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OBJECTIVE—Defining an optimal costimulatory blockade–
based immune suppression protocol enabling engraftment and
functional development of E42 pig embryonic pancreatic tissue
in mice.

RESEARCH DESIGN AND METHODS—Considering that
anti-CD40L was found to be thrombotic in humans, we sought to
test alternative costimulatory blockade agents already in clinical
use, including CTLA4-Ig, anti-LFA1, and anti-CD48. These agents
were tested in conjunction with T-cell debulking by anti-CD4 and
anti-CD8 antibodies or with conventional immunosuppressive
drugs. Engraftment and functional development of E42 pig
pancreatic tissue was monitored by immunohistology and by
measuring pig insulin blood levels.

RESULTS—Fetal pig pancreatic tissue harvested at E42, or even
as early as at E28, was fiercely rejected in C57BL/6 mice and in
Lewis rats. A novel immune suppression comprising anti-LFA1,
anti-CD48, and FTY720 afforded optimal growth and functional
development. Cessation of treatment with anti-LFA1 and anti-
CD48 at 3 months posttransplant did not lead to graft rejection,
and graft maintenance could be achieved for �8 months with
twice-weekly low-dose FTY720 treatment. These grafts exhibited
normal morphology and were functional, as revealed by the high
pig insulin blood levels in the transplanted mice and by the ability
of the recipients to resist alloxan induced diabetes.

CONCLUSIONS—This novel protocol, comprising agents that
simulate those approved for clinical use, offer an attractive
approach for embryonic xenogeneic transplantation. Further
studies in nonhuman primates are warranted. Diabetes 58:

1585–1594, 2009

T
he potential use of embryonic tissues as a novel
source for transplantation, which might be less
immunogenic transplantable tissue, has been
advocated over the years. During the past de-

cade, several studies (1–5) have suggested that the relative
reduced expression of major histocompatibility complex
molecules or adhesion molecules, as well as the lack of
antigen-presenting cells or endothelial cells in embryonic
tissues, are likely associated with reduced immunogenic-
ity. Furthermore, it has been more recently argued that
early embryonic porcine precursor tissues could com-
pletely evade the immune system upon implantation into
recipient rats or nonhuman primates (NHPs) (6–9). We
previously attempted to define an optimal window for
transplantation of pig embryonic pancreatic tissue, based
on the risk of teratoma, growth potential, and immunoge-
nicity (10,11). Assessment of the first two parameters was
performed following implantation of embryonic tissues
harvested at different gestational time points under the
renal capsule of xenogenic NOD-SCID mice that lack a
functional adaptive immune system. To evaluate the rela-
tive immunogenicity of the different tissues, the recipient
mice were infused with human peripheral blood mononu-
clear cells and homing, and destruction of the embryonic
tissues by human T-cells or macrophages was analyzed.
Based on this study, pig embryonic pancreatic tissue
harvested at embryonic gestational age 42 (E42) was
selected as the tissue of choice for transplantation. This
choice was based, in particular, on the marked growth
potential exhibited by E42 tissue, compared with E28
tissue, while no significant difference in their immunoge-
nicity could be detected. Nevertheless, all early embryonic
tissues, including tissue harvested at E28, were fiercely
rejected when transplanted into immune competent mice
in the complete absence of some form of immune
suppression.

While our findings were in sharp contrast to the studies
of Hammerman et al. (6,9), who showed engraftment and
normalization of glucose levels in rats transplanted with
E28–E29 pig pancreas, it is possible that this discrepancy
was due to a difference between rats (used in the Ham-
merman et al. study) and mice (used in our study) in the
strength of their rejection response. Therefore, in the
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present study, we further tested the potential of E28 pig
tissue to evade the immune system in rats. As we previ-
ously reported in the mouse model, we observed fierce
rejection of the implanted tissue, similar to that exhibited
upon transplantation of E42 pancreas. These findings
suggest that implantation of embryonic pig pancreas from
any gestational stage will likely require some form of
immune suppression.

Previous transplantation data suggest that costimula-
tory blockade does not interfere with pancreatic function.
Unlike some of the conventional immunosuppressive
drugs, such as rapamycin, costimulatory blockade seems
preferable for porcine embryonic pancreas transplanta-
tion. One approach, recently demonstrated in the NHP
model and also in our previous mouse study, has demon-
strated the impressive role of a protocol combining
CTLA4-Ig and anti-CD40L (11–13). However, the recent
observation that anti-CD40L monoclonal antibody treat-
ment is often associated with lethal thrombotic complica-
tions (14) suggests that the use of other costimulatory
agents already tested in clinical trials may be preferable. In
the present study, we indeed demonstrate that combining
anti-LFA1 and anti-CD48 could markedly enhance engraft-
ment and development of E42 pancreatic tissue in immune
competent mice.

RESEARCH DESIGN AND METHODS

Animals. Animals were maintained under conditions approved by the insti-
tutional animal care and use committee at the Weizmann Institute of Science.
NOD-SCID and C57BL mice and “Nude” and Lewis rats aged 8–12 weeks
(Weizmann Institute Animal Breeding Center, Rehovot, Israel) were used as
hosts for the transplantation studies.
Porcine embryonic pancreatic tissue. Pig embryos were obtained from the
Lahav Institute of Animal Research (Kibbutz Lahav, Israel) as previously
described (10,11). Cold ischemia time until transplantation was routinely �2
h. The study protocol was approved by the ethics committees at both the
Weizmann Institute of Science and the Lahav Institute of Animal Research.
Implantation. Implantation under the kidney capsule of mice was performed
as previously described (10,11). Implantation intra omentum of rats was
performed under general anesthesia (ketamine 60 mg/kg and xylazine 7 mg/kg
i.p.). Host omentum was exposed through a midline abdominal incision, and
two pancreata were deposited into sutured omental pockets.
Induction of diabetes. Diabetes was induced by alloxan as previously
described (11).
Immune suppression protocols. The immune-suppressive protocols in-
cluded T-cell debulking with anti-CD4 and anti-CD8 antibodies (hybridomas
GK1.5 and 53.6.72; BioExpress, West Lebanon, NH) administered intraperito-
neally on day �3 at a dosage of 300 �g/mouse. The costimulatory blockade
agents (200 �g/mouse mouse CTLA4-Ig fusion protein [lot no. 20204; Chimeri-
gen Laboratories], 250 �g/mouse anti-CD48 [hybridoma HM48-1; provided by
Dr. Hideo Yagita], and anti-LFA1 [hybridoma FD441.8; Bioexpress] antibodies)
were given intraperitoneally on days 0, 2, 4, and 6, and a single injection was
repeated biweekly until 3 months posttransplant. FTY720 was administered
i.p. daily from day �2 until day �3 and then biweekly at a dosage of 5 mg/kg.
Alternatively, 1.5 mg/kg s.c. rapamycin (Sirolimus; Wyeth Europa, Berkshire,
U.K.), 1 mg/kg s.c. FK506 (Prograf, Fujisawa, Ireland), or 40 mg/kg p.o.
mycophenolate mofetil (MMF) (CellCept; Roche, Mannheim, Germany) was
administered daily until the animals were killed. All drugs were administered
according to the manufacturer instructions using doses previously shown to
be effective in mice (15–17).
Evaluation of transplant growth. Grafted animals were killed at 4–6 weeks
after transplantation. Kidneys bearing the grafts were removed and fixed in 4%
paraformaldehyde. Long and short axes of the grafts were measured, and
transplant size was calculated by multiplying long and short axes.
Histology and immunohistochemistry. Tissues were obtained from trans-
planted animals. Fixation, sectioning, and staining were performed as in
previous studies (10,11,18,19). The following first antibodies were applied:
guinea pig anti-rabbit insulin (Dako, Giostrup, Denmark), polyclonal rabbit
anti-human CD3 (Dako), rat anti-mouse F4/80 antigen (Serotec, Oxford, U.K.),
mouse anti-rat ED1 (Serotec), rabbit anti-human glucagon (Dako), mouse
anti-human cytokeratin 20 (clone Ks 20.8; Dako), rabbit anti-cytokeratin
(wide-spectrum screening; Dako), monoclonal mouse anti-human cytokeratin,

clone MNF116 (broad-spectrum cytokeratin; Dako), rat anti-mouse CD31 (BD
Pharmingen, Oxford, U.K.), and fluorescein isothiocyanate–conjugated anti-
porcine CD31 (Serotec). The following secondary antibodies were used
(purchased from Jackson ImmunoResearch Laboratories, West Grove, PA):
Texas red anti-mouse, Texas red or Cy3 anti-rat, Texas red or Cy2 anti-rabbit,
biotinylated anti–guinea pig following streptavidin aminomethylcoumarin,
fluorescein isothiocyanate anti-mouse IgM, and Cy2 anti-mouse IgG.
Enzyme-linked immunosorbent assay measurements of pig insulin. The
porcine/human insulin kit (K6219; Dako), in which the primary pig anti-insulin
antibody does not cross-react with mouse insulin, was used to follow pig
insulin levels in the serum of transplanted mice according to the manufactur-
er’s instructions.
Statistical analysis. Differences between groups were evaluated by the
Student’s t test. Data are expressed as means � SD and were considered
statistically significant if P values were �0.05.

RESULTS

Implantation of E28 versus E42 pig pancreatic tissue
in immune competent mice and rats in the absence of
immune suppression. To determine whether early em-
bryonic pig pancreatic tissues can evade the immune
system when transplanted into rodents, E28 and E42 pig
tissues were implanted under the renal capsule in different
strains of mice and rats. The enhanced growth potential of
E42 pig pancreatic tissue, compared with that exhibited
by E28 tissue, was demonstrated upon implantation in
NOD-SCID mice by insulin secretion, by implant size and by
histological documentation of ducts and islets (Fig. 1A).

However, when transplanted under the kidney capsule
of C57BL immune-competent mice without any immune
suppression, all early embryonic tissues tested, including
tissue harvested at E28 and E42, were rejected. Thus, 4
weeks after transplantation, only fibrosis and massive infil-
tration in the site of implantation in the C57BL mice could be
detected (six of six recipients in each group) (Fig. 1B).

Considering that our findings in the mouse model were
in sharp contrast to the results of Rogers and colleagues
(6,9), who suggested that E28 pancreas can evade the
immune response in rats, we attempted to repeat these
transplantation experiments in rats, using the same strain
of recipients, namely immune-competent Lewis rats, and
the same site of implantation, namely the omentum. As a
control for the growth capacity of the implanted tissue, we
used immune-deficient Nude rats.

As can be seen in Fig. 1C, following transplantation of
two E28 pancreata into the omentum of Nude rats, normal
growth and development was attained with grafts contain-
ing pancreatic elements without leukocyte infiltration in
the pancreas parenchyma. Thus, at all time points tested,
pig pancreatic epithelial cells, stained specifically by anti-
pig cytokeratin 20, were present in the growing grafts (Fig.
2A). As previously demonstrated in the mouse model,
within 5–15 days posttransplant, most of the pancreatic
tissue included pancreatic ducts. Within 2–5 months after
transplantation, the grafts were composed mostly of en-
docrine pancreatic elements, and in seven of eight Nude
rats, insulin and glucagon-producing cells arranged in islet
structures or scattered as single cells in adipose tissue
were clearly visible (Fig. 2C).

In sharp contrast, rapid rejection of the E28 pancreas
was documented following implantation into immune-
competent Lewis rats. Histological examination of the
grafts at all time points, between 5 days and 5 months
posttransplant, revealed no pancreatic elements at the site
of implantation, similar to our observations in the mouse
model (Fig. 1). Starting 5 days after transplantation, the
grafts were heavily infiltrated, and long-term follow-up
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revealed large areas of fibrosis and necrosis. Specific
staining for CD3� lymphocytes and macrophages, 2 weeks
after transplantation, revealed massive infiltration of both
cell types in the omentum of the transplanted Lewis rats
(Fig. 2E and F). Moreover, there were no cells stained for
cytokeratin 20, nor could any insulin- or glucagon-produc-
ing cells be detected in any of the rats transplanted (0 of
10) (Fig. 2B and D).

Accordingly, during the entire follow-up period low, but
significant, blood levels of pig insulin were detected by
specific enzyme-linked immunosorbent assays in the Nude
recipients but not in the immune-competent recipients.
Thus, 3 months after transplantation, the blood level of pig
insulin in the Nude rats was 1.048 � 0.887 �IU/ml (n � 6),
whereas in all six Lewis rats tested, it was below the
detection threshold (�0.5 �IU/ml).

Although substantial pig insulin blood levels were re-
corded in the Nude rat recipients, they were significantly
lower compared with those exhibited in SCID mice (Fig.
1A). This could be caused, in part, by the different implan-
tation site used for transplantation, namely omentum
versus renal capsule, respectively.
Engraftment and functional growth in immune-compe-
tent mice following implantation of E42 pig pancreatic
tissue in conjunction with immune suppression. Consid-
ering that E42 embryonic pig tissue exhibits a more robust
growth potential, and that E28 tissue, similarly to E42
tissue, is vigorously rejected in immune-competent mice
or rats, further studies defining optimal minimally toxic
immune suppression protocols were warranted. Very re-
cently, we demonstrated the curative potential of the E42
tissue in the NHP model, demonstrating its ability to
induce complete insulin independence in streptozotocin-
treated animals (20). To demonstrate this proof of con-
cept, we used a rather intensive immune-suppression
protocol based on conditioning with a short treatment
with anti-thymocyte globulin (ATG) and rituxan, followed
by maintenance with RAD (a derivative of rapamycin),
CTLA4-Ig, and FTY720. Clearly, while this protocol dem-
onstrates the proof of concept for the curative potential of
E42 pig pancreatic tissue, further reduction of its toxicity,
if possible, would bring us closer to considering such
transplants in human diabetic patients. One potential
approach to reduce the toxicity of the protocol could
entail replacing RAD and FTY720 with costimulatory
blockade agents.

Indeed, the effectiveness of anti-CD40L has been re-
cently demonstrated in the context of pig islet transplan-
tation in the NHP model (12,13). However, in initial
clinical attempts in renal transplantation, this agent was
found to be associated with lethal thrombotic complica-
tions (14). Thus, we searched for alternative agents that
have been given to patients without such toxicities includ-
ing anti-LFA1 and anti-CD48, which are already used safely
in patients with psoriasis (21,22). These antibodies were
tested in combination with CTLA4-Ig, in the presence or
absence of T-cell debulking monoclonal antibodies (anti-
CD4 and anti-CD8) or FTY720.

As can be seen in Table 1, a protocol combining all these
agents led to 100% (eight of eight) engraftment of E42
pancreas in C57BL mice. Histological examination of the
grafts in the first days posttransplantation revealed signif-
icant differences between untreated and treated mice (Fig.
3). Thus, in the absence of any immune suppression, CD3�

lymphocytes heavily infiltrated the grafts 3 days after
transplantation, leading to complete rejection by 2 weeks
posttransplantation, at which time only massive CD3�

lymphocyte and macrophage infiltrates were evident
and no insulin or cytokeratin-expressing cells could be
detected.

In contrast, mice that were treated with the maximum
immune suppression protocol of T-cell debulking, FTY720,
CTLA4-Ig, anti-LFA1, and anti-CD48, exhibited at 2 weeks
posttransplantation, large pancreatic grafts with insulin-
and cytokeratin-expressing cells, and with minimal infil-
tration of CD3� lymphocytes or macrophages. Moreover, 2
months after E42 pancreas transplantation in mice treated
with the maximal protocol, the grafts contained all pan-
creatic elements and were functional, as indicated by
posttransplant blood levels of pig insulin (15.3 � 14.2
�IU/ml) similar to the level exhibited in NOD-SCID control
mice (9.7 � 11 �IU/ml) (n � 16).
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FIG. 1. Comparison between E42 and E28 pancreas in growth potential,
function, and rejection patterns. A: The difference in size and insulin
secretion of the E42 and E28 pancreas transplanted under the kidney
capsule of NOD-SCID mice (black [E42] and white [E28] bars, respec-
tively). The graft size was determined 6 weeks following transplanta-
tion. B: Histological (hematoxylin and eosin) evaluation of E42 and
E28 pancreatic grafts 1 month after transplantation under the kidney
capsule of NOD-SCID or C57BL mice. C: Histological (hematoxylin and
eosin) evaluation of E28 pancreatic grafts 10 days after transplanta-
tion in the omentum of Nude or Lewis rats. (A high-quality represen-
tation of this figure is available in the online issue.)
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Interestingly, CTLA4-Ig or T-cell debulking could be
removed from the maximal immune suppression protocol
without loss of engraftment or graft functionality (five of
five and seven of seven engrafted, respectively), while
FTY720 was found to be essential to the engraftment-
sustaining effect of CTLA4-Ig, anti-LFA1, and anti-CD48
(one of seven engrafted). Based on these studies, a novel
reduced intensity protocol associated with 100% graft
acceptance and with functional grafts has been defined.
This protocol comprises anti-CD48, anti-LFA1, and FTY720
(four of four engrafted). Replacement of FTY720 with
CTLA4-Ig in this protocol led to marked rejection (zero of
six engrafted).

Mice implanted under immune suppression with anti-
CD48, anti-LFA1, and FTY720 exhibited robust implants at
2 months posttransplant. Thus, as can be seen in Fig. 4,

large islets with insulin- and glucagon-secreting cells were
clearly detected by immunohistological staining (Fig. 4C).
All the blood vessels in the pig pancreatic implant were of
mouse origin, without evidence of pig endothelial cells
(Fig. 4D). The grafts exhibited minimal CD3� lymphocytes
and macrophage infiltration in the periphery (Fig. 4A and
B); however, the stained cells did not penetrate the
pancreatic parenchyma. Moreover, we could not detect
significant levels of IgG and IgM antibody deposits inside
the pancreatic epithelium, despite minimal presence of
bound immunoglobulin in the surrounding tissue, which
was lower compared with that exhibited in the host kidney
glomeruli that served as a positive control (Fig. 4E).

Further analysis of the relative role of anti-LFA1 and
anti-CD48 showed that both are critical for achieving 100%
success rate. As can be seen in Table 1, addition of

F

A

C D

E

B

FIG. 2. Immunostaining of E28 pig pancreatic tissue implanted in the omentum of Nude and Lewis rats. Pig pancreatic epithelial cells, 15 days
after transplantation in nude (A) or Lewis (B) rats, visualized using cytokeratin 20 (reddish color)-specific staining. Nuclei are stained with
yellow Hoechst. Pig endocrine cells, 4 months after transplantation in Nude (C) or Lewis (D) rats, visualized using insulin (blue) and glucagon
(green)-specific staining. Infiltration of the omentum in transplanted Lewis rats 15 days after transplantation is visualized using CD3 for
detection T-cells (E) and F4/80 for detection of macrophages (F). (A high-quality representation of this figure is available in the online issue.)
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anti-CD48 alone to FTY720, similarly to CTLA4-Ig along
with FTY720, could not prevent rejection, and 8–10 weeks
after transplantation all the grafts were completely re-
jected. Interestingly, the use of FTY720 with anti-LFA1
alone led to 50% engraftment. Thus, it seems that anti-
LFA1 is more effective than anti-CD48 or CTLA4-Ig when
added to FTY720. Furthermore, in each of the FTY720-
based protocols, addition of CTLA4-Ig to either anti-LFA1
(three of four engrafted) or anti-CD48 (three of four
engrafted) appeared to be less effective compared with the
combined use of anti-LFA1 and anti-CD48 (eleven or
eleven engrafted). The advantage of the anti-LFA1 and
anti-CD48 combination is statistically significant as re-
flected by the pig insulin blood levels in the serum of

transplanted mice 10 weeks after transplantation (Fig. 5)
(37.1 � 34.8 �IU/ml, compared with 5.5 � 5.7 �IU/ml [P �
0.05] and 6.9 � 6.8 �IU/ml [P � 0.05]) found upon addition
of CTLA4-Ig to anti-LFA1 or to anti-CD48.

The strikingly high levels of porcine insulin attained in
the serum of implanted mice can likely be attributed to the
molecular difference between pig and mouse insulin, as-
sociated with a reduced affinity of pig insulin to mouse
insulin receptor. Thus, as we previously demonstrated
when defining optimal gestation time window for trans-
plantation (11), the relatively high pig insulin blood levels
in transplanted mice is not associated with hypoglycemia
or with an abnormal weight increase. Accordingly, correc-
tion of hyperglycemia in two different models of diabetes,

TABLE 1
Outcomes of E42 pig pancreatic tissue implantation in C57BL/6 mice under different immune suppression protocols

Engraftment* Porcine insulin†

Tests of immune suppressive combinations to identify maximum effective
protocol

Debulking, FTY720, CTLA4-Ig, anti-LFA1, and anti-CD48‡ 8/8 5.3 � 4.3
Debulking, CTLA4-Ig, anti-LFA1, and anti-CD48 1/7 0.28 � 0.48
Debulking, FTY720, anti-LFA1, and anti-CD48 7/7 16.9 � 10.4
FTY720, CTLA4-Ig, anti-LFA1, and anti-CD48 5/5 27.9 � 29
FTY720, anti-LFA1, and anti-CD48 4/4 8.5 � 7.7
CTLA4-Ig, anti-LFA1, and anti-CD48 0/6 0.1 � 0.2

The role of FTY720 with individual costimulatory blockade agents
FTY720 and CTLA4-Ig 0/4 0
FTY720 and anti-CD48 0/4 0
FTY720 and anti-LFA1 2/4 0.8 � 0.9
FTY720, CTLA4-Ig, and anti-CD48 3/4 3.3 � 5.1
FTY720, CTLA4-Ig, and anti-LFA1 3/4 5.7 � 8.2
FTY720, anti-LFA1, and anti-CD48 11/11 13.8 � 10
FTY720, CTLA4-Ig, anti-LFA1, and anti-CD48 13/13 15.6 � 22

The effect of various conventional immunosuppressive drugs with anti-LFA1 and
anti-CD48

FK506, CTLA4-Ig, anti-LFA1, and anti-CD48 0/3 2.2 � 3.5
Rapamycin, CTLA4-Ig, anti-LFA1, and anti-CD48 0/7 0.6 � 0.8
MMF, CTLA4-Ig, anti-LFA1, and anti-CD48 0/4 0.1 � 0.1

Data are means � SD. *Mice were defined engrafted according to histology and/or porcine insulin in the serum. Mice were defined positive
for porcine insulin if porcine insulin level in the serum of the mice 8 weeks posttransplantation was �1uIU/ml. †Porcine insulin in the serum
of transplanted mice 8 weeks posttransplantation. ‡Anti-CD4 and anti-CD8 monoclonal antibodies on day �3.

Insulin MNF116 CD3 F4/80
A

B

FIG. 3. Histological examination of E42 pig pancreatic tissue 2 weeks after transplantation under the renal capsule of C57BL with (A) and without
(B) immune-suppression with costimulatory blockade (anti-LFA1, anti-CD48, and CTLA4-Ig), FTY720, and T-cell debulking. Slides were stained
for pig insulin, cytokeratin (MNF116), CD3� lymphocytes, and macrophages (F4/80), as indicated. (A high-quality representation of this figure
is available in the online issue.)
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induced by alloxan or by streptozotocin, requires higher
pig insulin levels than those effective in humans (11).
Interestingly, in line with the closer homology of pig and
primate insulin (only one amino acid difference), ongoing
experiments in the nonhuman primate model show that
correction of hyperglycemia is attained by pig insulin
blood levels more similar to those found in normal humans
(�10�IU/ml).

Since FTY720 is not approved for use in clinical transplan-
tation, it was of interest to test whether it can be replaced
with other conventional immunosuppresive drugs. As can be
seen in Table 1, FK506 (1 mg/kg), rapamycin (1.5 mg/kg), or
MMF (40 mg/kg), administered on a daily basis (using doses
shown by other studies to be effective in mice [15–17]) could
substitute FTY720 and prevent rejection in conjunction with
costimulatory blockade.
Cessation of immune suppression. The immune-sup-
pressive protocol of choice comprising anti-LFA1, anti-
CD48, and FTY720 was further tested for graft acceptance
and insulin levels during a follow-up period of �6 months,
in the presence or absence of T-cell debulking, prior to
transplantation.

As can be seen in Fig. 6A, similar and significant blood
levels of pig insulin were attained during the entire fol-
low-up period, in the presence or absence of induction
with T-cell debulking prior to transplantation. Thus, induc-
tion with anti-CD4 and anti-CD8 antibodies is not required.
Furthermore, in these experiments, anti-LFA1 and anti-
CD48 treatment was stopped 3 months after transplanta-
tion, and mice were maintained on a twice-weekly dose of
FTY720 alone. These mice remained positive for pig insu-
lin for �8 months posttransplantation.

In some mice (n � 9), FTY720 treatment was also
stopped at 5 months posttransplant (Fig. 6B). Four weeks
after FTY720 cessation, pig insulin levels remained stable
(40.1 � 54 �IU/ml before withdrawal of FTY720 vs. 38.9 �
53.8 �IU/ml 4 weeks after withdrawal), although CD4� and
CD8� cell levels in the peripheral blood were elevated
from undetectable levels to 9.7 � 6% and 10.6 � 5.7% of
CD4� and CD8� cells, respectively. However, after 2
additional weeks (i.e., 6 weeks after FTY720 discontinua-
tion), pig insulin blood levels were drastically reduced
(3.7 � 6.8�IU/ml) and reached undetectable levels in
seven of nine mice tested.

A C

B
D

E

FIG. 4. Histological examination of E42 pig pancreatic tissue 2–10 months
after transplantation under the renal capsule of C57BL mice treated with
the costimulatory blockade protocol (anti-LFA1, anti-CD48, and FTY720).
Slides were stained for CD3� lymphocytes (A), macrophages (F4/80) (B),
insulin (blue) and glucagon (green) (C), mouse blood vessels (CD31, red),
and pig blood vessels (CD31, green) (D), and cytokeratin (broad spectrum,
red) and IgM and IgG deposits (green) (E). The inset in D demonstrates
positive staining for pig endothelial cells (green) in E42 pancreas. The
inset in E demonstrates positive normal staining for IgM and IgG deposits
in the glomeruli of the kidney. The data are representative of the experi-
ment shown in Table 1 (n � 11). (A high-quality representation of this
figure is available in the online issue.)
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A detailed analysis of the implant functionality in re-
sponse to glucose challenge and its ability to maintain
normoglycemia in different diabetes models has been
described recently (11). In the present study, the immune
suppression of choice was selected based largely on
histological evaluation and pig insulin blood levels, which
we found previously to be correlated with graft rejection

or acceptance. However, the curative capacity of the pig
embryonic implants, maintained long term under just a
biweekly treatment with FTY720, was also verified in the
two remaining mice by exposure to alloxan treatment at 6
months posttransplant (alloxan selectively destroys ro-
dent, but not human or porcine, 	-cells [23]). Moreover,
the role of the implant in maintaining normoglycemia
following alloxan treatment is further proven by removal
of the implant, which abruptly leads to marked elevation
of glucose levels.

As can be seen in Fig. 7, the mice indeed maintained
normal glucose levels, in sharp contrast to control mice
that did not receive a transplant. Removal of the implant
by nephrectomy of the kidney harboring the pig implant
was associated with loss of normoglycemia, confirming
that maintenance of glucose levels following alloxan treat-
ment was mediated by the implanted pig embryonic pan-
creatic tissue.

DISCUSSION

In the rat transplantation model, our data extends our
previous observation in the mouse model that embryonic
pig pancreatic tissue harvested at different gestational
time points, including E28 and E42, are fiercely rejected
upon transplantation into immune-competent recipients.
Considering that E42 tissue exhibits more robust growth
potential, the new data presented here further support the
suggestion that E42 pancreatic pig tissue is best suited for
transplantation in diabetic recipients, at least in this
rodent xenotransplantation model. Our results are in con-
trast to the previous suggestion of Rogers and colleagues
(6,9) that E28 pancreatic tissue can evade the immune
system in Lewis rats. Our failure to find in these rats any
detectable trace of pig pancreatic tissue cannot be due to
growth deficiencies, as the same E28 tissue exhibited
growth and development in immune deficient Nude rats.

This discrepancy between our results and those of
Rogers and colleagues (6,9) are intriguing. However, it
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should be noted that in the latter study pig insulin blood
levels were not monitored to establish the role of the pig
implant in attaining normoglycemia, and, therefore, it is
conceivable that autologous recovery of the rat islets
might have occurred as suggested in other recent studies
(24,25). While unable to evade the immune system in our
models, early embryonic pig or human tissues were shown
to be less immunogenic compared with their adult coun-
terparts (1,2,10,11,18,19,26). Thus, it was important to
define a minimally toxic immunosuppressive protocol for
transplantation of embryonic pig tissues.

In our initial attempt to demonstrate the proof of
concept in the NHP model, we chose a conventional
protocol comprising induction with ATG and rituxan,
followed by maintenance with CTLA4-Ig, RAD, and
FTY720. This relatively intensive immune suppression
enabled us to demonstrate that, indeed, implanted E42 pig
pancreatic tissue can grow, differentiate, and induce com-
plete insulin independence in diabetic NHP (20). However,
further reduction of this immune suppression protocol is
desirable before applying this approach for studies in
diabetic primates or humans.

Our previous experience in mice, similar to results in
NHP in the context of islet transplantation (11–13), dem-
onstrated that costimulatory blockade using CTLA4-Ig and
anti-CD40L can prevent E42 pancreatic graft rejection.
However, anti-CD40L was shown to be associated with
thrombotic complications in patients (14). To eliminate
this agent in the present study, we combined elements
from the primate protocol, such as FTY720 and rapamycin,
with alternative costimulatory blockade agents such as
anti-LFA1 and anti-CD48 (the murine homologue of human
CD58 (LFA3) (27,28). Previous studies (29–32) demon-
strated that each agent could be used in strategies aimed
at controlling graft-versus-host disease or graft rejection
following allogeneic bone marrow transplant or solid
organ transplantation in rodents.

Efalizumab (humanized anti LFA1) and alefacept (hu-
man LFA3 fusion protein) are new immune-suppressive
agents approved by the Food and Drug Administration in
2003 for the treatment of psoriasis (Food and Drug Admin-
istration application no. BLA 125075 and BL 125036). Both
are currently in phase II/III clinical trials in the transplan-
tation setting (33,34).

Our results, comparing different combinations of anti-
LFA1 and anti-CD48, suggest that optimal engraftment and
development of E42 pig pancreatic tissue could be at-
tained upon immune suppression with a protocol compris-
ing anti-LFA1 and anti-CD48, in combination with low
doses of FTY720. Substitution of FTY720 by other conven-
tional immune-suppressive drugs, including rapamycin,
MMF, and FK506, failed to overcome rejection in our
model. This special attribute of FTY720 might be associ-
ated with its unique mechanism of action, affecting traf-
ficking of lymphocytes. Thus, while all other agents do not
have additive activity to that of costimulatory blockade
agents (i.e., suppressing proliferation or activation of T
cells), FTY720 might add an additional function that might
be critical for survival of embryonic grafts. However,
further studies with these agents using different dosing are
still required to establish whether this finding reflects a
true mechanistic difference.

Collectively, immune suppression with anti-LFA1 and anti-
CD48, in conjunction with low-dose FTY720, might offer
unique advantages in NHP and in humans, being free of the
thrombotic side effects of anti-CD40L, the toxicity of ATG
and rituxan, and the proven deleterious effects of rapamycin
on pancreatic graft function and insulin secretion (35,36).
Our ability to prevent rejection of E42 pig pancreas in the
mouse model for �6 months in C57BL/6 recipients and to
attain secreted pig insulin blood levels, similar to the levels
secreted from grafts that were transplanted in SCID mice, is
indeed very encouraging. Furthermore, the treatment with
anti-LFA1 and anti-CD48 monoclonal antibodies could be
stopped at 11 weeks after transplantation, and the grafts will
remain functional upon minimal maintenance with FTY720,
administered twice weekly. However, cessation of this low-
dose FTY720 maintenance led to complete rejection within 1
month, suggesting that immune tolerance had not been
attained.

In renal transplantation FTY720 was tested together
with a reduced dose of cyclosporine A (CSA) and was
found to be associated with macular edema cases and
lower creatinine clearance. Thus, when compared with a
protocol composed of MMF, in conjunction with CSA, the
latter was found to be safer, and FTY720 was not licensed
for use in this setting (37). However, in the present study
we found that the use of FTY720 as a single agent could be
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very effective if administered in conjunction with a tran-
sient treatment with costimulatory blockade agents. Thus,
our results suggest a new application as a single agent and
not together with a nephrotoxic agent such as CSA.
Indeed, the use of FTY720 as a single agent was found to
be free of renal toxicity in a recent phase 2b randomized
trial in patients with multiple sclerosis (38), and a further
phase 3 trial is currently underway. Considering that
several conventional immunosuppressive drugs including
FK506 and MMF could not replace FTY720 in our model,
the latter represents an important potential single agent
modality for the implantation of E42 pig pancreatic tissue
in humans, and, therefore, further studies in the NHP
model are warranted.

The ability of costimulatory blockade protocols to induce
durable immune tolerance in allogeneic and xenogeneic
solid-organ transplantation is highly controversial. A few
studies have claimed permanent acceptance and donor spe-
cific tolerance after short treatment with costimulatory
blockade agents (29,31,39,40), while more commonly, this
protocol was shown to induce prolonged engraftment with-
out establishment of tolerance (41–50). This discrepancy
could be attributed, in part, to strain or species differences
investigated in the different studies reported, as well as to the
different assays used to define rejection (32,51).

The novel combination of anti-LFA1, anti CD48, and
FTY720, introduced here, while short of inducing durable
acceptance of the grafts, could likely serve as a reasonable
starting point for new tolerance-induction strategies, with-
out relying on anti-CD40L. This platform is especially
attractive, considering that clinical-grade agents for neu-
tralizing LFA1 and CD48 in humans are available. Further
studies using this protocol in the NHP model for E42
pancreatic tissue transplantation is expected to lead to the
development of a safer transplantation protocol in patients
with type 1 diabetes.
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