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Cancer has been a daunting challenge for human beings because of its clonal
heterogeneity and compositional complexity. Tumors are composed of cancer cells and
a variety of non-cancer cells, which together with the extracellular matrix form the tumor
microenvironment. These cancer-related cells and components and immune mechanisms
can affect the development and progression of cancer and are associated with patient
diagnosis, treatment and prognosis. As the first choice for the study of complex biological
systems, single-cell transcriptional sequencing (scRNA-seq) has been widely used in
cancer research. ScRNA-seq has made breakthrough discoveries in tumor heterogeneity,
tumor evolution, metastasis and spread, development of chemoresistance, and the
relationship between the tumor microenvironment and the immune system. These
results will guide clinical cancer treatment and promote personalized and highly
accurate cancer treatment. In this paper, we summarize the latest research progress of
scRNA-seq and its guiding significance for clinical treatment.
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INTRODUCTION

The expression measured by traditional bulk transcriptome sequencing (Bulk RNA-seq) is the
average expression of hundreds of single cells in the sample, so it is difficult to get the heterogeneity
information of the cell population, and those cells that deviate from the average expression level may
have important biological significance. Among the many genomic technologies currently available,
scRNA-seq is the most useful and reliable method for detecting the biological mechanisms of low-
expressing cell populations in tumors (1). Transcriptome sequencing based on the expression level
of individual cells has also greatly expanded the application scope of transcriptome research.

Since the single-cell transcriptomic analysis was first reported (2), many other scRNA-seq
methods have been developed, such as MARS-seq (Massively parallel RNA single cell sequencing),
Smart-seq(Switching mechanism at 5´end of the RNA template sequencing), Cel-seq(Cell
expression by linear amplification and sequencing, MATQ-seq (multiple annealing and dC-
tailing-based quantitative single-cell RNA-seq), etc. The difference between them is mainly the
method to amplify the mRNA transcript to produce a full-length cDNA with a unique molecular
identity (UMI) at the 5´or 3´end. In order to promote automation and simplify sample preparation,
February 2021 | Volume 10 | Article 5930851

https://www.frontiersin.org/articles/10.3389/fonc.2020.593085/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593085/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.593085/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Chzhangyan@outlook.com
https://doi.org/10.3389/fonc.2020.593085
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.593085
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.593085&domain=pdf&date_stamp=2021-02-03


Liu et al. ScRNA-seq in Cancer Research
droplet-based ultra-high-throughput single-cell sequencing
technology relying on cellular bar coding has emerged since
2015. It is divided into the inDrop (3) and Drop-seq (4) systems
developed by David Weitz et al. at Harvard University and the
Chromium platform of 10x Genomics Company (5). Based on
the new Chromium system of 10x Genomics, thousands or even
tens of thousands of single-cell population analyzes can be
achieved, thus overcoming the shortcomings of conventional
scRNA-seq methods in terms of throughput or scalability, and
providing new ideas for single-cell studies (6).

General scRNA-seq workflow includes many steps (Figure 1).
All single-cell protocols start with a suspension of cells. For most
tissues, this means that beforehand, the extracellular matrix that
holds cells together has to be processed to loosen this mesh and
to induce the release of cells into suspension. In a lot of cases,
dissociation protocols are combined of both approaches by
cutting tissues into small pieces, which are then dissociated by
an enzymatic treatment. The principle of droplet-based ultra-
high-throughput single-cell sequencing technology is built on the
microfluidic control system to produce nanoscale droplets of
single cells and single microspheres. Each microsphere surface is
wrapped with a specific oligonucleotide sequence (cellular
barcode) and UMIs to mark the RNA molecules from the
same cell (7). Next, cells dissolve in the reaction system and
undergo reverse transcription to form full-length cDNA
sequences. The minute amounts of cDNA are then amplified
by PCR to construct a cDNA library and the Illumina platform
Frontiers in Oncology | www.frontiersin.org 2
are used to sequence it after qualifying (8). In a subsequent step,
we use a series of computing tools to process, analyze and
visualize these datasets in order to obtain heterogeneity
information (9).

ScRNA-seq has been applied in tumor research, such as
dividing tumors into different subtypes to explore cell
development trajectory (10), constructing a microenvironmental
blueprint for tumors (11), discovering new biomarkers and
monitoring circulating tumor cells (12), discovering rare cells
and mapping them (13), identifying the mechanism of drug
resistance and finding new therapeutic targets (14), explaining
paracrine signaling networks (15), and making a strategy to
develop combined therapy to target multiple related cells in the
tumor. ScRNA-seq has been used in a variety of cancer studies
(Table 1). In this paper, we will present the latest results from
cancer studies using 10x Genomics scRNA-seq.
TUMOR CELL HETEROGENEITY STUDY

Different types of tumors, the same tumor formed by different
individuals, and even cancer cells of the same clone are usually
heterogeneous, and this heterogeneity can change as the disease
progresses (37). ScRNA-seq allows the study of alternative
polyadenylation (APA) patterns and gene expression levels of
tumor cells in different tumors. In addition, APA and gene
expression in specific cell types are consistent, suggesting that cell
FIGURE 1 | Single cell RNA sequencing workflow.
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types can be identified based on changes in the length of 3
‘untranslated region (3’ UTR) combined with gene expression (38).

Heterogeneity Study of Subtypes of
Tumor Cells
In one study, scRNA-seq was used to identify two catheter
subtypes with abnormal and malignant gene expression
profiles, respectively, from primary PDAC tumors, and the
malignant subtype consisted of several subgroups with different
proliferation and migration potentials (31). Interestingly,
scRNA-seq indicated that there were three different groups of
mammary epithelial cells, and that multiple subclusters were
present in each major epithelial cell type (20). At the single-cell
level, researchers also found liver CSCs and demonstrated that
liver CSCs are heterogeneous in phenotype, function and
transcriptome, and that different genes in different CSC are
independently associated with the prognosis of hepatocellular
carcinoma (HCC). Different oncogenes may drive various CSC
subtypes identified by different cell surface markers, which
challenge the definition of molecular-targeted therapeutic
agents (29). It is controversial whether there are bipotent stem
cells in breast. ScRNA-Seq data from human mammary
epithelial cells revealed a highly efficient cellular state enriched
in independent mammary stem cell expression patterns.
Bipotent stem-cell-like cells are associated with the clinical
outcome of breast cancer, that is, overexpression of regulatory
genes Ybx1 and ENO1 is associated with the risk of breast cancer
(39). In addition, assessing the prognostic value of CSC based on
single-cell transcriptional data can provide evidence for
Frontiers in Oncology | www.frontiersin.org 3
intratumoral heterogeneity, tumor progression and its
clinical significance.

With the application of single-cell technology, researchers
have explored and understand transcriptional events in cells of
early embryonic development. For example, for the first time,
researchers have compared Wilms tumor cells and renal cancer
cells with normal renal cells at different developmental stages and
ages (fetus, children, adolescents and adults) by scRNA-seq.
They found that Wilms tumor cells in pediatric patients share
characteristics with specific renal cells in normal development,
thus providing evidence for the hypothesis that Wilms tumor
cells are abnormal fetal cells. In addition, in adult renal cell
carcinoma, researchers have found that renal cancer cells in adult
patients originate from a rare healthy adult renal cell PT1 (27).
This finding provides a new idea to treat renal cell carcinoma in
children by controlling the development of cancer cells rather
than killing cancer cells by chemotherapy. These results may lay
a foundation for the development of novel treatments for renal
cell carcinoma that target PT1 renal cells. Similarly, another
study showed that human cerebellar tumor transcriptome is
most similar to that in fetal life development. Single-cell
transcriptome data highlight cerebellar tumors is a disease of
early brain development and provide the most direct evidence for
the peak incidence of brain tumors in early childhood (40).

ScRNA-seq was used to construct single-cell maps of cancer
cells through analysis data from many samples. For example,
scRNA-seq was used to construct a single-cell transcriptome
network of cellular and molecular characteristics of gastric
epithelial cells with different lesions in a study of EGC (22)
TABLE 1 | Summary of the studies in human tumors using scRNAseq.

Cancer type Tumor cell types scRNAseq method Cell number References

Follicular B-cell lymphomas Cancer tissue cells 10×Genomics 34,188 (16)

Breast cancer (TNBC) CD3+ TILs 10×Genomics and Fluidigm
C1

6,311 (17)

Breast cancer (TNBC) PDX 10×Genomics 3,500 (18)

Breast cancer (TNBC) M6-Ctrl,M6-Hh cells 10×Genomics 14,950 (19)

Breast cancer Cancer epithelial cells 10×Genomics and Fluidigm
C1

24,646 (20)

Gliomas Inter (CD11b+) and Intra tumor TAMs (in silico) 10×Genomics and Fluidigm
C1

5,455 (21)

Gastric Premalignant Lesions and Early Gastric
Cancer

Cancer epithelial cells 10×Genomics 56,440 (22)

Melanoma PDX 10×Genomics 8,700 (23)

Melanoma
Merkel cell carcinoma (MCC)
Leukemia
Human kidney tumors
Hepatocellular carcinoma
(HCC)
Hepatocellular carcinoma
Hepatocellular carcinoma
Pancreatic ductal adenocarcinoma
Human glioblastomas

451Lu-Par, 451Lu-BR, A375-BR,451Lu-BR3
cells
Cancer tissue cells
CMVpp65- or PRAME-specific T cells
normal and cancerous kidney cells
circulating tumor cells (CTCs)
HuH1 and HuH7 cell lines
T cells
pancreatic cells
EGFR wild-type and EGFRvIII mutant cells

10×Genomics
10×Genomics 3’ Chromium
10×Genomics
10×Genomics
10×Genomics
10x Genomics
10×Genomics
10×Genomics
10×Genomics

6,500
11,021
5,000
72,501
7,104
3,847
5,063
57,530
16,128

(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

Non-small-cell lung cancer (NSCLC) stromal cells 10×Genomics 84,381 (33)

T-cell acute lymphoblastic leukemia (T-ALL) T-ALL cells 10×Genomics 2,074 (34)

Alveolar Rhabdomyosarcoma (ARMS)
Head and neck squamous cell carcinoma (HNSCC)

circulating tumor cells
Cancer tissue cells

10×Genomics
10×Genomics

416
5,902

(35)
(36)
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and to reveal the biological basis of cell development status of
each MB subgroup from 25 medulloblastomas (41). These
studies have built some single-cell databases and can be used
in future studies. With the help of these new system maps,
researchers can lock disease-causing genes in special types of
cells, develop new treatments for tumors and assess the chance of
tumor metastasis and the impact of treatment on the
development of cellular state (42).

Study on Genetic Heterogeneity and
Phenotypic Variation of Tumor Cells
Genotype information deduced from scRNA-seq data can help
reveal the heterogeneity of genes and their transcriptions as well
as their interaction in tumor progression. The researchers used
an integrated method for scRNA-seq to analyze the inheritance,
expression, and function of 401 specimens from TCGA and
obtained a cellular map of the cellular status and genetic diversity
of glioblastoma (13). Studies on gene expression heterogeneity
with scRNA-seq in MCF7, a common breast cancer cell line,
showed that persistent instability was quickly transformed into
cell line heterogeneity. In addition, genetic heterogeneity
produces unique gene expression patterns, resulting in
differential sensitivity of tumor cells to drugs (43).

At the same time, some studies use scRNA-seq to investigate
the origin, extent, and outcome of genetic variation, and provide
researchers with a framework to understand these variations in
order to further study of cancer. Single-cell gene expression data
of non-small cell lung cancer showed that when FBXO17 (a
negative modulator of glycogenase kinase 3b (44)) abundance
was not under control, it regulated cell proliferation and survival
by regulating Akt and ERK kinase activation, thus the potential
role of F-box protein in regulating tumorigenesis was proposed
(45). Another study performed identified knockdown of
RAD51AP1 significantly suppressed tumor volume and
prolonged survival in an intracranial EGFRvIII-positive glioma
model by analyzing scRNA-seq data from wild-type EGFR cells
and mutant EGFRvIII cells (32). ScRNA-seq data also revealed
that the known nuclear hormone receptor retinoic-acid-
receptor-related orphan receptor gamma (RORg) in pancreatic
cancer stem cells which drives T cell differentiation is up-
regulated during the progression of tumor and its
pharmacological inhibitory effect leads to significant defect in
the growth and increase in survival rate of pancreatic cancer (14).

Genotypic analysis of gene expression variation by scRNA-
seq is a useful supplement to the existing methods. Fan J
developed a new HoneyBADGER method, which is used
together with scRNA-seq to identify loss of heterogeneity and
changes in copy number at the single-cell level. By examining
data from patients with multiple myeloma (MM), the researchers
found that although major gene subclones do show distinct
transcriptional features conducive to tumor progression, other
prominent aspects independent of the transcriptional
heterogeneity of the gene sub-clonal structure may be driven
by other mechanisms, including potential variations in
epigenetic status or microenvironment (46). Meanwhile,
Fasterius E. has also developed a single-cell variant analysis
Frontiers in Oncology | www.frontiersin.org 4
method. This method can be used to compare and cluster cells
based on the genetic variation in single nucleotide variants. It
also highlights the genetic heterogeneity of the tumor core,
heterogeneity between metastases and high levels of variation
in driver genes (47). This approach represents a considerable
extension of scRNA-seq functionality, allowing researchers to
take advantage of all the data generated from their experiments.

Explore the Trajectory of Cell and
Gene Development
The effects of molecular randomness, microenvironment and cell
behavior usually lead to significant heterogeneity of cell
population, thus blurring the dynamic biological principles
that regulate cell state transitions. Single-cell high-throughput
technology provides a way to discover these states and their
transitions (48). There are many algorithms used in scRNA-seq
that can infer the trajectory of a cell. A newly released algorithm,
CellRouter (48), is very powerful in modeling the trajectory
between the early cell state and the transitional cell state
during cell differentiation. As another method of trajectory
inference, STREAM can accurately reconstruct complex
development trajectories (49). In the absence of surface
markers, researchers have also developed genotyping of
transcriptome (GoT), which has been used to study how
somatic mutations disrupt the complex process of hematopoiesis
in humans (50).

Exploring the Developmental Trajectory
of Cancer Cells
Nguyen QH and his colleagues used scRNA-seq and Monocle to
analyze the transcriptome of mammary epithelial cells in seven
patients undergoing mammoplasty, generated continuous
pedigree levels for the Pseudotemporal reconstruction of
differentiation trajectory, and linked a basic pedigree closely to
two branches of the differentiated lumen pedigree (20). It provided
evidence for determining the steady-state differentiation trajectory
of adult breast and the origin of different subsets of basic and
lumen pedigree. ScRNA-seq identified and characterized tumor
plasma cells in low burden disease environment, such as
asymptomatic precursor monoclonal gamma globulin disease
(MGUS), with high sensitivity and confidence throughout the
clinical progression from normal plasma cells in multiple
myeloma. And a study suggested using direct molecular
detection to track the pathogenesis of early multiple myeloma
(51). ScRNA-seq results will provide resources for identifying
changes during cancer progression, a basis for promoting cancer
prevention strategies, and methods for early cancer detection.

Exploring the Mutation Trajectory
of Oncogenes
Despite detailed information on cancer variants and the frequency
of clones, the order of acquisition of these mutations is unknown.
The order of mutations in the cells can be elucidated by scRNA-
seq. For example, CD34 + CD38 − pluripotent progenitor cells and
bone marrow cells were analysed by scRNA-seq. It has been
revealed that the loss of the fusion gene CDKN2A/B appears in
February 2021 | Volume 10 | Article 593085

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. ScRNA-seq in Cancer Research
the late stages of leukemia, while the mutation of NOTCH1 is a
relatively late event (34). Depending on the order in which
mutations are acquired, patients can have different
clinical manifestations and response to treatment. In addition,
scRNA-seq analysis has observed FOXP3 + malignant T cells and
GATA3 + or IKZF2 +(HELIOS)tumor cells that are transformed
from FOXP3 + T cells during cloning and evolution of Sézary, an
aggressive form of cutaneous T-cell lymphoma (52). Similarly, a
group of gastric precancerous lesions and early gastric cancer (EGC)
specific marker genes were identified by scRNA-seq, for example,
OR51E1 is a unique endocrine cell marker in the early stages of
malignant lesions, andHES6maymark the goblet cell cluster, which
may be helpful for early identification of metaplasia (22). These
genes have clinical value for predicting the early stages of cancer.
PROGRESS IN THE APPLICATION OF
SCRNA-SEQ IN TUMOR
MICROENVIRONMENT

Epithelial tissue tumors comprise complex and heterogeneous cell
types from different sources, which can be divided into two
categories: cancer cells originated from epithelial tissue and
stroma cells. Stroma cells can be divided into: Infiltrating immune
cells (IIC), cancer-related fibroblasts (CAF), and angiogenic vascular
cells (AVC) (Figure 2) (53). Besides these, Jordan A. Ramilowski
Frontiers in Oncology | www.frontiersin.org 5
demonstrated that the normal function of postnatal animals is
tightly controlled by intercellular communication and widely
depends on the interaction between secreted ligands and cell
surface receptors in tumor microenvironment (54, 55).

The infiltrating immune cells of tumor are also highly
heterogeneous (56). Although cell signal pathway analysis and
computational deconvolution analysis may indicate the main
infiltrating cells, the results are not detailed enough (57).
Methods to study the heterogeneity of tumor stroma cells also
include laser dissection/capture and flow cytometry. These
methods require prior knowledge of the specific marker genes
to be visualized, but the blocking effects of marker genes on
endothelial cells (EC), such as DLL4 and VEGF, make it difficult
to be labeled (58). However, scRNA-seq results showed the role
of VEGF and DLL4-Notch signal transduction can be detected in
determining EC phenotype of tumors (46).

Microenvironmental cell types and gene changes are
described at unprecedented resolutions by scRNA-seq for a
variety of cancers at the single cell level, such as melanoma
(59), glioma (13, 21), breast cancer (17), head and neck cancer
(36), pancreatic cancer (31), and lung cancer (33). Some
scientists have used scRNA-seq to construct an immune map
of cancer in TME, for example, Elham Azizi constructed an
immune map of breast cancer by analyzing immune cells from
eight types of breast cancer and normal tissues, blood and lymph
nodes (60), and Zheng isolated T cells from tumors, adjacent
normal tissues, and peripheral blood to depict the immune map
FIGURE 2 | Tumor microenvironment.
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of hepatocellular carcinoma (30). Study also found that Prkar1a
mutations in tumors result in dramatic changes in the genetic
program of cancer cells through scRNA-seq, thus reshaping the
microenvironment of the tumor (61).

Tumor-Infiltrating T-lymphocytes
CD4+ regulatory T cells (Tregs) expressing transcription factor
FOXP3 are highly immunosuppressive, and in malignant
tumors, they promote cancer progression by suppressing
antitumor immunity (62). Manu P. Kumar identified and
compared the ligand-receptor interactions in six homologous
mouse tumor models (B16-F10 melanoma, EMT6 breast cancer,
LL2 lewis lung cancer, CT26 colon cancer, MC-38 colon cancer
and Sa1N fibrosarcomas model) using scRNA-seq data and
further quantified ligand-receptor interactions between T cell
subsets and their relationship with immune infiltration (15).
ScRNA-seq showed that Tregs and CD8 T cells were more
abundant in primary liver tumors than in other tissues, but the
majority of these T cells were in a depleted state, thus revealing
why tumor cells escape immune surveillance (30). A class of
FOXP3 suppressor T cells has been found in exhausted CD8 + T
cell subsets, suggesting that depleted T cells may further develop
into FOXP3 T cells (30).

ScRNA-seq can find many genes associated with TIL-T. De
Simone M et al. found that several immune checkpoints and
their ligand transcripts in tumor-infiltrating Treg cells were up-
regulated in colorectal cancer or non-small cell lung cancer, and
the specific signaling molecules were expressed on cell surface,
such as interleukin-1 receptor 2 (IL1R2), programmed death
(PD)-1Ligan1, PD-1ligand2, and CCR8 chemokines (63). TIL-T
from follicular lymphoma (FL) also co-express genes with
immune checkpoint molecules, such as CEBPA and B2M genes
(16). Notably, the characteristic genes of Treg cells are highly
expressed in whole tumor samples, for example, LAYN,
MAGEH1 and CCR8 are associated with poor prognosis (63).
Gd T lymphocytes account for about 1% of human peripheral
blood monocytes and have important anticancer functions.
ScRNA-seq data can detect human gd T lymphocytes from a
large complex mixture of cells and specifically detect their T cell
receptor (TCR) subsets, including TCRvd1 and TCRvd2. In
human cancers, gd TILs mainly express TCRvd1, which is
much less in tumor than in blood and has no correlation with
the abundance of abTIL (64). These findings provide a basis for
an in-depth understanding of the molecular nature and function
of human tumor-infiltrating Treg cells.

B Lymphocytes
The number of B lymphocytes in tumor tissue is large, but the type
of B cells in tumor tissue and the presence or absence of subtypes are
unknown. A scRNA-seq study of lung cancer showed nine clusters
of B cells. Six of these are enriched in tumors: follicular B cells that
express high levels of CD20 (MS4A1), CXCR4 and HLA-DR (class
1 and 2), plasma B cells that express immunoglobulin (class 3 and
6), and mucosa-associated lymphoid tissue-derived (MALT) B cells
that express immunoglobulin A, M and JCHAIN (class 5 and 7),
demonstrating B cell heterogeneity in tumor tissue (65). In another
study, the researchers explored a potential transcriptional network
Frontiers in Oncology | www.frontiersin.org 6
of follicular B-cell lymphoma through single-cell transcriptome.
Based on gene expression, normal immune subsets andmalignant B
cells in each lymphoma were distinguished. Malignant B cells
exhibit suppression of immunoglobulin (Ig) light chain (Igk or
Igl) expression, upregulation of BCL2, FCER2, CD52 genes, and
downregulation of major histocompatibility II genes. Interestingly, a
mosaic of malignant B cell subclone coexisting in FL was found (16).
ScRNA-seq can infer the B-cell population that other analytical
methods cannot detect.

Cancer-Related Fibroblasts
In some studies, the heterogeneity of cancer-related fibroblasts
(CAFs) of various types of cancers has been demonstrated by
scRNA-seq, and different subsets affect tumor microenvironment.
For instance, Baryawno N demonstrated that one of the five
fibroblast subpopulations in bone marrow expressed Cxcl12, and
the fibroblasts expressing Cxcl12 were associated with invasive solid
tumors (10). In colorectal cancer analyzed by scRNA-seq, there are
two different CAF subtypes, CAF-A and CAF-B. Experimental
results show that only CAF-A cells express fibroblast activation
protein (FAP), a membrane-serine protease expressed only in CAF,
so targeted treatment of FAP can be carried out based on the
heterogeneity of CAF (65). Seurat divided CAFs from COLO205
tumor into six clusters and three different subpopulations, which
were fibroblast-like cells, smooth muscle-like cells, and peripheral
cells, respectively. It was found that two genes, Notch3 and Angpt2,
which may be involved in angiogenesis, were highly expressed in
peripheral cells. CAF can promote tumor angiogenesis by secreting
feedback molecules during local hypoxia, and may be resistaant to
angiogenic drugs (58).

In addition to immune cells themselves, CAF also plays a
crucial role in immune escape and cancer metastasis. Studies
have shown that upregulation of epithelial-mesenchymal
transition (EMT)-related genes is driven by changes in
expression in fibroblasts in colorectal tumors (65). In head and
neck cancer, tumors with high CAF scores and high p-EMT
scores have a particularly high tendency to metastasize, which
may reflect that paracrine signaling between CAF and malignant
cells can promote lymph node metastasis (36). In addition, it was
found that a group of genes specifically expressed in CAF and
closely associated with T cell infiltration included a variety of
complementary factors (c1s, c1r, c3a, cfb and c1nh) in a study of
melanoma. These results suggest that complement activity may
be related to the regulation and recruitment of T cell-mediated
anti-tumor immune responses, which provides clues for further
study of the cellular and molecular mechanisms by which CAF
recruits T cells (59).

Tumor Infiltrating Myeloid Cells
TIMs contain monocytes, macrophages, dendritic cells, and
neutrophils, which can diversify into a variety of states that
can promote or limit tumor growth and become key regulators.
ScRNA-seq was used to localize TIMs in patients with non-small
cell lung cancer (NSCLC) and to analyze TIM in mice. Twenty-
five TIM states were found, most of which could be found in
different patient samples (66). Moreover, changes in myeloid cell
population in tumors originated from the functional branch
February 2021 | Volume 10 | Article 593085
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point of the infiltrating circulation affect monocytes, rather than
the reprogramming of macrophages in mature tumor (67).

Zhu YP and colleagues used a scRNA-seq approach to show that
mononuclear neutrophil progenitor cells (hNeP) significantly
increase tumor growth after metastasis. In addition, hNeP is
found in the blood of patients who have recently been diagnosed
with melanoma, suggesting that hNeP can be used as a biomarker
for early cancer detection, especially for cancers in which neutrophil
levels and function are important (68). Tumor-associated
macrophages (TAM) originate from myeloid precursors (69).
TAMs, commonly known as polarized M2 macrophage
populations, are cells with immunosuppressive and tumorigenic
functions (70) and express arginase 1 (Arg1). It was found that there
are two morphological subsets, Arg1+ TAM and Arg1- TAM, and
that the pharmacological inhibitory effect of Arg1 is not synergistic
with anti-programmed cell death 1 (aPD-1) therapy (71).
Phenotypic differences in TAM of different lineages are
distinguished by the scRNA-seq of human glioma. Hematogenous
TAM is abundant in peripheral blood vessels and necrotic areas
before treatment and significantly infiltrates gliomas, and its gene
markers are related to the survival rate of gliomas and its infiltration
varies with the subtypes of glioma. TAM preferentially expresses
immunosuppressive cytokines (21). Moreover, autocrine
interactions between glioma cells were identified. In addition, IL-8
is mainly expressed by TAM, and its receptor SDC1 is highly
expressed in glioma stem cell-like cells (55).The results suggest that
immunotherapy with immunosuppressive blood-derived TAM
should be selected as a target.
RESEARCH ON CIRCULATING
TUMOR CELL

Circulating tumor cell (CTC) not only provides an important
mechanism for cancer metastasis, but also offers the possibility of
diagnosing and monitoring cancer simply (72). In addition,
repeated and quantitative analysis of nucleic acids in CTC can
help to understand changes in clonal composition over time,
enabling dynamic treatment (73). Studies have demonstrated the
advantages of single-cell transcriptional profiling in detecting
CTCs provide a new tool for the development of cancer
biomarkers using liquid biopsy technology.

Because it is not feasible to evaluate IGF2 disorders (a kind of
carcinogenic driver) by detecting tumormutations alone, scRNA-seq
of CTC is an excellent tool for detecting non-mutable drug-related
gene abnormalities, such as IGF2 overexpression (28). CTC gene
expression profiles of patients with Alveolar Rhabdomyosarcoma
(ARMS) were analyzed by scRNA-seq. Of the top 150 genes with the
greatest difference, 70 genes were expressed at a significant level in
the CTC population. These genes have previously been shown to be
associated with metastasis, but have never been detected in ARMS
(35). This may suggest novel genes for ARMS diagnosis.

ScRNA-seq of breast cancer CTCs identified them into two
types: one with estrogen responsiveness and another with EMT
characteristic (74). Another study used a scalable hydrodynamic
scRNA-seq bar coding technique called Hydro-Seq to resolve the
Frontiers in Oncology | www.frontiersin.org 7
contamination of blood cells. They identified cells that express
markers of epithelial/mesenchymal cell state transitions and
detected drug targets of breast cancer CTCs (75). In the future,
scRNA-seq is expected to help physicians select appropriate anti-
cancer drugs and treatments, and monitor the progression of the
disease and the therapeutic effect at any time, which will help
personalized treatment for patients.
RESEARCH IN CANCER THERAPY

Chemotherapy, targeted therapy and immunotherapy have
always been vital weapons in the fight against cancer. Due to
the importance of ligand-receptor interactions for patient
prognosis, such as ipilimumab, an immunosuppressive agent
targeting CD28 or CTLA4, and pembrolizumab and nivolumab
targeting PD1 or PDL1, therapeutic agents targeting
immunization checkpoints have become a promising approach
in clinical treatment (76). High-dimensional analysis can not
only help to identify the best combination of a variety of available
immunotherapy drugs, but also identify potential new reactive
biomarkers, so that cancer immunotherapy is more effective,
specific, and safe than the previous one available to us.

Cancer cells will develop resistance and cross-resistance to a
variety of chemotherapeutic drugs that have unrelated
functions and structures after exposure to chemotherapeutic
drugs (77). In fully active and symptomatic diseases, the
frequent identification of the precise molecular characteristics
and polyclonal structure of malignant state by scRNA-seq
provides a better understanding of the mechanisms of
resistance after treatment (51). ScRNA-seq studies have also
revealed a high-resolution picture of drug-resistant cells to
immune checkpoint inhibitors (ICIs), which provides a
framework for studying cell-cell interactions and drug
interactions in other tumor ecosystems.

Targeted Therapy
Resistance to targeted BRAF inhibitors is widely existed in
melanoma (78). Using scRNA-seq analysis and cluster
assessment (SAKE) to track melanoma cells that have
developed resistance to BRAF inhibitors, several BRAF
inhibitor resistance markers have been obtained, and new
resistance markers have been identified in very few cell
populations before using drug (24). Some scRNA-seq data
confirm that neural c stem cells (NCSC) are the major driving
force for drug resistance. Application of ScRNA-seq to patient-
derived melanoma minimal residual disease (MRD) of BRAF
mutant xenotransplantation identified up to four different drug-
resistant transcriptional states. One of them showed the NCSC
transcriptional program driven mainly by the nuclear receptor
RXRG. RXR antagonists reduced the accumulation of NCSC in
MRD and delayed the development of resistance (23).

ScRNA-seq reveals the rationale for improving biomarkers and
providing new treatments to patients, and suggests new therapeutic
strategies to overcome drug resistance in immunotherapy.Two
patients with metastatic Merkel cell carcinoma (MCC) treated
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with T-cell immunotherapy and immune checkpoint inhibitors
(ICIs) were also studied with scRNA-seq. It was observed that the
injected CD8 T cells infiltrated into the reduced MCC, and the
tumor regression was mediated by supporting T cells. By targeting
the selective transcription loss of human leukocyte antigen (HLA)
under T-cell pressure to limit targeting the epitopes of Merkel cell
polyomavirus (MCPyV), the difference from the genetic loss of
HLA is that drug treatment may reverse the inhibitory action of
tumor-specific HLA (25). Transcriptional inhibition of class I loci
may be the basis of resistance to other immunotherapy (including
checkpoint inhibitors). In addition, another study applied scRNA-
seq and identified a malignant cellular program related to T cell
rejection and ICI resistance prediction in melanoma. It
demonstrated that CDK4/6 inhibitors can inhibit this program
and make melanoma tumor in a mouse model sensitive to ICI (79).

Chemotherapy
Therapies that target the epidermal growth factor receptor
(EGFR) have variable and unpredictable effects in breast
cancer. Cell subsets with EGFR inhibitory response to gefitinib
were identified by scRNA-seq and EGFRhi subsets showed
enhanced stem cell-like characteristics in three negative breast
cancer (TNBC) (18). Heterogeneous expression of EGFR is
associated with the sensitivity to gefitinib, which provides a
basis for further treatment planning.

In a TNBC mouse model, scRNA-seq data revealed that the
hedgehog (Hh) signal from the fibroblast (CAF) binds to Hh
ligands from tumor cells, which promotes FGF5 expression and
collagen remodeling in the matrix, resulting in the production of
cancer stem cells (CSCs) with chemoresistant phenotype. Matrix
therapy with smoothened inhibitors (SMOi) for patient-derived
xenografts can down-regulate the expression of CSC markers
and make the tumor sensitive to Docetaxel, thereby significantly
increasing the survival rate and reducing the rate of metastasis
(19). At the same time, the hedgehog signal sent by CAF will be a
new plastic mediator for CSC and a new therapeutic target
for TNBC.

Immunotherapy
In the present study, scRNA-seq addresses the challenges of
insufficient understanding of the complexity of immune cell
subtypes and possible differences in the immune system between
species, which lays the foundation for studying the potential of
immune cell as a target of immunotherapy in the future. ScRNA-seq
shows that the effects of different immune checkpoint therapy (ICT)
on monocytes/macrophages in tumors are particularly significant,
and they are partially dependent on IFNg and change over time,
which leads to a high degree of plasticity and complexity of the cell
population (67). These insights into the transcriptional, molecular,
and functional changes that occur within the immune cells of major
tumors after cancer immunotherapy strongly support the need to
simultaneously consider both innate (e.g., macrophage) immunity
and adaptive (e.g., CD4 and CD8 T cells) immunity to improve the
efficacy of cancer immunotherapy.

ScRNA-seq can explore the effects of certain cytokines on
immune cell development and discover some important novel
immune cells that have not been revealed (80). For example,
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scRNA-seq and lineage tracing identified a population of TCF- 1
+ Ly108+ PD-1+ CD8 T cells and revealed that TCF-1 mediated T-
bet-to-Eomes transcription factor conversion in the culture of
exhausted CD8 T cell (Tex) precursors, and PD-1 was identified
as a protector of early TCF-1 subgroup (81). Congenital lymphoid
cells (ILCs) are a newly identified family of innate immune cells.
ScRNA-seq revealed that differentially expressed ikzf3 in human
ILC1 is a known target of immunomodulatory drug (IMiD)
-mediated degradation such as lenalidomide or pomalidomide,
which increases the possibility that ILC may also be a IMiD
mediated immunomodulatory target (82). Kubli SP et al. used
single-cell transcriptome analysis to confirm that FCMR (a
putative receptor for soluble IgM) that plays an important role in
regulating immune responses during autoimmunity generally acts
to limit DC maturation in the TME and then suppresses antitumor
T cell responses (83). Blockage of FCMR and synergistic treatment
with T cell-specific anti-PD1 in myeloid cells can inhibit the growth
of B16 melanoma (83).

The blocking of the reactivation of immune response by PD-
1, a marker of T-cell exhaustion, is becoming a promising cancer
treatment. The recurrence of hematological malignancies after
allogeneic stem cell transplantation (allo-SCT) limits the success
of this approach. Because PD-1 expression may differ from that
of non-transplant individuals, its blocking may lead to graft-
versus-host disease (GVHD). The kinetics of T cell exhaustion
and its relationship with leukemia recurrence were analyzed by
scRNA-seq in patients undergoing allo-SCT. Although leukemia
antigen-specific T cells do not overexpress PD-1, LAG3 and
TIM3 are over expressed during relapse (26). So we could target
LAG3 and TIM3 as a new therapy approach.
CONCLUSION

Despite the many advantages of scRNA-seq, certain limitations and
challenges of scRNA-seq cannot be avoided. In single-cell level
studies, the main problem is that the starting amount of RNA is low
and the reverse transcriptome is not easily amplified (46). Another
major problem with scRNA-seq is the increase in impurity levels in
the abundance of transcripts measured. At the same time, excessive
transcript loss rates and random transcription events will result in a
large amount of data, high variability, and complex expression
distribution undetected. Therefore, it is important to distinguish low
quality, high impurity samples with poor amplification or
degradation in the process of library preparation (24). Data on
the use of single-cell techniques to analyze the genome-wide
transcriptome of CTCs are scarce. Due to the rarity of CTC in
blood (about 0–10 CTCs in 7,000,000 nucleated cells), we need to
enrich CTC in large numbers before single-cell sequencing. ScRNA-
seq strongly implies the origin of tumors in isolated cells, but the low
coverage and dispersion of these data make it impossible to clearly
assess malignant characteristics, such as somatic mutations or
chromosomal aberrations (28).

Single-cell-range technologies offer the advantage of
measuring multiple molecules such as DNA, RNA, proteins,
and chromatin, at high resolution. By isolating different types of
molecules from a single cell simultaneously, they can be analyzed
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in parallel (11). For example, the combination of whole genome
and whole transcriptome sequencing (scGT-seq) can help
establish the relationship between genomic changes in cancer
and their effects on immune cells (84), such as studies on gastric
cancer and primary gastric tumors (85). A combination of single-
cell DNA methylation and transcriptome sequencing (scMT-
seq) found that Low-methylated regions (LMR) showed
significant difference in methylation levels, which is consistent
with their role as remote regulatory elements to control gene
expression (84). ScTrio-Seq has further developed single-cell
multi-omics technologies by combining three omics methods,
genomics, transcriptomics, and epigenomics. The spatial
information of individual cells in a tissue is usually lost during
the isolation step, so individual cell sequencing data usually do
not show how cells organize to achieve coordinated functions
within the target tissue (26). The field of single-cell spatial
transcription is under intensive investigation, and many new
technologies have been developed to maintain or restore spatial
information of sequenced single cells, such as seqFISH
(sequential fluorescence in situ hybridization of RNA) (86),
MERFISH (Multiplexed error-robust fluorescence in situ
hybridization) (87), FISSEQ (fluorescent in situ sequencing)
(88), or TIVA (Transcriptome in vivo analysis) (89). All of
these methods can identify interactions between different cell
types by examining genes expressed in vivo in the context of
specific tissue structures.

ScRNA-seq technology can produce a lot of data, some current
bioinformatics tools need to be used to analyze these data (90).
Principal component analysis (PCA) was performed to reduce the
dimensionality on the log transformed gene-barcode matrices of
top variable genes. Cells were clustered based on a graph-based
clustering approach and were visualized in 2-dimension using
t-SNE. R package SingleR, a novel computational method for
Frontiers in Oncology | www.frontiersin.org 9
unbiased cell type recognition of scRNA-seq, is used to infer the
cell of origin of each of the single cells independently and
identify cell types (91). Using Monocle algorithm can measure a
cell’s biological progression, which is called “pseudotime” (92).
Further technical improvements in bioinformatics tools will
greatly facilitate the applications of scRNA-seq.

The continuous development of single-cell transcriptome
technology and its combination with multi-domain
technologies and algorithms will bring new revolutions to next
generation genome sequencing. At the same time, its unique role
in the field of cancer will help us explain biological mechanisms
that could not be elucidated before and greatly promote the
development of precision medicine, bringing new breakthroughs
in clinical diagnosis, treatment, and prognosis of patients.
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