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Experimental methods modestly 
impact interpretation of the effect 
of environmental exposures 
on the larval zebrafish gut 
microbiome
Keaton Stagaman1,4*, Kristin D. Kasschau1,4, Robyn L. Tanguay2 & Thomas J. Sharpton3

Rapidly growing fields, such as microbiome science, often lack standardization of procedures across 
research groups. This is especially the case for microbiome investigations in the zebrafish (Danio 
rerio) model system, which is quickly becoming a workhorse system for understanding the exposure-
microbiome-physiology axis. To guide future investigations using this model system, we defined how 
various experimental decisions affect the outcomes of studies on the effects of exogenous exposure 
on the zebrafish gut microbiome. Using a model toxicant, benzo[a]pyrene (BaP), we assessed how 
each of two dissection methods (gut dissection vs. whole fish), three DNA extraction kits (Qiagen 
Blood & Tissue, Macherey–Nagel NucleoSpin, and Qiagen PowerSoil), and inclusion of PCR replicates 
(single vs. pooled triplicate reactions) affected our interpretation of how exposure influences the 
diversity and composition of the gut microbiome, as well as our ability to identify microbiome 
biomarkers of exposure. We found that inclusion of PCR replicates had the smallest effect on our final 
interpretations, and the effects of dissection method and DNA extraction kit had significant effects in 
specific contexts, primarily in the cases of identifying microbial biomarkers.

The zebrafish (Danio rerio) has become an increasingly popular model organism for the study of the gut microbi-
ome, especially in the context of exposure  science1. Zebrafish are among the most widely used model systems in 
biomedical research due to the high numbers of individuals that can be produced, the low cost of maintenance, 
their rapid maturation, and the extensive molecular tools that are available to the system (e.g., CRISPR/Cas9 
gene editing). Moreover, zebrafish embryos can be isolated and experimentally manipulated in vitro, affording 
opportunities to discern how exposure to various exogenous factors, such as environmental toxicants, impacts 
zebrafish development. Accordingly, zebrafish have become a workhorse model for screening for the impacts of 
chemical and drug exposure on vertebrate physiology, behavior, and development. Recent years have witnessed 
a rapid integration of microbiome research methods into this model system, including relatively straightforward 
procedures for deriving germ-free and gnotobiotic  zebrafish2, techniques for visualizing gut microbiota in situ3, 
and procedures for passive sampling of zebrafish  microbiota4. The zebrafish model system has been especially use-
ful for determining how chemical exposure impacts initial microbiome  assembly5, alters established  microbiota6, 
and how variation in the microbiome links to vertebrate  physiology7. Given the utility of this model system and 
the advent of these microbiome approaches, the zebrafish affords researchers tremendous opportunity to disen-
tangle the interaction between exogenous factors, the gut microbiome, and vertebrate physiology.

But despite this rapid growth—and possibly in part because of it—there has not been a consistent set of 
methods used across studies for assessing the composition and diversity of the zebrafish gut microbiome. This 
can be due to a number of factors including differences in budget, cultural inertia, and simply the heterogenous 
adoption of innovations that arise with some frequency in such areas of growth. In particular, researchers will 
extract DNA either from whole fish carcasses (which likely include microbes residing in non-intestinal tissues) 
or extracted intestinal tissue, use different DNA extraction kits, or implement measures to correct for PCR bias 
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(e.g., single vs. pooled triplicate PCR replication). Prior work in other research systems has suggested that experi-
mental decisions can impact discovery in microbiome  investigations8–14, and different experimental strategies 
may complicate data integration and interpretation across  studies15. For example, an extensive array of studies 
have evaluated how the specific 16S hypervariable that is targeted during PCR as well as the specific primers that 
are used to conduct PCR impact study  outcomes16–21. Moreover, some experimental decisions (e.g., triplicate 
PCR) can be expensive or time consuming, to the point that they work against the scalability that is inherent to 
the zebrafish research system, and may actually be unnecessary for some  studies22.

To shed light on the impact of common experimental approaches in zebrafish gut microbiome research, we 
exposed fish to an environmental toxicant and determined how different experimental decisions impacted sub-
sequent microbiome analyses. Specifically, we exposed 384 zebrafish embryos to either 10 µM benzo[a]pyrene 
(BaP) or an embryo medium (water plus salts) control and assessed how dissection method, DNA extraction 
kit, and PCR replication affected assessment of how BaP exposure impacts larval zebrafish gut microbiome 
diversity and composition.

Methods
Experimental methods. Figure 1 graphically details the methods workflow. Zebrafish embryos were pro-
vided by the fish laboratory at the Sinnhuber Aquatic Research Laboratory at Oregon State University. All exper-
imental protocols and methods were carried out in accordance with the animal use and care protocol (# 5068) 
approved by the Institutional Animal Care and Use Committee at Oregon State University, and in accordance 
with the ARRIVE guidelines. Prior to this experiment, we conducted a pilot power analysis to determine how 
many samples we would need to reliably detect the effects of 10 µM BaP exposure on the larval zebrafish intesti-
nal microbiome in terms of both alpha- and beta-diversity. Results from that power analysis indicated we would 
need to include four 96-well plates worth of fish (significance threshold set at 0.05, statistical power set at 0.8).

Tropical 5D strain zebrafish were reared in Sinnhuber Aquatic Research Laboratory under standard laboratory 
conditions of 28 °C on a 14 h light/10 h dark photoperiod according to standard zebrafish breeding  protocols23. 
All fish embryos were collected on a single day and added to each well of four 96-well plates. Embryos were 
maintained in their wells for the duration of the experiment for 9 days. Two plates of embryos were exposed to 
10 µM BaP while the other two plates were only exposed to the embryo medium. We chose 10 µM as the dose 
for BaP exposure because our prior work that explored the effect of different concentrations of BaP exposure on 
zebrafish behavior found that 10 uM embryonic exposure elicits known effects on behavior in zebrafish while 
avoiding other major toxicity  effects24. Furthermore, from our pilot power analysis, we also determined that 
detection of microbial disruption due to BaP exposure was most reliable at this concentration compared to 1 and 
5 µM concentrations. At 9 days post fertilization (dpf), fish were euthanized by placing the 96-well plates in an 
ice slurry (the wells of the plates were submerged, but whole plates themselves were not, to prevent non-sterile 
water from entering the wells).The intestines were dissected from half the larval fish on each plate of untreated 
and BaP treated larval fish; these intestines were used for microbiome sample processing for these individuals. For 
the remaining untreated and BaP treated embryos, whole carcasses were used for microbiome sample process-
ing. Dissected intestines and whole fish were placed directly into extraction tubes containing DNA-stabilizing 
buffer. Once a batch of four or five samples were in the extraction tubes, that batch would be flash frozen in liquid 
nitrogen, so that no sample was in the extraction tube but unfrozen for more than about five minutes. We did 
this was for two reasons: (1) the flash freezing can help with physical lysing of the bacterial cells for better DNA 
extraction, and (2) the facility in which we collected samples was not the same facility in which we were going 
to conduct the extraction and PCR (these two facilities are roughly 4 miles apart. So, we kept the sample frozen 
and stabilized in the buffers to prevent alterations in the microbiome post sampling.

Randomizing across plates and dissection methods, three different, commonly utilized commercial kits were 
used to extract DNA, these included Qiagen DNA Powersoil Pro Kit (Cat. No. 47016), Qiagen DNA Blood & 
Tissue Kit (Cat. No. 69506) and Macherey–Nagel NucleoSpin DNA Stool (Cat. No. 740472). We selected these 
kits because they represent either a relatively standard and widely employed approach, as in the case of the Pow-
ersoil Pro kit, which kit used by the Human Microbiome  Project25 and Earth Microbiome  Project26, or because 
they offer opportunities to improve the scale of an investigation due to decreased costs (e.g., Blood & Tissue and 
NucleoSpin). In particular, the Blood & Tissue kit is produced by the same manufacturer as the Powersoil kit, 
but does not include bead beating and is 50% of the cost, which are features that could improve experimental 
throughput and scale. The Nucleospin kit, like the Powersoil kit, uses beads to mechanically disrupt cells, but is 
a significantly less expensive alternative.

Dissected intestines or whole carcasses were collected into the bead tube and extraction buffer provided by 
each kit for Qiagen DNA Powersoil Pro Kit and Macherey–Nagel NucleoSpin DNA Stools kits. Samples were 
collected into 1.5 ml microfuge tubes with lysis buffer for the Qiagen DNA Blood & Tissue Kit. All samples were 
frozen in Liquid Nitrogen after tissue collection and stored at -80˚C until extractions were performed. DNA 
extracts of each sample were split into four aliquot, each of which were then subject to PCR amplification of 
the V4 region of the 16S rRNA gene following our prior approaches. We also include negative control samples 
including only buffer or water from the DNA extraction kits and the PCR reagents in the sequencing libraries. 
Briefly, using the Earth Microbiome Project (EMP) 16S V4 amplification index primers 515F and 806R, DNA 
was amplified following a slightly modified EMP PCR reaction mixture protocol. That is, We followed the Earth 
Microbiome Project (EMP) PCR  protocol26 to amplify the V4 subregion of the 16S rRNA gene, but made slight 
modifications to the protocol to facilitate accurate pipetting. These modifications did not change the overall 
chemistry of the reactions as compared to the EMP approach. The 515F barcoded primer was diluted to 2.5 µM 
and 2.0 µl of this solution was added to each PCR reaction. The 806R primer was diluted to 10 µM and 0.5 µL 
of this solution was added to each PCR reaction. 1.0 µl of extracted DNA was added to each PCR reaction. PCR 
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was run on the Thermofisher SimpliAmp Thermocycler with the following conditions: 94 °C, 3 min; 35 cycles 
of 94 °C, 45 s; 50 °C 60 s; 72 °C 90 s; final 72 °C, 10 min. Of the four aliquots for each sample, three were pooled 
(triplicate reaction), as is commonly done in microbiome research to account for possible PCR bias, and the 
fourth was directly submitted for sequencing.

Figure 1.  Experimental design. Overview of the methods analyzed for impact on interpretation of experimental 
results. First panel, 384 zebrafish larvae were distributed across the wells of four 96-well round-bottom plates. 
For two of these plates, the larvae were left untreated, while the larvae of the other two plates were exposed to 
10 µM benzo-[a]-pyrene by way of their growth media. The zebrafish were raised in their wells on these plates 
until 9 days post fertilization. Second panel, for each of the four plates we conducted a fully factorial splitting of 
the samples by dissection method and DNA extraction kit. Half of the samples on each plate had their intestines 
dissected and placed in the collection tube, while for the other half, we placed the whole carcasses in their 
collection tubes. Then, in a manner orthogonal to dissection method, a third of each set of samples underwent 
DNA extraction using one of the three extraction kits. Third panel, we prepared 16S rDNA sequencing libraries 
using either single or triplicate PCR. Every sample was subject to both of these treatments. These libraries were 
then submitted for sequencing. Bottom panel, upon receiving the 16S sequences, we processed the data for 
quality and conducted the analyses described herein.
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All PCR products were run on 1.5% agarose gel in 0.5X TBE running buffer to verify PCR product size and 
negative controls. PCR products were size selected using a BluePippen at the Oregon State University Center for 
Quantitative Life Sciences. The PCR products in the 300-600nt range were selected to remove a 110-120nt host 
contaminate PCR product. PCR products were quantified using the Qubit dsDNA HS Assay Kit (Thermofisher 
Q32854) and read on a Qubit 2.0. Equal nanograms of PCR product for each sample were combined to make a 
library pool, the pools were processed through the QIAquick PCR Purification Kit (Qiagen ID # 28,104), and 
final quality control checked on the Agilent Tapestation 4200 in the CQLS. PCR libraries were submitted to the 
Oregon State University Center for Quantitative Life Sciences and sequenced on their Illumina MiSeq System 
(RRID:SCR_016379) using v3 chemistry to produce 300 bp paired-end reads.

Sequence processing. We used the  dada227 R28 package to quality filter, merge reads, and assign amplicon 
sequence variants (ASVs) from the raw sequences, and to create an ASVs counts per sample table. None of the 
negative control samples from the extraction kits and PCR reagents passed the dada2 quality controls. We used 
dada2 in conjunction with the Silva 16S  database29 to assign taxonomy to the ASVs down to the genus level. We 
used the NAST algorithm in  mothur30 and guide sequences from the Silva 16S database to align ASV sequences 
and used  FastTree31 to create an approximately-maximum likelihood phylogeny of the ASVs. ASVs that received 
no assignment at the kingdom taxonomic level or that were assigned Chloroplast or Mitochondria at the order 
or family taxonomic levels were removed from the analysis.

Statistical methods. Alpha‑diversity. We used the  phyloseq32 and  picante33 R packages to calculate alpha 
diversity metrics for each sample, which included Chao1 estimated  abundance34, the Shannon diversity  index35, 
the Simpson diversity  index36, observed number of ASVs, and Faith’s phylogenetic  diversity37. Because alpha-di-
versity scores are often not normally distributed, we used the functions descdist and fitdist (fitdistrplus  package38) 
to determine that the best distribution for each alpha-diversity metric scores was almost always the beta distribu-
tion. This distribution is not directly supported by the glm function but is approximated by the quasibinomial 
family, which we used for all linear models unless otherwise noted. These distributions only take values from 0 
to 1, so we divided all alpha-diversity scores by the max score for each metric. All samples underwent both single 
and triplicate PCR (though we did not necessarily get a set of sequences that passed QC and rarefaction for every 
set of single or triplicate PCR sample for every single biological sample), we first assessed whether there was a 
statistical interaction between BaP treatment and PCR method using a generalized linear mixed effects model 
(glmer.nb; lme4  package39) with the zebrafish sample ID as a random factor (e.g., Chao1_score ~ BaP_treatment 
* PCR_method + (1 | SampleID)). Because these models showed no significant effects of PCR method on our as-
sessment of how BaP exposure affects alpha-diversity and in order not to artificially inflate our sample size with 
redundant samples, we randomly chose a single- or triplicate PCR sample as a representative for each zebrafish 
microbiome sample for the remaining analyses (i.e., determining whether extraction kit or dissection method 
affects the assessment of the effects of BaP on alpha-diversity), Furthermore, because random fish death and 
removal of samples due to poor sequencing quality was not exactly equally distributed, we subsampled an equal 
number of samples for each kit by dissection method by BaP exposure treatment so direct comparisons could be 
made between treatments without concerns over differences in sample numbers. For each biological sample, the 
R function sample was used to randomly choose the triplicate or single PCR reaction sample associated with it. 
For sub-sampling to even numbers between treatments, we took counts of each subset of interest (e.g., dissected-
unexposed, dissected-exposed, whole-fish-unexposed, and whole-fish-exposed) and choose the subsampling N 
to be equal to the smallest of those subsets. Samples were then randomly chosen from each subset by the sample 
function. A breakdown of sample numbers by treatments can be found in (Supplemental Table 1).

Beta-diversity. To assess differences in microbiome composition between samples (beta-diversity), we 
generated distance matrices for all samples using six different distance metrics: Bray-Curtis40,  Canberra41, 
Sørensen42, weighted  UniFrac43, half-weighted  UniFrac44, and unweighted  UniFrac44 (function gen.dist.matri-
ces; phyloseqCompanion  package45). Using these distance matrices, we built full dbRDA models (function cap-
scale from the vegan  package46) and then assessed significance with anova.cca (a PERMANOVA model; vegan 
package). We used the function get.biplot.data from the phyloseqCompanion and ggplot (ggplot2  package47) to 
create ordinations based off of the various distance metrics we used. As with alpha-diversity, we first tested the 
effect of PCR method using a PERMANOVA model wherein we used zebrafish sample ID as a blocking factor 
(permutations only occurred within each ID rather than across all samples), a non-parametric analog for a 
random factor in a parametric test. We then proceeded with the same sub-sampled sets from the alpha-diversity 
analyses to test whether extraction kit or dissection method affects the assessment of BaP exposure effects on 
beta-diversity.

Taxonomic indicator analyses. We used LEfSe (Linear discriminant analysis Effect Size)48 as imple-
mented in Galaxy (Huttenhower lab; http:// hutte nhower. sph. harva rd. edu/ galaxy/) to determine which taxa were 
statistically significant indicators of BaP exposure in our various subsets. We used LEfSe to identify taxa that 
indicated BaP exposure in the dissected intestinal samples and repeated this analysis using only the samples 
obtained from whole fish. Similarly, samples from each set of DNA extraction procedures were used to identify 
taxa that indicate BaP. These sets of indicator taxa were then compared across the LefSe tests to resolve taxa that 
indicate exposure irrespective of dissection approach or DNA extraction procedure. All analyses were run with 
the default parameters and with BaP treatment as class and sample ID as subject.

http://huttenhower.sph.harvard.edu/galaxy/
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Random forest analyses. As with LEfSe, we generated random forest models for each experimental sub-
set of samples (i.e., dissection methods and extraction kits) using the caret  package49 for training the model 
and the ranger  package50 for implementation of the random forest method. Prior to running the random forest 
model, we removed taxa with near-zero variation using the step_nzv function (recipes  package51). We used 
fivefold cross validation and the ROC metric for choosing the best model. The function roc (pROC  package52) 
was used for calculating the ROC curves of the final models and these data were used for plotting with ggplot. 
Importance values for all taxa in the random forest models were calculated during model training and signifi-
cance of the importance values was determined using the permutation  approach53.

Logistic regressions. Taxa deemed significantly important in each random forest model were then used 
to build logistic regression models to predict BaP exposure from their relative abundances. Models were built 
in forward step-wise manners, starting with the most important taxa from each model. Models were built with 
the glm function and each new model was compared to the previous with anova (both functions from the base 
stats package). New models (i.e. models with an additional term) that were statistically better than the previous 
model were kept as the current model and models that were not significantly better were discarded. Taxa that 
were assessed as significantly predicting BaP exposure in the final model (Anova from the car  package54 with 
type II tests) were considered indicators.

Results
In order to test our hypotheses, we raised zebrafish for 9 days, with one fish in each well of four 96-well plates 
in 100 µL of embryo medium. The embryos in two of the plates also received exposure to benzo-[a]-pyrene at a 
concentration of 10 µM. We divided the experimental methods the samples underwent in a fully factorial manner 
for dissection method and extraction kit, and every sample underwent both single and triplicate PCR. We began 
our analysis by assessing the impact of PCR approach—namely how the number of replicate PCR—impacts the 
relationship between microbiome alpha-diversity and exposure to BaP. Based on linear regression, we observed 
no statistically significant effects of single versus triplicate PCR on the relationship between BaP treatment and 
any metric of alpha-diversity (Supplemental Fig. 1 and Supplemental Table 2). Moreover, samples treated with 
BaP exhibited consistently higher alpha-diversity scores regardless of PCR method (Supplemental Fig. 1). These 
results indicate that single PCRs reveal consistent associations between alpha-diversity and exposure as those 
obtained from triplicate PCRs.

For our other assessments of methodology effects (i.e., dissection and DNA extraction approaches), we needed 
to make sure we were not artificially increasing our sample size by including both single and triplicate PCR reac-
tions in our analyses, since nearly all samples went through both methods of PCR. So, we randomly chose a single 
or triplicate PCR reaction sample to represent each biological zebrafish microbiome sample in the subsequent 
analyses. We also randomly selected a consistent number of samples across each group subject to comparison to 
avoid biases due to inconsistent sample sizes. Unlike the PCR results, these analyses reveal significant main effects 
of BaP treatment, DNA extraction kit, and dissection method across all of the diversity metrics we assessed. The 
Chao1 and richness metrics were also associated with the interaction between extraction kit and BaP treatment 
(Supplemental Table 3). These results imply that, while extraction kits and dissection methods influence the 
measurement of microbiome diversity, they do not generally do so in a manner that would alter our interpreta-
tion of whether BaP treatment affects microbiome diversity (i.e., the direction of the effect). As noted with the 
PCR methods analysis, BaP treatment consistently increases alpha-diversity regardless of methods used (Fig. 2).

We next sought to determine if the assessment of how BaP exposure impacts microbiome composition is 
influenced by sample preparation methodology. To do so, we conducted statistical assessments of microbiome 
beta-diversity and did so using a variety of diversity metrics. Unlike with alpha-diversity, the beta-diversity 
analyses do reveal a statistically significant main effect of single versus triplicate PCR on assessing microbiome 
composition, indicating that the inferred microbiome composition from an analysis is influenced to some extent 
by whether one or three PCRs were applied to a sample. However, except for the Sørensen metric (a taxonomic 
presence/absence metric), there are no significant interactions between BaP treatment and PCR method pre-
dicting microbiome composition (Supplemental Table 4). Moreover, the model coefficient for the effect of the 
number of PCRs is far smaller than the coefficient for the effect of BaP treatment. Additionally, distance-based 
redundancy analysis (dbRDA) ordinations of beta-diversity reveal very similar centroids for BaP treatments, 
regardless of PCR method (Fig. 3a). Collectively, these results indicate that the number of PCRs applied to a 
sample elicit a small, technical effect on the results that does not obscure or interfere with the effect due to toxi-
cant exposure, at least in the case of BaP.

For all six beta-diversity metrics assessed, there are significant main effects of BaP treatment, extraction kit, 
and dissection method. There are, however, no statistically significant interactions between BaP treatment and 
either extraction kit or dissection method for four of the six beta-diversity metrics; the Canberrra and unweighted 
UniFrac metrics are associated with the interaction between BaP treatment and dissection method (Supple-
mental Table 5). Collectively, these results indicate that extraction kit and dissection method do have an effect 
on the inference of the zebrafish gut microbiome composition (Fig. 3b–d). Notably, the dissection method and 
extraction kit elicit a larger effect than BaP exposure on the composition of the gut microbiome, as determined 
by PERMANOVA model coefficients. However, whether these experimental parameters impact a given study’s 
ability to determine whether BaP exposure affects the gut microbiome depends upon the specific beta-diversity 
metrics being used. In particular, metrics that emphasize the contribution of rarer members of the microbiome 
may be more sensitive to these experimental parameters than those that emphasize the contribution of the more 
abundant microbiota in the community.
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In addition to overall microbiome diversity and composition, we aimed to determine how different methods 
impact which taxa were found to have significant associations with BaP treatment. We used LEfSe, a hierarchi-
cal linear discriminant analysis, to determine which phylotypes are significant indicators of BaP exposure using 
different data sets, such as taxa that differentiate BaP exposure in dissected versus whole fish samples, or those 
taxa that differentiate BaP exposure in samples associated with specific DNA extraction kits. A few phylotypes are 
consistently indicative of no exposure—e.g., Protobacteria, Gammaproteobacteria, Paracaedibacteraceae—and 
several are indicative of BaP exposure—e.g., Bacteroidia, Clostridia, Chitinophagaceae—across at least two data 
sets (Fig. 4). However, most phylotypes that were identified as an indicator in one data set were not consistent 
indicators across other data sets (Supplemental Fig. 2). In order to assess whether there were any interactions 
between dissection method and extraction kit in terms of this indicator analysis, we ran additional LEfSe analyses 
looking at sample subsets divided by both dissection method and extraction (e.g., assessing dissected samples 
extracted with the Blood & Tissue kit only). Of note, only the Blood & Tissue kit extract samples returned 
significant indicators for both dissected and whole fish samples, while for NucleoSpin it was just the dissected 
samples and for PowerSoil it was just the whole fish samples (Supplemental Fig. 3). The lack of significance for 
two of the extraction kits may very well be a statistical artifact due to how low we had to subsample for each of 
these dissection method by extraction kit groups. All together, these observations suggest that the identification 
of specific microbial indicators of exposure is sensitive to experimental decisions, which holds implications for 
how data generated under different experimental conditions is integrated or compared.

Groups of microbes, or consortia, may collectively indicate an exposure with higher sensitivity than specific 
microbial clades. So, we used random forest machine learning to identify consortia of ASVs that discriminate 
samples by their BaP exposure status using different subsets of samples, i.e., dissected versus whole fish samples, 
or the samples that underwent DNA extraction with each kit. The random forest models identified between 722 
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and 1578 ASVs, depending on the data set, that were deemed significantly important, and which we included in 
subsequent logistic regression analyses. We also used the models to produce ROC curves to see which data sets 
were better at predicting BaP treatment from ASV abundances. Model performance is assessed as the area under 
the curve (AUC) under the ROC curve. The whole fish data set had a greater AUC (0.756) than the dissected guts 
data set (0.669; Fig. 5a). For the extraction kits, the Blood & Tissue kit data set best discriminated controls from 
BaP treatment through this approach (AUC 0.726, other kits < 0.71; Fig. 5b). It should be noted that for these 
analyses, we used centerlog-ratio (CLR) transformed counts for the ASV abundances as we knew we would be 
continuing these analyses with regression models, and CLR transformation of abundance data can aid in pre-
venting the identification of spurious  associations55. However, we also built models using rarefied ASV counts 
that had greater AUCs for all data sets (Supplemental Fig. 4). Furthermore, it is important to note the distinction 
between accurately imputing the taxonomic composition of the community and resolving differences in the 
compositions between communities; it is possible that biases in an extraction procedure create the appearance of 
large differences between communities when in actuality the differences are relatively muted. Such phenomena 
could arise if kits fail to recover DNA from an important fraction of the microbial community due to extraction 
biases and if that fraction of the community is generally resistant to the variable being evaluated (e.g., BaP).

In order to determine how dissection method influences our interpretation of how individual microbial taxa 
associate with BaP exposure, we built binomial generalized linear models predicting BaP treatment from abun-
dances of the ASVs deemed significantly important for either the dissection-only or whole fish random forest 
models (two total linear models; Supplemental Table 6). ASVs were evaluated if they improved the performance 
of a forward-built model, wherein one model parameter (i.e., ASV) is added to the model in series and com-
pared to prior models through a Chi-square test to assess model optimality. The abundances of only one ASV, 
ASV00032, which is assigned to an uncharacterized genus in the Simkaniaceae family, significantly predicted 
BaP exposure in both data sets (its abundance is positively associated with BaP exposure; Fig. 6; Supplemental 
Fig. 6; Supplemental Table 7). The abundances of 27 taxa significantly predicted exposure in just one data set or 
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the other (Supplemental Fig. 6). In short, the dissection approach used in the study impacts findings of which 
taxa in the microbiome link to exposure and, in some cases, how they do so.

We ran a similar analysis pipeline for each extraction kit producing three total linear models (Supplemental 
Table 9). Similar to the dissection methods models, a relatively small fraction of the microbiome (25 ASVs) 
significantly predicts BaP exposure based on their abundance. One ASV, ASV00046 assigned to the Faecalibac-
terium genus, significantly predicted BaP exposure across all three extraction kits (its abundance is positively 
associated with BaP exposure; Supplemental Fig. 8 and Supplemental Table 9). Three other ASVs significantly 
predicted BaP exposure across two extraction kit data sets, the above mentioned ASV0032, along with ASV00038 
(Candidatus_Finniella) and ASV00133 (Lachnospiraceae_Genus), all of which are positively associated with 
BaP exposure (Fig. 7; Supplemental Fig. 8; Supplemental Table 9). These results indicate that efforts to identify 
specific microbes that link to environmental chemical exposure may be impacted by the specific DNA extraction 
kit used in the investigation.

Discussion
Our investigation of nearly 400 zebrafish larvae, half of which were exposed to 10 µM BaP, clarifies how various 
experimental decisions can affect the outcome of studies that investigate the effects of environmental chemical 
exposure on gut microbiome assembly in the zebrafish model. In particular, our study design allowed us to rigor-
ously assess the effects of dissection method, DNA extraction kit, and single versus triplicate PCR. From these 
results, we find that measures of the zebrafish gut microbiome are generally robust to single versus triplicate 
PCR, though there is some indication that single PCR may result in different imputations of the composition of 
the rare biosphere. This is consistent with the rationale underlying triplicate PCR—stochastic effects are likely to 
play a larger role in the amplification of rare templates during PCR. This effect may or may or may not present 
complications for studies depending on their objectives. Moreover, this effect may matter less than the inclusion 
of additional biological replicates and, when in conflict, studies may prefer to prioritize biological replicates over 
technical PCR replicates.

Additionally, we find that dissection methods and DNA extraction kits have a relatively large impact on the 
inference of gut microbiome biodiversity and composition. In fact, these variables generally elicited more of an 
effect on the inferred alpha-diversity and beta-diversity of the gut microbiome than did exposure to BaP. Despite 
this fact, all methods revealed an effect of BaP on the composition of the gut microbiome. These methods also all 
uncovered BaP effects on the alpha-diversity of the gut microbiome, with the exception of when Nucleospin DNA 
extraction kits were applied to dissected intestinal tissues. Overall, these results indicate that different dissection 
methods and DNA extraction kits can be used to detect the effect of exposure on the gut microbiome, at least in 
the case of BaP, though caution may need to be applied when analyses hinge on precise estimates of community 
compositions and especially alpha-diversity. Moreover, researchers attempting to integrate data from studies that 
implemented different approaches will need to carefully consider the effect of the different approaches on the 
interpretation of the results. This point is underscored in our phylotype-level analyses, which identify very few 
ASVs that are consistently linked to exposure across methods. In fact, only one ASV, ASV0032, was a consistent 
indicator across dissection methods, though it was congruent between methods. Analyses examining phylotypes 
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at higher taxonomic orders (LEfSe; genus through phylum) revealed indicators that were more consistent across 
methods. Such results imply that aggregating ASVs (or ESVs, OTUs, or ZOTUs) into higher taxonomic levels or 
phylogenetic  units56 may be required for direct comparisons of the effects of toxicant exposures across studies. 
Overall, our observations indicate that when using zebrafish to screen for exposure impacts on microbiome com-
position as a whole (e.g. for rapidly screening for effects of different toxicants), it may be sufficient to use lower 
cost, higher scale approaches, such as using whole fish rather than extracted intestines to sample microbiomes, 
inexpensive kits to extract DNA, and using single PCR to prepare 16S libraries. Whereas, for research focusing 
on the effects of toxicant exposure on specific microbial phylotypes, implementation of more rigorous, lower 
throughput, and more expensive approaches may be necessary. At the very least, it is important to standardize 
methods across studies when integration of data across these studies is critical to the experimental objectives.

There are, of course, a number of caveats to the results presented here. First, we were only able to consider 
a single toxicant: BaP. While BaP exhibits a measurable and statistically significant effect on the composition 
and diversity of the larval zebrafish gut microbiome, it does not do so in an as overwhelming a manner as an 
 antibiotic6 or more acute toxicant might. In such cases, the effects of dissection method, PCR replicates, or 
extraction kit on results may be completely overpowered by the effect of the treatment. Conversely, for toxicants 
(or exposure concentrations) that may have an even more subtle effect on the larval zebrafish gut microbiome 
than 10 µM BaP, greater consideration should be given to which methods to utilize, especially given that the 
microbiome’s sensitivity to exposure may be dose dependent. Likewise, these methods were only tested in larval 
zebrafish. These results may not necessarily translate to later zebrafish life stages, especially given that exposure 
may elicit different impacts on the gut microbiome as a function of the developmental timing of exposure. Moreo-
ver, our findings are principally pertinent to the zebrafish model system, and similar work should be conducted 
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using other model systems to determine the best set of methods for each. Lastly, since there is no ground truth 
data about the effect of BaP on the zebrafish gut microbiome, these results do not tell us which methods give the 
most accurate results. Rather, our analyses enable us to measure the effect of different methodological decisions 
on the ability to discriminate between larval zebrafish microbiomes that have been exposed to BaP and those 
that have not. That said, our observations indicate that embryonic exposure to 10 µM BaP impacts the assembly 
of the gut microbiome given that almost all experimental parameters we explored revealed BaP exposure effects 
on alpha- and beta-diversity. This apparent effect of BaP on microbiome assembly adds to and is consistent with 
prior work that documented the gut microbiome’s sensitivity to BaP at alternative stages of life in other host taxa, 
including juvenile  Tilapia57,  adult58 and  juvenile59 fathead minnows,  scallops60, and adult  mice61. While these 
collective results indicate that BaP is capable of eliciting measurable effects on the gut microbiome, future work 
may endeavor to test these methods for accuracy utilizing gnotobiotic models with a defined microbiome input.

In conclusion, we have shown that regardless of the dissection method, PCR method, or DNA extraction kit 
we analyzed, we were able to discern a statistically significant effect of 10 µM BaP exposure on the composition 
of the gut microbiome of larval zebrafish. However, the interpretation of this exposure effect, and in particular 
which phylotypes are shown to be most affected by exposure, is influenced by the particular set of methods we 
applied to each sample. Researchers utilizing the larval zebrafish model for microbiome studies will hopefully 
find herein helpful guidance in designing their own experiments, or for comparing the results from different 
studies within the field.

Data availability
Raw sequences are available in the NCBI short read archive under the BioProject PRJNA823740 (https:// www. 
ncbi. nlm. nih. gov/ biopr oject/ PRJNA 823740). Code for analyses can be accessed at https:// github. com/ kstag aman/ 
staga man_ etal_ 2022.
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