1899. [CrossRef]

53. Singh, C.P.; Panigrahy, S. Characterization of residue burning from agricultural system in India using
space-based observations. J. Indian Soc. Remote Sens. 2011, 39, 423–429. [CrossRef]

54. Allen, A.; Voiland, A. NASA Earth Observatory, Haze Blankets Northern India. 2017. Available online:
https://earthobservatory.nasa.gov/images/91240/haze-blankets-northern-india (accessed on 11 July 2018).

55. Zehra, R. How Clean Is the Air around You. 2017. Available online: https://fit.thequint.com/health-news/
clean-your-air-as-per-who-standards-2. (accessed on 10 June 2018).

56. Singh, Y.; Gupta, R.K.; Singh, J.; Singh, G.; Singh, G.; Ladha, J.K. Placement effects on paddy residue
decomposition and nutrient dynamics on two soil types during wheat cropping in paddy-wheat system in
north western India. Nutr. Cycl. Agroecosyst. 2010, 88, 471–480. [CrossRef]

57. Kumar, P.; Kumar, S.; Joshi, L. The extend and management of crop residue stubbles. In Socioeconomic
and Environmental Implications of Agricultural Residue Burning: A Case Study of Punjab, India; Kumar, P.,
Kumar, S., Joshi, L., Eds.; Springer Briefs in Environmental Science: Berlin, Germany, 2015; p. 144, ISBN
978-81-322-2014-5. Available online: http//www.springer.com/978-81-322-2146-3 (accessed on 6 March 2019).

58. CSO (Central Statistics Office). Energy Statistics. In Ministry of Statistics and Program Implementation Office;
CSO: New Delhi, India, 2014.

59. The Central Pollution Control Board (CPCB). Consolidated Annual Review Report on Implementation of
Municipal Solid Wastes (Management and Handling) Rules. In Ministry of Environment Forests and Climate
Change; Board, C.P.C., Ed.; The Central Pollution Control Board: New Delhi, India, 2013.

60. Urja, A. Generation of Green Energy from Paddy Straw, a Novel Initiative in Sustainable Agriculture
Green Energy. 2016. Available online: https://mnre.gov.in/file-manager/akshay-urja/june-2016/30-33.pdf
(accessed on 10 June 2018).

61. Verma, S.S. Technologies for stubble use. J. Agric. Life Sci. 2014, 1, 2.
62. Sood, J. Not a Waste until Wasted, Down to Earth. 2015. Available online: https://www.downtoearth.org.

in/coverage/not-a-waste-until-wasted-40051 (accessed on 7 September 2018).
63. The Hindu Crop Residue-Coal Mix to Nix Stubble Burning. 2018. Available online: http//www.thehindu.com/

news/national/other-states/ntpc-to-mix-crop-residue-with-coal-to-curb-crop-burning/article20492123.ece
(accessed on 25 June 2018).

64. Pratap Singh, D.; Prabha, R. Bioconversion of Agricultural Wastes into High Value Biocompost: A Route to
Livelihood Generation for Farmers. Adv. Recycl. Waste Manag. 2017, 137. [CrossRef]

65. Schmaltz, J.; Voiland, A. NASA Earth Observatory, Stubble Burning in Punjab, India. 2017. Available online:
https://earthobservatory.nasa.gov/images/86982/stubble-burning-in-punjab-india (accessed on 11 July 2018).

66. Sirhindi, M. Punjab Witnesses 38% Fall Stubble Burning Instances, Times of India. Available
online: http//timesofindia.indiatimes.com/city/chandigarh/punjab-witnesses-38-fall-stubble-burning-
instances/articleshowprint/64018735.cms (accessed on 7 September 2018).

67. Khanna, B. Times of India. Haryana Sees Decline in Stubble Burning Cases by 25%. Available
online: https://timesofindia.indiatimes.com/city/chandigarh/haryana-sees-decline-in-stubble-burning-
cases-by-25/articleshowprint/64021934.cms.2018 (accessed on 7 September 2018).

68. Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable
Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15,
2483. [CrossRef] [PubMed]

69. Misra, R.V.; Roy, R.N.; Hiraoka, H. On Farm Composting Methods; Food and Agricultural Organization of the
United Nations: Rome, Italy, 2003.

http://dx.doi.org/10.1029/2002JD003093
http://dx.doi.org/10.1021/acs.estlett.9b00017
http://dx.doi.org/10.1002/2014GL062444
http://dx.doi.org/10.5194/acp-15-1865-2015
http://dx.doi.org/10.1007/s12524-011-0119-x
https://earthobservatory.nasa.gov/images/91240/haze-blankets-northern-india
https://fit.thequint.com/health-news/clean-your-air-as-per-who-standards-2.
https://fit.thequint.com/health-news/clean-your-air-as-per-who-standards-2.
http://dx.doi.org/10.1007/s10705-010-9370-8
http//www.springer.com/978-81-322-2146-3
https://mnre.gov.in/file-manager/akshay-urja/june-2016/30-33.pdf
https://www.downtoearth.org.in/coverage/not-a-waste-until-wasted-40051
https://www.downtoearth.org.in/coverage/not-a-waste-until-wasted-40051
http//www.thehindu.com/news/national/other-states/ntpc-to-mix-crop-residue-with-coal-to-curb-crop-burning/article20492123.ece
http//www.thehindu.com/news/national/other-states/ntpc-to-mix-crop-residue-with-coal-to-curb-crop-burning/article20492123.ece
http://dx.doi.org/10.4172/2475-7675.1000137
https://earthobservatory.nasa.gov/images/86982/stubble-burning-in-punjab-india
http//timesofindia.indiatimes.com/city/chandigarh/punjab-witnesses-38-fall-stubble-burning-instances/articleshowprint/64018735.cms
http//timesofindia.indiatimes.com/city/chandigarh/punjab-witnesses-38-fall-stubble-burning-instances/articleshowprint/64018735.cms
https://timesofindia.indiatimes.com/city/chandigarh/haryana-sees-decline-in-stubble-burning-cases-by-25/articleshowprint/64021934.cms.2018
https://timesofindia.indiatimes.com/city/chandigarh/haryana-sees-decline-in-stubble-burning-cases-by-25/articleshowprint/64021934.cms.2018
http://dx.doi.org/10.3390/ijerph15112483
http://www.ncbi.nlm.nih.gov/pubmed/30405058


Int. J. Environ. Res. Public Health 2019, 16, 832 18 of 19

70. Shilev, S.; Naydenov, M.; Vancheva, V.; Aladjadjiyan, A. Composting of Food and Agricultural Wastes. Utilization
of By-Products and Treatment of Waste in the Food Industry; Oreopoulou, V., Russ, W., Eds.; Springer: New York,
NY, USA, 2006; pp. 283–301. [CrossRef]

71. Lei, Z.; Chen, J.; Zhang, Z.; Sugiura, N. Methane production from rice straw with acclimated anaerobic
sludge: Effect of phosphate supplementation. J. Bioresour. Technol. 2010, 101, 4343–4348. [CrossRef] [PubMed]

72. Tuomela, M.; Vikman, M.; Hatakka, A.; Itavaara, M. Biodegradation of lignin in a compost environment:
A review. Bioresour. Technol. 2000, 72, 169. [CrossRef]

73. Sequi, P. The role of composting in sustainable agriculture. In The Science of Composting; Bertoldi, M., Sequi, P.,
Lemmens, B., Papi, T., Eds.; Blackie Academic & Professional: London, UK, 1996; pp. 23–29.

74. Aladjadjiyan, A. Lessons from Denmark and Austria on the Energy Valorization of Biomass (Contract No:
JOU2-CT92-0212, Coordinator for Bulgaria); European Commission: Brussels, Belgium, 1992.

75. Beck-Friis, B.; Pell, M.; Sonesson, U.; Jonsson, H.; Kirchmann, H. Formation and emission of N2O and CH4,
from compost heaps of organic household waste. Environ. Monit. Assess. 2000, 62, 317. [CrossRef]

76. Maynard, A.A. Compost: The process and research. The Connecticut agricultural experiment station. Bulletin
2000, 966, 13.

77. Wu, L.; Ma, L.Q.; Martinez, G.A. Comparison of methods for evaluating stability and maturity of biosolids
compost. J. Environ. Q. 2000, 29, 424. [CrossRef]

78. Sonesson, U.; Bjorklund, A.; Carlsson, M.; Dalemo, M. Environmental and economic analysis of management
systems for biodegradable wastes. Resour. Conserv. Recycl. 2000, 28, 29. [CrossRef]

79. Sommer, S.G.; Dahl, P. Nutrient and carbon balance during the composting of deep litter. J. Agric. Eng. Res.
1999, 74, 145. [CrossRef]

80. Dumontet, S.; Dinel, H.; Baloda, S.B. Pathogen reduction in sewage sludge by composting and other
biological treatments: A review. Biol. Agric. Hortic. 1999, 16, 409. [CrossRef]

81. Schaik, C.; Van Murray, H.; Lamb, J.; Di-Giacomo, J. Composting reduces fuel and labour costs on family
farms. Biocycle 2000, 41, 72.

82. Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 14th ed.; Prentice Hall: Upper Saddle River, NJ,
USA, 1996.

83. Nielsen, H.B.; Angelidaki, I. Codigestion of manure and industrial organic waste at centralized biogas plants:
Process imbalances and limitations. Water Sci. Technol. 2008, 58, 1521–1528. [CrossRef] [PubMed]

84. Wall, D.H.; Nielsen, U.N.; Six, J. Soil biodiversity and human health. Nature 2015, 528, 69–76. [CrossRef]
[PubMed]

85. Izaurralde, R.C.; Rosenberg, N.J.; Lal, R. Mitigation of climate change by soil carbon sequestration: Issues of
science, monitoring, and degraded lands. Adv. Agron. 2001, 70, 1–75.

86. McHenry, M.P. Agricultural biochar production, renewable energy generation and farm carbon sequestration
in Western Australia, Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [CrossRef]

87. Amonette, J.; Joseph, S. Characteristics of biochar: Micro-chemical properties. In Biochar for Environmental
Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earth Scan: London, UK, 2009; pp. 33–52.

88. Masek, O. Biochar Production Technologies. 2009. Available online: http://www.geos.ed.ac.uk/sccs/
biochar/documents/BiocharLaunch-OMasek.pdf (accessed on 6 March 2019).

89. Lehmann, J.; Joseph, S. Biochar systems. In Biochar for Environmental Management: Science and Technology;
Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 147–168.

90. Tryon, E.H. Effect of charcoal on certain physical, chemical, and biological properties of forest soils.
Ecol. Monogr. 1948, 18, 81–115. [CrossRef]

91. Gaunt, J.; Cowie, A. Biochar greenhouse gas accounting and emission trading. In Biochar for Environmental
Management: Science and Technology; Lehmann, J., Joseph, S., Eds.; Earthscan: London, UK, 2009; pp. 317–340.

92. Marjanovic, I. The Best Practices for Using Plant Residues, Agrivi. 2016. Available online: http://blog.agrivi.
com/post/the-best-practices-for-using-plant-residues (accessed on 15 November 2018).

93. Singh, Y.; Sidhu, H.S. Management of cereal crop residues for sustainable rice-wheat production system in
the Indo-gangetic plains of India. Proc. Indian Natl. Sci. Acad. 2014, 80, 95–114. [CrossRef]

94. DACFW. Minutes of Kharif Campaign-2017, Department of Agriculture Cooperation & Farmers Welfare, the
Government of India. 2017. Available online: http://agricoop.nic.in/sites/default/files/Revised_Minutes_
of_Kharif_conference_2017.pdf (accessed on 15 November 2018).

http://dx.doi.org/10.1007/978-0-387-35766-9_15
http://dx.doi.org/10.1016/j.biortech.2010.01.083
http://www.ncbi.nlm.nih.gov/pubmed/20153179
http://dx.doi.org/10.1016/S0960-8524(99)00104-2
http://dx.doi.org/10.1023/A:1006245227491
http://dx.doi.org/10.2134/jeq2000.00472425002900020008x
http://dx.doi.org/10.1016/S0921-3449(99)00029-4
http://dx.doi.org/10.1006/jaer.1999.0446
http://dx.doi.org/10.1080/01448765.1999.9755243
http://dx.doi.org/10.2166/wst.2008.507
http://www.ncbi.nlm.nih.gov/pubmed/18957768
http://dx.doi.org/10.1038/nature15744
http://www.ncbi.nlm.nih.gov/pubmed/26595276
http://dx.doi.org/10.1016/j.agee.2008.08.006
http://www.geos.ed.ac.uk/sccs/biochar/documents/BiocharLaunch-OMasek.pdf
http://www.geos.ed.ac.uk/sccs/biochar/documents/BiocharLaunch-OMasek.pdf
http://dx.doi.org/10.2307/1948629
http://blog.agrivi.com/post/the-best-practices-for-using-plant-residues
http://blog.agrivi.com/post/the-best-practices-for-using-plant-residues
http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55089
http://agricoop.nic.in/sites/default/files/Revised_Minutes_of_Kharif_conference_2017.pdf
http://agricoop.nic.in/sites/default/files/Revised_Minutes_of_Kharif_conference_2017.pdf


Int. J. Environ. Res. Public Health 2019, 16, 832 19 of 19

95. Pettinger, T. Polluter Pays Principle (PPP). 2016. Available online: http://www.economicshelp.org/blog/
6955/economics/polluter-pays-principle-ppp (accessed on 23 November 2018).

96. Hettiarachchi, H.; Ardakanian, R. Good Practice Examples of Wastewater Reuse; UNU-FLORES: Dresden,
Germany, 2016; ISBN 978-3-944863-30-6 (web), 978-3-944863-31-3 (print).

97. Hettiarachchi, H.; Ardakanian, R. Environmental Resource Management and Nexus Approach: Managing Water, Soil,
and Waste in the Context of Global Change; Springer Nature: Basel, Switzerland, 2016; ISBN 978-3-319-28593.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.economicshelp.org/blog/6955/economics/polluter-pays-principle-ppp
http://www.economicshelp.org/blog/6955/economics/polluter-pays-principle-ppp
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Crop Residue: Composition and Decomposing Mechanisms 
	Crop Residue Burning in India: Statistics 
	Adverse Impact of Crop Residue Burning on the Environment 
	Government Intervention 
	Initiative towards Biogas Plants 
	National Schemes and Policies 

	Sustainable Management Practices for Crop Residue 
	Composting 
	Production of Biochar 
	In-Situ Management with Mechanical Intensification 

	Discussion 
	The Need for a Running Mechanism 
	Empowering Stakeholders 
	Avoid Sectorial Thinking: Focus on Nexus Thinking 

	Summary and Conclusions 
	References

