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Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic
programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up
mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect
species missed by bottom-up approaches. We used a novel approach of online two-dimensional
liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography
(RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID)
on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC
separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid
chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications
were assigned by matching proteoform masses to predicted theoretical masses that were verified with
tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap)
to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
Activation significantly altered PTMs following influenza infection, histone maps changed as T cells
migrated to the site of infection, and T cells responding to secondary infections had significantly more
transcription enhancing modifications. Thus, HiPTMap identified and quantified proteoforms and
determined changes in CD8 T cell histone PTMs over the course of infection.

Keywords: epigenetic; histone; posttranslational modifications; T cells; influenza; top-down;
mass spectrometry

1. Introduction

Clearance of viral infection depends upon a well-orchestrated immune response and requires
precise control of the immediate effector T cell response as well as the formation and maintenance
of the memory T cell population. Activation of naïve T cells (Tn) initiates an autonomous program
of differentiation and the acquisition of effector functions, including pro-inflammatory cytokine and
cytolytic effector molecule production [1–5]. Effector CD8 T cells (Teff) modulate their transcriptional
programs as they adapt to activation stimuli and immune resolution, which influences their
differentiation status and function. Thus, in response to dynamic environmental conditions, naïve cells
alter their signaling cascades and pathways, leading to the induction of cytokine production and
robust cytolytic activity. After the resolution of viral infection, Teff populations contract, and a small
population of pathogen-specific long-lived memory cells remain. Memory CD8 T cells (Tm) are
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imprinted during the primary infection, and their robust recall response dictates the efficiency of
the secondary immune response. Thus, virus-specific Tm are preprogrammed to respond rapidly to
subsequent infections without further differentiation [5–11]. It has long been appreciated that Tn, Tm,
and Teff have distinct phenotypes and functions. Yet, the origin of Tm remains unclear as there is
evidence for both their development early in activation as well as from fully differentiated Teff. It is
certain that epigenetics plays a role in both Tm and Teff generation. However, we are just beginning to
understand the underlying epigenetic mechanisms that control the maintenance of these subsets and
their unique responses to infection.

During T cell activation, in addition to mobilizing signal transduction cascades and transcription
factors to drive the production of proteins necessary for effector functions, enzymes that control
the epigenetic imprinting of CD8 T cells are upregulated [12]. These epigenetic imprints are
posttranslational modifications (PTMs) to histones and DNA that form heritable changes without
altering primary DNA sequences [3,13–18]. In the case of histones, this produces unique proteoforms
which are the different molecular forms created by PTMs to the protein product of each of the canonical
histone genes (H1, H2A, H2B, H3, and H4) [19]. As they differentiate, T cells change histone PTMs at
gene loci associated with effector function [3,13–17]. Thus, combinations of histone PTMs at discreet
genomic locations can indicate transcription levels and regulate cell-type-specific gene expression
patterns [20,21]. The amino-terminal histone tails protruding from the nucleosome subunits are the main
PTMs sites for acetylation, methylation, and phosphorylation that directly alter DNA accessibility or act
indirectly via binding or chaperoning other proteins [22,23]. Acetylation of lysine residues on histones
reduces their positive charge, weakening the electrostatic interaction with DNA. This “permissive”
state allows transcription factors to access genes in this region. Conversely, when histone deacetylases
remove these PTMs, the structure condenses, thereby restricting access to the region [24]. Thus,
maintenance of PTMs by these enzymes play central roles in controlling T cell development [25–27],
regulatory function maintenance [28], CD8 T cell proliferation [29], and effector functions, including the
anti-viral response of antigen-specific CD8 T cells [30,31]. In contrast to the on/off effects of acetylation,
the effects of histone methylation are context-dependent. For example, trimethylation of histone
3 or 4 at lysine 4 or 9, respectively, is transcriptionally permissive, while the location and degree
of methylation of lysines 27 and 9 on H3 within gene loci typically correlates with transcriptional
repression [21,32–41]. This context dependency comes into play when both marks are present (bivalent),
resulting in genes that are poised for expression pending the removal of the repressive modification.
Bivalent marks on H3 are thought to contribute to rapid T cell differentiation [42–44]. Mapping gene
expression patterns at loci associated with H3K4me3 and H3K27me3 from Tn, Teff, and Tm revealed
the expression of T cell lineage-defining genes correlated with phenotypic and functional differences
between virus-specific CD8 T cell subsets [3]. Following influenza infection, the transition from naïve
to effector T cell was characterized by the loss of repressive H3K27me3 at specific bivalent loci and
provided a mechanistic basis for the coordinate regulation of transcription during differentiation.

H3 trimethylations are the most widely studied histone PTMs. However, the histone octamer
contains two H2A and H2B dimers as well as a tetramer of H3 and H4 proteins. Given the emerging
role of epigenetics in CD8 T cell regulation, deciphering the histone code is of immediate importance.
Analyzing intact histones by top-down mass spectrometry (MS) is a major advantage when tackling
the histone code because combinatorial patterns of modifications on a single histone molecule can be
identified [45]. Here, we used two-dimensional liquid chromatography-MS/MS (2D LC–MS/MS) for
histone-intact protein PTMs mapping (HiPTMap) of H2A, H2B, H3, and H4 purified from CD8 T cells
following influenza infection. This approach allowed us to assess the dynamics of the PTM landscape
in naïve and activated T cells in the primary infection, map PTMs as effector T cells migrated to the
site of infection, and compare Tm with Teff from the primary and secondary responses. We identified
225 unique PTMs on histone proteoforms from the spleen, bronchial lavage fluid (BAL) and lungs,
found distinct PTM combinations based on T cell subsets and found a significant increase in enhancer
PTMs in Teff from the secondary response. HiPTMap is particularly valuable for advancing our



Viruses 2020, 12, 1409 3 of 29

understanding of T cell biology by providing relative quantification of PTMs in different cell states
with minimal histone protein. Furthermore, these results demonstrate this approach and technological
advancements in MS are poised to increase the identification of novel modification locations and
combinations that will generate a complete map of the histone code in distinct T cell populations.
Histone PTMs identified in this study may also shed light on new regulatory mechanisms and allow for
the detection of new loci relevant to T cell function and fate. The extent to which histone modifications
direct T cell differentiation and fate remain unclear. Identifying the histone code for T cells at different
locations and times following influenza infection may elucidate functional mechanisms in chromatin
regulation in CD8 T cells and provide new insights into epigenetic maintenance of T cell phenotypes.

2. Materials and Methods

2.1. Infections and T Cell Extraction

Female C57BL/6 mice (The Jackson Laboratory, Bar Harbor, ME, USA) were infected for 9 days
for primary and ≥30 days for memory or secondary challenge. Mice were intranasally infected with
influenza A virus strain A/X-31(H3N2) (X31) at EID50 = 106. For the challenge, at least 30 days prior
to X31 infection, mice received an intraperitoneal injection of A/Puerto Rico/8/1934 at EID50 = 108.
Mice were sacrificed at specific times after X31 infection (9 days for Teff1, 7 days for Teff2, and 30 days
for Tm). In each experiment, we used 8–10 mice for Teff1, 20–40 for Tm, and 5–6 mice for Teff2 per
group. Spleens were collected, and CD8 cells separated [5,10,46] using B220, MHCII, CD11b, and DX5
(NK) antibody cocktail (Miltenyi Biotec, Auburn, CA, USA). Fluorescence-activated cell sorting (FACS)
was used to isolate CD8 T cells. Activated splenic T cells were selected based on CD8hi CD44hi

CD43hi CD25hi, and naïve cells were selected based on CD8hi CD44low CD43low CD25low. T cells from
BAL were selected based on CD8+ CD44hi CD43hi+ CD25+, Lung CD8+ CD44hi CD43hi CD25mid-hi.
The use of CD25 with CD43 was recently shown to allow isolation of influenza-specific CD8 from the
BAL, lung and spleen [10]. The pellets were resuspended in ammonium bicarbonate with protease
inhibitor cocktail (Roche, Indianapolis, IN, USA). Histones were purified using a histone purification
kit (Active Motif, Carlsbad, CA, USA) for purifying core histones while preserving modification states.
Columns were poured for each group and kept constant. We followed the manufacturer’s protocol for
gravity flow separation of H2A, H2B, H3 and H4 core histones. Protein was purified from each group,
and 9 µg protein per run was used for MS analysis. For relative comparisons (e.g., naïve vs. active
or active spleen vs. BAL vs. lung), mice and samples were treated as above, except histones were
pooled for relative quantification (10 mice). Based on these and other preliminary experiments (DNS),
we estimate 2–5, 10–15, or 1–2 mice per group are required for the primary, memory, and secondary
response groups, respectively, for adequate coverage of all core histones with this method.

2.2. Mass Spectra Acquisition

We previously developed an optimized MS workflow for HiPTMap and provided a detailed MS
configuration and separation strategy [47]. Briefly, purified histones (7.5–10 µg) were separated in
the first dimension using a Jupiter C5 column (5 µm particles, 300 Å pore size, 600 mm × 200 µm i.d.)
(Phenomenex, Torrance, CA, USA). Two Model 100 DM 10,000 psi syringe pumps (ISCO, Lincoln,
NE, USA) were used to maintain constant pressure (4000 psi) during separation. A gradient was
generated by adding mobile phase B to a stirred mixer of mobile phase A (2.5 mL volume at 100%
“A” at time zero). Mobile phase A was 20% acetonitrile (CAN) aqueous solution with 5% isopropyl
alcohol (IPA) and 0.6% formic acid (FA). Mobile phase B was 45% ACN, 45% IPA, and 0.6% FA.
The appropriate split flow rate was controlled by the combination of a packed column together with
15 µm i.d. capillary, with an approximate flow of 10 µL/min. RPLC separation was directly coupled
with the mass spectrometer for comparative analyses (details provided below). Alternatively, we used
a SPECTRA100 UV detector (Thermo Separation Products, Waltham, MA, USA) to monitor protein
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elution online at 214 nm, and fractions were collected using a Cheminert column selector system (VICI,
Houston, TX, USA).

Each histone family fraction was further separated in the second dimension by weak cation
exchange hydrophilic interaction liquid chromatography (WCX-HILIC) using a 50 cm × 100 µm i.d.
column prepared with PolyCAT A (5 µm particles, 1000 Å pore size) (PloyLC, Columbia, MD, USA).
We used a 70% ACN aqueous solution with 1.0% FA for mobile phase A (2◦A) and 70% ACN and
8% FA for mobile phase B (2◦B) for the gradient in the second-dimension separation. To increase the
throughput of the second dimension, we employed a ten-port nanovolume injection valve (VICI) to
house two capillary columns, enabling separation and concurrent loading/equilibration between the
two columns. Each isolated core histone fraction was loaded onto a 150 µm i.d. × 5 cm solid-phase
extraction column with HILIC stationary phase described above. After loading each fraction in mobile
phase 2◦A, mobile phase 2◦B was added to the mixing vessel to separate the proteoforms of each core
histone for more effective MS characterization. We acquired spectra using electrospray ionization
(ESI) high-resolution MS and MS/MS acquisitions in an LTQ Orbitrap Velos (Thermo Fisher Scientific,
Waltham, MA, USA). ESI voltage was applied by connecting the end of the LC column to a capillary
emitter with a polyether ether ketone (PEEK) union while voltage was applied [47]. Acquisitions with
the Orbitrap had nominal resolving power of 60,000 (m/z = 400). FTMS MS and MSn gain control were
set at 1E6 and 3E5, respectively, with three micro scans each. Precursor ion fragments were isolated
with a 1.5 m/z window. The collision-induced dissociation (CID; normalized collision energy 35%,
30 ms) and electron transfer dissociation (ETD; reaction time 25 ms) for the same precursor ion were
alternated, and exclusion duration of 900 s and an exclusion list size of 150 were applied. MS/MS was
only performed on species with charge states greater than four.

2.3. Data Analysis

Proteoforms, as well as PTMs, were identified by searching raw data against a mouse-specific
annotated database, mouse op down database (1260319 basic sequences, 5,097,711 protein forms), using
ProSightPC 2.0 software (Thermo Scientific) using the Xtract algorithm and top-down (MS2) default
settings. The analysis was performed in single-protein search mode with dynamic modifications
used for the identification of PTMs, including acetylation, mono-, di-, and trimethylation and
phosphorylation with a mass tolerance of 10 ppm for precursor and 10 ppm for fragments using ∆m
mode (this function allows identification of proteoforms with PTMs not included in the annotated
proteoform database). The minimum signal-to-noise (S/N), minimum reliability (RL), maximum charge
and maximum mass were set to 1.0, 0.9, 40, and 25 kDa, respectively. Individual spectra were searched
in absolute mass mode if a minimum of six fragments and a minimum intact mass of 5000 Da were
observed, and the fragment mass tolerance was set at 10 ppm. Due to limitations in the ProSightPC
search tool (i.e., restricted to previously annotated PTMs), a manual analysis was performed in the
few cases ProSightPC could not identify species of import between biological comparisons. Histone
identifications were filtered by requiring the “number of best hits” to be one (globally unique ID).
The false discovery rate (FDR) was evaluated using a reversed database search with the same filtering
criteria, where FDR = 100*Nreverse/Nforward. A P score cutoff of 0.00025 was chosen with FDR < 1%.
MS Access was used as a platform to align and normalize individual histones from a 2D display for
further inference of LC–MS datasets of histone proteoforms generated from T cell subsets. Proteoforms
obtained from the search were grouped in MS Access to give the final globally unique isoforms with
normalized intensities across all the identified isoforms for quantitation. Histone PTM analysis is
a computationally challenging process we refer readers to for details and tips to analyzing these
data [47–51].
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3. Results

3.1. Naïve Versus Activated T Cell Histone Modifications

We previously used 2D LC–MS/MS) for HiPTMap of proteins purified from HeLa cells and
demonstrated the high sensitivity and comprehensive characterization of histone PTMs [47]. Here,
using our established methods [3,5,52], female C57BL/6 mice were intranasally infected with influenza
strain X31, spleens harvested nine days later, and T cells isolated by FACS (Figure 1a). Histones were
purified from T cell lysates and subjected to LC-MSanalysis. We used high-resolution reversed-phase
liquid chromatography with tandem mass spectrometry (RPLC–MS/MS) on an Orbitrap Velos with
alternating CID and ETD. We applied this MS method for HiPTMap of modifications that formed
in vivo following intranasal infection with influenza virus. Both MS and MS/MS datasets were
acquired with high-resolution and mass accuracy (intact protein below 1 Da and fragment ions below
10 ppm). All core histones were loaded onto the columnand separated into individual families H4,
H2B, H2A, and H3 that eluted in increasing order of molecular weight, which roughly correlates with
increasing hydrophobicity (i.e., 11,352.5, 13,757.1, 14,019.9, and 15,350.8 Da, respectively) (Figure 1a–c).
Proteoforms within each histone core family eluted together, except for H3. With reversed-phase
separation, elution time is primarilyinfluenced by hydrophobicity. Thus, H3 eluted in two distinct
peaks; the second peak contained H3 species with up to three additional methylations that increase
their hydrophobicity (Figure 1a–c). This clear separation of histone core family members allows for
facile separation, fragmentation, and downstream HiPTMap.

The high degree of similarity between various histone proteoform masses and the considerable
difference in the amounts of each core histone (Figure 1b,c)necessitated a combination of high-resolution
protein separation and high-performance MS analysis for the identification of individual histone
proteoforms. Raw data were searched against mouse-specific annotated data to map top-down
fragmentation spectral data to associated sequences for the identification of PTMs, including acetylation,
mono-, di-, and trimethylation and phosphorylation. Supplemental File S1 lists the identified
proteoforms, exact masses, and significance for identifications from the naïve and activated T cells
(tabs A and B, respectively). We identified 166 unique histone proteoforms from naïve and activated
CD8 T cells isolated from the spleens of mice infected with influenza for 9 days (Table 1). We validated
the identity of these proteoforms using online nanoflow WCX-HILIC LC–MS/MS (data not shown).
WCX-HILIC MS/MS uses specialized separation for the characterization of complex mixtures of
hypermodified combinatorial proteins. However, WCX-HILIC only marginally increased the number
of identified proteoforms in the naïve T cells, likely due to limited amount of material available for
analysis. To reduce sample requirements, we continued with the RPLC–MS/MS-CID/ETD approach for
HiPTMap and comparative analyses.
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Figure 1. Representative mass spectral data of core histones from CD8 T cells. (a) Female C57BL/6 mice
were used with 2–5, 10–15, or 1–2 mice per primary, memory, and secondary infection, respectively.
Mice were intranasally infected with influenza A virus strain A/X-31(H3N2) (X31) at EID50 of 106

and sacrificed on day 9 for the primary response or after 30 days for the memory response. For the
secondary response, mice received intraperitoneal injections of PR8 at EID50 of 108 and, after 30 days,
were challenged with X31 as described above. These mice were sacrificed 7 days after the heterologous
challenge. In the primary infection, bronchial lavage fluid (BAL) was taken from mice, lungs were
profused then harvested, and spleens were harvested. Prior to sorting, crude cell preparations from
mice were grouped, and contaminated immune cells were reduced by negative depletion. Enriched
CD8 T cells were stained for surface markers and sorted by FACS. Naïve cells were selected based on
CD8hi CD44low CD43low CD25low from the spleen in the primary. Activated T cells from the spleen
were selected based on CD8hi CD44hi CD43hi CD25hi from the primary and secondary responses.
Enriched Tm from the spleen were selected based on CD8hi CD44+ CD43+. T cells from BAL were
selected based on CD8+ CD44hi CD43hi+ CD25+ and CD8+ CD44hi CD43hi CD25mid-hi from the
lung. Histones were purified from T cell populations using a histone purification kit (Active Motif,
Carlsbad, CA, USA) for purifying core histones while preserving modification states. Each population
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had a dedicated column, and we followed the manufacturer’s protocol for gravity flow separation of
H2A, H2B, H3 and H4 core histones. 9 µg of histone protein was used from each experimental replicate
for MS analysis. For relative comparisons (e.g., naïve vs. active or active spleen vs. BAL vs. lung), mice
and samples were treated as above except histones were pooled for relative quantification (10 mice
each); (b) Histones were purified and subjected to RPLC–MS/MS analysis on an Orbitrap Velos mass
spectrometer. Mass spectra were acquired with high-resolution to ensure isotopic resolution for all
detected protein species. Representative data are provided for the total ion chromatograms of histones
from HeLa cell standards (b), naïve CD8+ T cells (c) and activated CD8 T cells (d); (e,f) Two-dimensional
displays depicting resolved intact protein masses of H2A from two independent experiments; species
were detected using reversed-phase separation for activated T cells.

Table 1. Number of unique modified sequences identified from naïve and activated CD8 T cells.

H1F H2A H2B H3 H4 Total

Naive Identified 30 18 18 25 91
Fragments 832 443 291 598 2164

Unique 9 6 16 19 50
Active Identified 1 39 12 10 13 75

Fragments 21 635 356 139 279 1430
Unique 1 10 5 9 12 36

The number of proteoforms identified, the sum of their corresponding fragments ions detected, and the total number
of unique modification combinations.

Histones from naïve T cells had more total unique modified species detected and identified than
those from activated T cells (Table 1). H2A was the only core histone with more unique modified
sequences from activated T cells, and six out of nine contained K5ac. This enhancer mark was
predominantly associated with the activated T cells (Table S1). K5ac was distributed more frequently
among PTM combinations after activation and with increased frequency. This trend remained true
when K5ac was accompanied by serine 1 acetylation and/or threonine 120 phosphorylation (i.e., five
found in activated T cells, one in naïve) (Table S1). R3Me2 and R4me2 were reduced or not detected
after activation, but their function is currently unclear. Core histones from H2B, H3, and H4 had
more unique modified species detected in histones purified from naïve T cells (Table 1). Lysine 108
acetylation was specific to H2B from naïve T cells (Table S1). The peak intensity of H3 was lower than
that of other core histones (Figure 2), resulting in low overall intensities for H3 proteoforms from both
naïve and activated T cells. However, H3 and H4 were generally more heavily modified, and these
modifications were often associated with each other (Figure 2c,d and Table S1). For example, lysine 9
through 36 on H3 were often acetylated and/or methylated in groups as were those on H4, whereas
serine 1 acetylation was often accompanied by acetylation at positions 12 and 16 and methylation at
position 20 (Figure 2d and Table S1). In general, H4 had a relatively high level of triple and quadruple
modifications that were distributed on a few amino acids (Figure 2d and Table S1) and was high in
abundance for both T cell subsets (Table S2). One modification on H4 that was detected on twice as
many unique sequences in the naïve subset was serine 1 acetylation (Table S1), and these proteoforms
had higher relative intensities when compared to activated T cells (Table S2). In fact, several of the H4
S1ac proteoforms were not detected in activated T cells (e.g., S1acK12acK16ac, S1acK12acK16acK20me3,
S1acK16ac, S1acK16acK20me, S1acR3me2K20me3, and S1acR3meK20me2). S1ac and R3me appear to
be mutually exclusive, and the latter was more evenly distributed across the T cell states (Figure 2d).
This is similar to H3, where arginine methylation restricts phosphorylation of S1. Given that the
proteoforms containing S1ac account for 38% of total histone proteoforms in the naïve T cells and only
13% in activated T cells, this mark may be of importance prior to activation (Table S2). These findings
indicate individual and combinations of PTMs are distinct in naïve versus activated T cells from
primary influenza infection.
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Figure 2. Histone-intact protein PTM mapping (HiPTMap) of naïve and activated CD8 T cells.
(a–d) Histones purified from naïve (CD8hi CD44low CD43low CD25low) or activated T cells (CD8hi

CD44hi CD43hi CD25hi) purified by FACS of splenocytes from mice 9 days after intranasal infection
with influenza and subjected to RPLC–MS/MS using Orbitrap Velos with alternative collision-induced
dissociation (CID)/alternating electron transfer dissociation (ETD). Raw datasets were searched against
the mouse top-down database. PTMs including acetylation, mono-, di-, and tri-methylation and
phosphorylation were detected; (e) the individual modifications from each proteoform were combined to
yield the sum of each PTM per core histone. A Wilcoxon matched-pairs signed-rank test was performed
(** p < 0.0001) with pairing evaluated by Spearman correlation (** p < 0.0001). Inset: the number
of enhancer PTMs (H4-K8ac, H3-K36me2, H3-K9ac, H2B-K12ac, H4-K5ac, H3-K36me3, H4-K12ac,
H4-R3me2, H3-K36ac, H3-K27ac, H2A-S1p, H4-K16ac, H3-K23ac, H3-K18ac, and H2A-K5ac) were
compared for the activated and naïve with paired t-test (p = 0.0046).
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To better compare histone proteoforms from naïve and activated T cells, we normalized one
representative dataset with the total histone proteoform intensities within the naïve and activated T cells
(Table S2). H2A accounted for the largest percentage of histone cores in activated T cells. We found
acetylation of serine 1 on H2A (S1ac) was increased in relative intensity (i.e., 23.4% versus 6.5%) and
in the number of unique sequences identified in activated versus naïve T cells (Tables S1 and S2).
The relative abundance of proteoforms with phosphorylated serine 1 was also higher in activated
versus naïve T cells (i.e., 21.3% versus 7.0%) (Table S2). Overall, H2B showed very few differences
in counts or relative abundance for naïve and activated T cell subsets (Tables S1 and S2). However,
both the fragment numbers and peak intensity of P1ac were higher for H2B from activated T cells
(Figure 2b and Table S1). Interestingly, we identified four times more H2BS14p fragment ions from
activated T cells than from naïve (i.e., 24 to 6). The relative abundance of H3 was the same irrespective
of activation (Table S2). H4 was the dominant species in the naïve T cells. Acetylation of serine 1
accounted for 38.1% of the proteoforms detected in naïve and only 13.6% in activated T cells. Indeed,
when we compared acetylation of the first twenty amino acids on H4, it encompassed 50.7% of all
species from naïve T cells versus 20.5% from activated T cells. Apart from these exceptions, the majority
of modified species we identified were present in histones from naïve and activated T cells to a similar
extent (Tables S1 and S2).

To determine if individual modifications changed following activation, compared the total
number of times each PTM was identified on the proteoforms of each core histone family member
(Figure 2e). The distribution and median of PTMs per core histones from naïve and activated T cells
were significantly different (Figure 2e). Six modifications were detected in naïve but not in activated
T cells: H2BK108ac H3T3p, H3K4ac, H3R8me2, H3K9ac, and H4K8ac (Figure 2b,c and Table S1).
Of these, H3K9ac and H4K8ac are associated with active gene expression, while H3R8me2 is associated
with repression [53–56]. H3 lysine 27 was also acetylated; this activation signal was detected twice as
many times for naïve T cells than for activated (i.e., 108 versus 51 fragments corresponding to 6 versus 3
unique proteoforms). Overall, we detected significantly more known enhancers of gene expression for
naïve T cells (Figure 2e inset). There was not a significant difference in total repressive marks between
naïve and activated T cells (DNS). However, we found a reduction in H3K27me2 and H3K27me3
repressive marks in activated T cells (i.e., 102 versus 68 fragments) (Figure 2e). This was consistent
with previous findings [3], and this trend also occurred for dimethylations and monomethylation of
lysine 27 (Table S1 and File S1A,B). Given H3K27me3 is associated with repression of transcription of
genes in loci related to effector function, these data are consistent with the decommissioning of these
repressive marks following T cell activation.

3.2. Differences in Effector T Cell Histone Modification from the Spleen, Lung, and Bronchial Lavage

Influenza infection activates CD8 T cells to expand and differentiate into Teff that migrate to the
respiratory tract and contribute to viral clearance [4]. We sought to determine if the relative abundance
of histone modifications changed as Teff migrated to the site of infection. We compared Teff from the
spleen, lung, and BAL removed from the same mice nine days following influenza infection. Identical
proteoforms were grouped, and intensities normalized across species for relative quantification.
The observed masses, number of fragments per proteoform, PTMs per proteoform, associated p values
and normalized intensities values are provided in Supplemental File S2. We found acetylation of
alanine one on H1F was similar in Teff from the lung and spleen (Figure 3A). In contrast, we found
ten modified forms of H2A (Figure 3B). Acetylated serine one (S1ac) had the most modified product
fragments ions detected in the MS2 and the highest relative intensity. Interestingly, S1ac appeared to
trend lower in both number and intensity as Teff migrated to the infection site (Figure 3B). The same
held true for H2A S1 phosphorylation (H2AS1p), which was previously associated with repression in
embryonic development [57,58] and chromatin relaxation to enhance transcription ribosome biogenesis
and control of cell growth [59,60]. H2AS1p was accompanied by nearby R3me2 and K5ac, which were
higher in the spleen than in the lung, and not detected in BAL (Figure 3B). It is notable that R3me2
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occurred in combination with H2A S1p, not S1ac, as acetylation at neighboring lysine residues is
known to block methylation of arginine eight on H3. It is also remarkable that proteoforms with single
R3me2 modifications were highly abundant in BAL, given proteoforms with R3me2 and S1p were
only detected in Teff from the spleen. H2AK5ac was highly abundantin the lung, both as a single
modification and accompanying S1ac (Figure 3B). This combination is intriguing because S1ac blocks
phosphorylation at this site, which is a repressive mark, and K5ac is associated with transcriptional
activation [61–64]. These acetylation events were accompanied by T120p, which is associated with
increased gene expression and genomic stability in replicating cells [65,66]. By contrast, H2B had fewer
PTMs, and the majority of species detected were unmodified, irrespective of Teff location (Figure 3C).
H2B phosphorylation at serine 14 (S14p) is considered an epigenetic marker of apoptotic cells that
works in opposition to the adjacent K15ac present in non-dying cells [67]. We detected some S14p in the
spleen and lung (Figure 3E). Lysine 23 acetylation was the only modification we detected on H2B in Teff

from BAL, while lysine 108 acetylation was detected only in Teff from the lungs. Lysine 108 acetylation
has been widely reported in other tissues and systems, but its function remains unknown [68–71].

In contrast, H3 was heavily modified, many were bivalent, and these proteoforms were most
abundant in Teff from the spleen and BAL (Figure 3D). Of all the core histones, H3 exhibited a stark
pattern of PTMs changes based on Teff location (Figure 3D). Again, due to the higher complexity
of H3, the normalized intensity of these proteoforms was relatively low. However, we identified
many proteoforms that corresponded to numerous fragment ions. We did not detect H3K4me3, but
this site was monomethylated and was detected only in Teff from the BAL (Figure 3D). Active gene
loci are characterized by a combination of all three methylated forms of H3K4 and H3K4me, and
H3K4me2 are found at both transcriptionally active promoters and distal regulatory elements and
are considered activating signals [72–75]. Both H3K4me3 and H3K27me3 play an essential role in
the polarization and activation of immune cells, including CD8 T cells [76–81]. We found repressive
K27me3 on nine different H3 proteoforms combined with many other PTMs (Figure 3D). In addition,
repressive K9me3 was present in 12 out of the 23 proteoforms we confidently identified. Interestingly,
we identified several H3 proteoforms with K9 methylations and K27 di- and trimethylations that were
exclusively identified in Teff from BAL, especially when PTMs were absent in the intervening region
(Figure 3D). This combination is also known for controlling the lineage commitment of both CD4 and
CD8 T cells [82,83]. H3K18ac is associated with increased transcription in T cell activation [81,84].
H3K18ac was almost exclusively detected in Teff from the spleen with hyper-acetylation of neighboring
lysines (Figure 4). Thus, while H3 wass of lower abundance, we found several modifications alone or
in combination that are associated with T cell activation and lineage commitment. Given this included
a large number of PTMs surrounding the well-studied H3K4me3 and H3K27me3 regulatory marks
and the apparent enrichment of these species in different locations, exploring how these combinatorial
patterns impact gene expression may be worthwhile.
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Figure 3. Distribution of modified species identified in histones purified from activated CD8 T cells
isolated from BAL, lung, and spleen after influenza infection. Activated T cells were isolated from
BAL, lung, and spleen 9 days after influenza infection using FACS (CD8hi CD44hi CD43hi CD25hi).
Histones were purified from each sample, subjected to activated T cells purified by FACS of splenocytes
from mice 9 days after intranasal infection with influenza, and subjected to reversed-phase liquid
chromatography (RPLC)–MS/MS-CID/ETD. Fragment ions identified per modified species (•) are
indicated in score charts for H1F (A), H2A (B), H2B (C), H3 (D), and H4 (E).
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Figure 4. HiPTMapping of primary, memory, and secondary CD8 T cells. (a,b) Histones were purified 

from T cells and subjected to RPLC–MS/MS using Orbitrap Velos with alternative CID/ETD. Raw 

datasets were searched against the mouse top-down database. PTMs including acetylation; mono-, di-, 

and trimethylation; and phosphorylation were detected. The occurrence of each modification per 

proteoform was combined to yield the sum of each specific PTMs per core histone. (a) ANOVA (p < 

0.0001) was performed followed by Tukey’s multiple comparisons test: Teff1, vs. Tm (p = 0.17), Tm vs. 

Teff2 (p < 0.0001), and Teff vs. Teff2(p < 0.0001); (b) PTMs were separated into known activation marks 

(H2A-S1p, H2A-K5ac, H3-K36me2, H3-K9ac, H3-K27ac, H2B-K12ac, H3-K18ac, H3-K23ac, H3-K36ac, 
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Figure 4. HiPTMapping of primary, memory, and secondary CD8 T cells. (a,b) Histones were
purified from T cells and subjected to RPLC–MS/MS using Orbitrap Velos with alternative CID/ETD.
Raw datasets were searched against the mouse top-down database. PTMs including acetylation; mono-,
di-, and trimethylation; and phosphorylation were detected. The occurrence of each modification
per proteoform was combined to yield the sum of each specific PTMs per core histone. (a) ANOVA
(** p < 0.0001) was performed followed by Tukey’s multiple comparisons test: Teff1, vs. Tm (p = 0.17),
Tm vs. Teff2 (p < 0.0001), and Teff vs. Teff2(p < 0.0001); (b) PTMs were separated into known
activation marks (H2A-S1p, H2A-K5ac, H3-K36me2, H3-K9ac, H3-K27ac, H2B-K12ac, H3-K18ac,
H3-K23ac, H3-K36ac, H3-K36me3, H4-K5ac, H4-K8ac, H4-K12ac, H4-K8ac, H4-R3me2, and H4-K16ac)
and repressive marks (H3-R8me2, H3-K9me2, H3-K9me3, H3-K27me3, H4-K20me2, H4-K20me3,
H4-K20me). Statistical comparison was with ANOVA (p = 0.007) followed by Tukey’s multiple
comparisons test (p < 0.005).
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Similar to H3, the tail region of H4 had multiple PTMs combinations, and most were bivalent
(Figure 3E). The majority of these proteoforms were detected at a similar frequency and relative
intensity in Teff from the BAL, lung, and spleen. The only exception was S1p, accompanied by K20me3,
which was found exclusively in Teff from the BAL, was highly abundant (9%) and had several matched
fragments (Figure 3E). Like acetylation, phosphorylation of histone tails alters their charge and changes
electrostatic interactions to relax chromatin. H4S1p has been implicated in the regulation of gene
expression and control of cell phenotypes as well as decreasing histone acetyltransferase activity [85,86].
We also detected several H4 proteoforms with S1 acetylation. Both S1p and S1ac were associated
with T cells from the BAL. We also identified several H4 proteoforms with R3me2; R3me2 is associate
with the loss of S1p. Interestingly almost all H4 proteoforms had either S1 modification or R3me2,
and these modifications were never present on the same proteoform (Figure 3E). This may indicate,
in addition to phosphorylation, R3me2 can also block acetylation at serine one. However, R3me2 was
detected in combination with several other modifications, including K12ac and K16ac and K20me2
and K20me3 (Figure 3E). These H4 lysine modifications alter binding affinity and may play a role in
enhancing or inhibiting regional regulatory complexes [87]. We also identified two other modifications,
K5ac and K12ac, that are associated with transcriptional activation [61–63]. Taken together, these data
indicate a previously unappreciated role for histone modification dynamics in Teff during migration to
infection sites.

3.3. Histone Modifications in Memory and Effector T Cells Following Influenza Infection

There are fundamental differences in the response of naïve versus educated T cells to infection. In
response to primary infection, T cell expansion peaks around day 9 or 10 days. This is followed by
contraction, leaving 5–10% of antigen-specific CD8 T cells to form the remaining pool of memory cells.
In a subsequent secondary infection, these cells expand more robustly and mediate viral clearance
faster. We compared the histones from Teff on day 9 of the primary response to X31 (Teff1) to early
central Tm on day 30 and to activated T cells collected 7 days following a heterologous challenge
(Teff2). All mice were intranasally infected with influenza strain X31. However, for the secondary
response, mice were primed with PR8 influenza strain at least 30 days prior to infection with X31
(Figure 1). We used the heterologous PR8/X31 prime challenge model because in mice, a homologous
challenge results in sterilizing immunity without appreciable T cell expansion. The X31 and PR8 strains
express different surface HA and NA proteins, so this prime challenge model avoids cross-reactive
neutralizing antibodies. There is some naïve response to the heterologous HA and NA, but these
Teff1 lag behind Teff2 [88]. This is due to the conservation of the five dominant influenza epitopes in
the internal genes of X31 and PR8. Thus, the Tm are already primed with PR8, and their expansion
dominates the secondary response. Supplementary File S1 tabs B, C, and D contains the complete list
of observed species, their masses, and p-values for Teff1, Tm, and Teff2, respectively. We compared the
occurrence of individual PTMs per condition (Figure 4). Histones from Teff2 had significantly more
modifications than histones from Teff1 or Tm (Figure 4a). Interestingly, the transcriptional activation
mark H2AK5ac [62,63] was similar for all subsets (Figure 4a and Table 2). Dimethylation of arginine
4 and acetylation of lysine 13 are known to target this area for biotinylation, which is involved in
cell proliferation [89,90]. H2A R4me2 and K13ac were detected only in Teff2 (Figure 4a and Table 2).
Apart from R4me2 and K13sc, PTMs on H2A appear in all three T cell subsets (Figure 4a).
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Table 2. H2A modifications from Teff1, Tm, and Teff2 after influenza infection.

H2A Teff1 Tm Teff2

Intact ID Frag (#) Intact ID Frag (#) Intact ID Frag (#)

S1ac 15 377 21 304 26 749
S1p 2 31 2 26 4 75

R3me2 1 10 1 1 3 13
R4me2 1 20
K5ac 6 6 6 6 5 5

S1acK5ac 4 53 2 59 5 95
S1acR3me2K5ac 2 21
S1acK5acT120p 1 11

S1acT120p 4 54 1 1 5 98
S1pK5ac 2 18

S1pR3me2 1 10 1 9 3 74
K13ac 1 12
None 2 65 5 155 8 158

Intact ID: the number of intact proteoforms identified containing listed modification(s). Frag #: the number of
fragment ions detected for the proteoforms.

When we compared modifications to H2B, we found Teff2 showed a high distribution of almost
all proteoforms identified (Table 3 and Figure 4a). We identified P1ac on the H2B proteoforms in the
Teff1. When accompanied by a string of acetylations in this region, P1ac was detected in the Teff2

(Table 3). In contrast, acetylations at residues 16, 17, 18, 22, and 24 were detected in all three T cell
subsets. Acetylations at lysine 7, 12, 13, and 14 were largely associated with Teff2, and Y42p on H2B
were detected only in Teff2 (Figure 4a). Phosphorylation of serine 14 (S14p) on H2B is correlated with
somatic hypermutation in vivo and class switch recombination [91]. We found H2BS14p was consistent
across all three subsets (Figure 4a and Table 3). In contrast, K20ac was detected in Tm and Teff2 subsets
(Table 3). This modification was previously detected on H2B [92] and was recently implicated as
the site-specific homing and docking point for macroH2A1, which is required for the transcriptional
activation of a myriad of cytokines, chemokines, metalloproteases [93]. Acetylation at lysine 108 or 109
in the tail region was also restricted to Tm and Teff2 (Figure 4a).

Table 3. H2B modifications from Teff1, TM, and Teff2 after influenza infection.

H2B Teff1 TM Teff2

Modifications Intact ID Frag (#) Intact ID Frag (#) Intact ID Frag (#)

P1ac 1 17
P1acK6acK12acK13acK16acK17acK21acK24acK109ac 1 15
M’acK5acK11acK12acS14pK15acK16acK20acK23acY42p 2 59

M1′acK6acK12acK13acK16acK17acK21ac 1 23
M’acK6acK12acK13acK16acK17acK21acK24ac 1 18 1 24 2 56
M’acK11acK12acS14pK15acK16acK20acK23ac 1 28

M’acK11acK12acS14pK15acK16acK20acK23acK108ac 1 15 1 16
S14p 1 24 2 35 5 135

K20acK23ac 3 31 8 310
K23ac 1 21 7 259

K108ac 2 83
None 8 267 10 286 22 804

Intact ID: the number of intact proteoforms identified containing listed modification(s). Frag #: the number of
fragment ions detected from the proteoforms. M’ N-terminal initiator methionine.

We identified very few H3 proteoforms in Tm (Table 4 and File S1C). However, all H3 proteoforms
identified in Tm were bivalent. We found methylation of lysine 9 and 27 on H3, and these repressive
modifications were colocalized in three proteoforms from Teff1 versus twelve in Teff2. In general,
these repressors were found in combination with activation marks. H3K27ac and H3K36ac are
enhancer signals [94] that were also highly abundant in Teff2 (Figure 4a). However, lysine 36 can be
methylated, which is a repressive signal [95]. H3K36 methylation was also highly abundant in Teff2
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(Figure 4a). The most striking differences in individual PTMs on H3 were observed in regions 9 to
37, where these PTMs occurred in a variety of combinations (Figure 4a and Table 4). These unique
proteoforms included several known enhancer and repressor signals (K4ac, K9me, K18ac, K23ac,
K36ac, and K37me, [61,63,96–101] and R8me, K9me, and K27me [102–106], respectively). In some
cases, H3 proteoforms differed by modifications with opposing functions on a single amino acid.
For example, K9, as well as K36, can be acetylated or methylated to induce activation or repression of
gene expression at nearby loci [107,108]. We also found evidence of bivalent “super-enhancers” with
multiple activation signals on neighboring residues as well as a repressor signal in the flanking regions
along with traditional bivalent marks. The abundance of H3 species with activation and repression
marks indicates these histones may be poised to respond to external condition changes in these states.
Indeed, all of the proteoforms from Tm were bivalent. In contrast, all of the H3 proteoforms with
exclusively enhancer or repressor marks were detected in Teff, with a higher number in Teff2 (Table 4).
Furthermore, the diversity and abundance of PTMs on H3 proteoforms in the secondary response
support the notion that PTMs accumulate in terminally differentiated T cells.

H4 had fewer unique combinations of modifications than H3, but most H4 proteoforms were
detected in Tm (Table 5). Serine 1 was acetylated in all T cell subsets but occurred in 80% of H4
proteoforms identified in Tm and in 43% and 32% of PTMs combinations from Teff1 and Teff2,
respectively. S1 was also phosphorylated, but this modification was unique to Teff2 (Figure 4a
and Table 5). This phosphorylation event is permissive and associated with proliferation [57].
S1p was accompanied by arginine 3 methylation (R3me), which is also an enhancer of gene
expression [99,109,110]. R3me was present in both primary and secondary responses on multiple
H4 proteoforms in combination with other activators and the repressive mark K20me [96,111–113].
H4 K5ac and K8ac are activation marks [61–63,114,115] that were associated with Teff in both the
primary and secondary responses (Table 5). Nearby, lysine 12 and 16 were also acetylated, and these are
transcriptional activation signals [61–63,114,116]. H4 K12ac and K12ac were present in all subsets but
were much lower in Teff1 (Figure 4a). Acetylation of lysine 9, another activation mark [53,54], was only
detected in Teff2 (Figure 4a). Similar to H2, these activating acetylations were grouped closely together.
Interestingly, K16ac was often accompanied by K20 di and trimethylation. These repressive marks were
on approximately 50% of H4 proteoforms from Teff2 versus 75% and 88% of the H4 PTMs combinations
from Teff1 and Tm subsets, respectively. Similar to H3, we found an abundance of H4 bivalent
proteoforms that combined activating marks with the repressive K20me2 and K20me3. This was the
only known repressor we identified on H4. However, it should be noted that mono-methylation of K20
can enhance or repress gene expression [96,111–113]. Thus, we found a myriad of histone proteoforms
with unique combinations; some were shared among T cell subsets while others were unique or
enriched in specific subsets. When we compared only the canonical enhancer and repressor PTMs,
we found Teff2 had significantly more PTMs associated with activation than Teff1 or Tm (Figure 4b).
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Table 4. H3 modifications from Teff1, TM, and Teff2 after influenza infection.

H3 Teff1 TM Teff2

Modifications Intact ID Frag (#) Intact ID Frag (#) Intact ID Frag (#)

T3pK9me3K27me3K36me 1 11
R8me2K9meK18acK23acK27acK36ac 1 10

K9me2K18me 1 29
K9meK18meK23meK27me 1 32

K9meK18meK23meK27meK36me 1 10 2 58
K9me2K18meK27me 1 27

K9meK18meK27me2K36me 4 124
K9me2K18meK36me3 1 22

K9me2K18meK23acK27acK36ac 2 29 1 28
K9meK18meK27meK36ac 2 61

K9meK18acK23acK27acK36ac 1 8 2 26
K9me2K18acK23acK27me3K36me3 1 13 1 9 1 25

K9me2K18acK36ac 1 24
K9me2K23meK27me 2 58

K9meK23meK27meK36me 1 13 4 98
K9me2K23meK36me3 1 26

K9me2K23meK27meK36ac 1 31
K9me2K23acK27acK36ac 1 24

K9me2K23acK27me3K36me3 2 47
K9me3K23acK27acK36me3 1 24

K9me2K27me 6 168
K9meK27meK36me 1 18 1 7 17 501

K9me2K27ac 2 53
K9me2K27acK36me 2 47
K9me2K27acK36ac 1 29

K9me2K27me2K36ac 3 76
K9me2K36ac 3 77
K9me2K36me 4 110

K18meK23meK27me3K36me3 1 13 1 26
K18acK23meK27me3K36me 2 49

K18acK23acK27acK36ac 1 14 1 23
K18acK23meK27acK36ac 2 56
K18acK23acK27meK36ac 1 26
K18acK23acK27meK36me 4 109

K18acK23meK27me2K36ac 1 22
K18acK23meK27me3 1 32

K18meK27me3K36me3 1 16
K18acK27acK36ac 2 52
K18acK27acK36me 4 100
K18acK27meK36me 1 20 2 61
K18acK27meK36ac 2 48

K23meK27me3 3 72
K23meK27me3K36me 7 185
K23meK27meK36ac 2 60

K23acK27me 1 31
K23acK27me3K36ac 1 22
K23acK27meK36me 4 107

K27acK36ac 5 137
K27acK36me 4 119

K27me2 1 30
K27meK36me 1 11 10 268
K27meK36ac 3 89

Intact ID: the number of intact proteoforms identified containing listed modification(s). Frag #: the number of
fragment ions detected for the proteoforms. Underline indicates methylations were combined.
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Table 5. H4 modifications from Teff1, TM, and Teff2 after influenza infection.

H4 Teff1 TM Teff2

Modifications Intact ID Frag (#) Intact ID Frag (#) Intact ID Frag (#)

S1ac 1 17 1 15
S1pR3me 1 6

S1pR3meK20me3 2 23
S1acR3meK20me2 1 14

S1acK5acK8acK12acK16ac 2 22
S1acK5acK8acK12acK16ac 1 19

S1acK5acK8acK12acK16acK20me2 1 13
S1acK5acK8acK16acK20me 1 23
S1acK5acK12acK16acK20me 1 27

S1acK8acK12acK16ac 2 43
S1acK8acK12acK16acK20me 1 56 3 48

S1acK8acK16acK20me 5 135
S1acK12acK16ac 3 69

S1acK12acK16acK20me 1 13 2 78 7 202
S1acK16ac 1 12 4 79

S1acK16acK20me 2 29 5 191 10 301
S1acK16acK20me3S47p 1 9

S1acK20me 4 115 6 241 9 266
S1acK20me3Y88p 1 19

R3me2K12acK20me3 1 25
R3me2K16acK20me 1 21 1 10

R3meK20me 2 47 1 23 2 25
K5acK20me3 1 12

K16ac 1 13
K16acK20me 2 31

K20me 2 97 2 34
M1acS2acK6acK9acK13acK17acK21me3-

S48pY52pY89p 1 6

M1acS2acR4me2K6acK9acK13acK17ac-
K21me3S48pY52pY89p 1 6

None 2 24

Intact ID: the number of intact proteoforms identified containing listed modification(s). Frag #: the number of
fragment ions detected for the proteoforms. Underline indicates mono, di, and trimethylation were combined.

4. Discussion

Histone modifications in the respiratory tract have been associated with respiratory inflammation
and infection, including SARS-CoV [117,118]. Influenza induces modifications that alter the expression
of some pro-inflammatory cytokines and interleukin genes, but this is largely associated with DNA
methylation during viral replication [119–126]. Thus, the epigenetic changes we observed in T
cells are not likely to induce by the influenza virus itself. We found histone PTMs profiles differed
in Teff isolated from the spleen, lung, and BAL following influenza infection (Figure 3). Others
have demonstrated that location can impact epigenetic programming in innate immune cells and
CD8 T cells [127,128]. We posit this is due to their distinct microenvironments and may enhance
functional differences in the T cell subsets at discreet locations. The interstitial T cells of the lung
and airway T cells in the BAL are functionally different (e.g., more cytolytic versus more rapid
cytokine response, respectively), and the quantity of BAL Teff correlates with protection during
influenza infection. Recently, using the same PR8-X31 prime challenge model, Hayward et al. assessed
the chromatin accessibility of influenza-specific T cells from the lung and BAL [128]. They found
coordinated changes in chromatin accessibility and gene expression that suggested their epigenetic
architecture was influenced by their environment and concluded amino acid starvation was the
underlying mechanism. However, we interpret changes in amino acid starvation pathways to be
downstream of the metabolic response to changes in substrate concentration in the microenvironment.
Metabolism is sensitive to nutrient concentrations and exerts direct and indirect control of epigenetic
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programming [129–132]. T cell subsets have distinct metabolic phenotypes that may render them more
sensitive to the availability of nutrients in their microenvironment, and this is likely to contribute to
location specific epigenetic programming.

Previous studies profiled PTMs at certain effector gene loci and determined these marks were
associated with genes that are critical to subset specific T cell functions, including human naive and
memory CD8 T cells. These studies found associations between gene expression and the amounts of
H3K4me3 (positive correlation) and H3K27me3 (negative correlation) across the gene body [81,133,134].
Araki and co-workers defined 4 associations between the ratios of H3K27me3 and H3K4me3 and
gene expression: repressed, active, poised, and bivalent (i.e., high and low with low expression, low
and high with high expression, low and high with low expression, and high and high with constant
low expression in Tn that increases when Tm are activated) [81]. A similar approach demonstrated,
after in vivo differentiation into influenza-specific Teff, H3K27me3 decreased, and H3K4me3 increased
at immune-related effector gene promoters [3]. We used an unbiased approach and did not identify
H3K4me3 or mine the data to identify or quantify this species. However, we found a reduction in
H3K27me2 and H3K27me3 repressive marks that were associated with T cell activation (Figure 2b
and Table S1). We identified more unique combinations of PTMs from naïve than activated T cells
isolated from the same samples, as well as significantly more individual PTMs and known markers
of transcriptional activation (Figure 2b inset). Moreover, after a secondary recall response to the
heterologous influenza challenge, activation of Tm significantly increased the number of PTMs known
to mediate transcriptional activation compared to naïve, Teff1, or Tm. This was largely due to several
internal acetylations of lysine 9, 18, 23, 27 and 36 on H3 associated with transcriptional activation [135].
This was complemented by di- and trimethylation at lysine 36, a strong enhancer of transcriptional
activation in T cells. Indeed, increased chromatin accessibility via hyperacetylation of this region is a
potentially important mechanism for rapid re-expression of effector genes that facilitates the unique
capacity for rapid recall of effector CD8 T cells [24]. Araki and Russ et al. established that H3K4me3
and H3K27me3 are reliably associated with genes that regulate T cell differentiation, and function
via these marks positively and negatively correlating with the expression patterns of many critical
genes and established methylation dynamics at bivalent regions regulate Tm by making these gene
loci poised for rapid expression [3,81]. Our findings add to this knowledge by defining new PTMs
combinations and deciphering the histone code by mapping these epigenetic hot spots in distinct
CD8 T cell subsets over the course of in vivo influenza infection. We identified many new bivalent
combinations in T cell subsets and found significant differences in the distribution of individual PTMs
with activation and across T cell subsets and significantly more enhancer PTMs in Teff2.

Based on the correlations of H3K4me3 and H3K27me3 with gene expression profiles in T cell
subsets detailed above, many have integrated these epigenetic patterns into the two current models of
T cell differentiation [136–138]. The circular T cell differentiation model suggests plasticity in T cells
such that memory precursors, formed early after activation, gain effector function while maintaining
the ability to form a pool of memory subsets. In this cycle, Tn differentiate into effector T cells,
and a few develop into Tm that are activated in subsequent infections to repeat this process. It is
postulated that the cycles of differentiation, dedifferentiation, and redifferentiation would result
in oscillations in gene expression as well as epigenetic marks [136–138] (Figure 5a). In the linear
differentiation model, naïve cells are fully activated into effector T cells that contract while memory
subsets form from naïve cells that are activated at the end of the infection and do not receive the
necessary signaling to form Teff. Thus, it is postulated that the transcriptional and epigenetic programs
of these transitional Tm will overlap with Tn and Teff and accumulated on or off signals resulting in a
progressive increase or decrease in gene expression and related epigenetic marks [138] (Figure 5b).
Presumably, these accumulated on or off signals would then be amplified in the secondary response.
There is substantial evidence to support both differentiation models, and they remain a contested topic
in T cell biology. To determine if individual histone PTMs fit these models, we used a qualitative
approach. We determined the presence of each PTM and considered its accumulation based on the
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number of times that modification was identified alone or in unique PTM combinations for each T cell
subset (i.e., unique proteoforms with the same PTMs combinations were combined, and we did not
account for the number of times a proteoform was identified, the number of corresponding fragments,
or their intensities). Using this high level on/off and up/down approach, we found evidence that some
PTMs are constant while others oscillate in frequency or accumulate as T cells differentiate (Figure 5c).
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Figure 5. Patterns of histone PTMs over time with CD8 T cell differentiation after influenza infection.
T cells have unique histone PTMs that are thought to form based on two models of T cell differentiation.
(a) In the plasticity model, combinations of PTMs oscillate in on and off patterns as T cells progress
through differentiation. In this case, the naïve T cells are activated and differentiate into effector T cells
in the primary infection and are either terminally differentiated and contract or form Tm that are
activated in the secondary infection and follow the same cycle. In this model, the PTMs cycle in on and
off and on patterns regulating similar patterns of transcription. (b) In the linear differentiation model,
T cell progression from naïve to primary or memory is mediated by the persistence and magnitude of
antigenic stimulation. Effector cells that are not fully differentiated when the activation signal wains
remain as memory cells in a transitory state of mixed on or off signals that are driven in one direction
or the other in the secondary infection. In this model, there is a progressive gain or loss of enhancing
and repressing PTMs. (c) The presence of individual PTMs in the identified proteoforms was tallied for
each T cell subset and graphed. Below the x-axis, each unique combination of PTMs is represented per
naïve, primary, memory, and secondary states. PTMs are presented as circles, and the tilde symbol (~)
indicates unmodified stretches of amino acids. Circles to the left of the tilde are in the amino-terminal
histone tails, and on the right are at the carboxy terminus of the histone.

The circular or oscillation model fit for repressive modifications H3 R8me and H4 K20me,
which had on–off–on–off and high-low-high-low prevalence, respectively. Similarly, H4 S1ac and the
activators H4 K12ac and K16ac oscillated from high to low to high in Tn, Teff1 and Tm, respectively,
and remained high in Teff2 (Figure 5c). The methylations of H4 R3 and H3 K27 and K36 were detected
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less frequently in Tm, resulting in Tn, Teff1, Tm, and Teff2 following a high-high-low-highest pattern
(Figure 5c). Following the linear accumulation model, some PTMs were acquired with memory and
maintained or increased prevalence in the secondary response (H2B K5ac, K11ac, K15ac, and K20ac
and H4 S47p and Y88p) (Figure 5c). These were often associated with neighboring modifications that
were present at low levels in Tn and Teff1 but increased at the memory stage (e.g., H2B K12ac, K16ac,
and K23ac and H4 K5ac and K20me). Acetylation of lysine 13 and 109 was detected on H2A and H2B
only in the Teff2, as was phosphorylation of H2B Y42 and H4 S1 and Y51 (Figure 5c). Acetylation of
lysine 6, 13, 17, and 24 on H2B was only detected on one proteoform until the secondary response
when it was detected in several PTMs combinations. Methylation of K18 on H3 followed a similar
trend. Modifications that did not fit these models may have been influenced by the heterogeneity
of the Tn and Teff2 populations. For example, a few modifications were detected exclusively in the
Tn and Teff2 (i.e., H2A R4me2 and H3T3p, and K23me). All the acetylations to the mid-region of the
amino-terminal tail of H3 (i.e., K18-36) occurred at a higher frequency in Tn and Teff2. Methylation of
K9 on H3, a repressor, also followed this pattern (Figure 5c). Interestingly, the opposing activating
acetylation of this lysine and nearby lysine 4 was only detected in naïve T cells, and these were the
only PTMs that were unique to this subset.

This study is limited in that it does not relate these modifications to gene expression. Instead,
it provides the identity and abundance information for specific histone modifications and their
combination per proteoform in T cell subsets isolated from mice over the course of influenza infection.
The high-level analysis summarized in Figure 5 supports the current models that attempt to integrate
epigenetics into T cell differentiation paradigms. Previously, these models integrated naïve T cells
with T effector cells in the primary response and Tm subsets. Here we provide additional clarity
on the epigenetic programming of Teff in the secondary response. However, these were bulk T cell
populations within each subset as we were unable to purify enough histones from antigen-specific
T cells to compare across groups (DNS). In lieu of tetramer staining, we employed a gating strategy to
increased influenza-specific populations in the BAL, lung and spleen [10]. In the primary response,
influenza-specific CD8 T cells are the dominant population. Due to the five dominant epitopes shared
between X31 and PR8, it is even higher in the secondary response (between 70 and 90%) [10,88,139].
T cell heterogeneity may contribute to the higher accumulation of a unique combination of H3 and H4
PTMs in Teff2 (Figure 5c). However, T cell heterogeneity in the naïve population is much higher than
either Teff1 or Teff2, and the histone PTMs diversity from Tn is lower than Teff2. Thus, it is unlikely
heterogeneity of Teff2 accounts for the diversity in the histone proteoforms. It is feasible these PTMs
combinations contribute to the enforcement of terminal differentiation.

We concede these data may not be generalizable to discreet subpopulations within each
compartment. Nonetheless, the permissive and repressive marks appear to be maintained in the
generation of daughter cells from the memory pool and increased in the secondary response. Perhaps
the most notable of these were the group of H2B and H4 PTMs mentioned above that were either
acquired or increased in Tm and sustained Teff2. Consistent with previous reports [140], we saw a
decommissioning of some naïve enhancer PTMs as well as the generation of new enhancers in Teff1

and Teff2 (Figure 5c). Like previous reports, the H3 modifications we identified in Tm were bivalent.
We expected to see a loss of repressor signals with a gain of enhancers in Teff2. Instead, we saw an
increase in some repressors and a significant increase in enhancer marks in Teff2 (Figure 5). In the case
of H3K9 methylation, this makes good sense as it is associated with the short life span of CD8 effector
cells [141]. The bulk of what is known relating gene expression patterns to histone modification in T cell
subsets centers around H3K4me3 and H3K27me3. We did not detect H3K4me3, yet our data suggest
other combinations and modifications may be worth exploring. Indeed, in the studies mentioned
above, gene expression did not always correlate with H3K4me3 and H3K27me3 patterns and appear
to be best associated in terms of H3K4me3 at effector loci in Teff1 [17,18,81,142,143]. This suggests
other mechanisms may be influential in maintaining epigenetic programming throughout the stages of
T cell differentiation and recent research in this area indicates even minor changes in highly conserved
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regions alter chromatin structure and gene regulation [144,145]. One possibility is that unique PTM
combinations, especially those including understudied modifications that block or induce regional
modifications, act as tuning mechanisms or overriding signals that functionally contribute to the role
of the histone code in controlling T cell fate.

Due to their high heterogeneity, histones are inherently challenging to study. In addition,
interpreting combinations of histone PTMs is difficult because of the lack of knowledge regarding their
biological function [146–148]. However, our identification of these differentially marked histones in
unique combinations from distinct locations and T cell subsets raises several important questions. First,
are microenvironmental conditions influencing T cell epigenetics and is this functionally relevant?
Second, are the combinations of histone PTMs we identified controlling gene expression in the T cell
response, or do they play other currently undefined roles such as regulating regional modifications?
If the former is true, PTMs may act to fine-tune canonical modifications or function independently.
Third, are the modifications acquired with memory and sustained in the secondary response mediating
memory cell survival or necessary for homeostatic proliferation upon recall? HiPTMap of activated
versus naïve T cells subsets and effector subsets across locations acquired from the same groups
of mice as well as the comparison of T cells over time following influenza infection has provided
the blueprint to answer some of these questions and will likely contribute to our understanding of
epigenetic regulation of T cell biology.

5. Conclusions

The HiPTMap strategy used here enhances proteoform identification, providing a comprehensive
analysis. Our results show the high potential of online nanoflow 1D and 2DLC separations for top-down
analysis of histones and HiPTMap strategy. In addition, this platform extended the dynamic range of
MS measurements, increasing the number of confidently identified histone proteoforms compared to
1D LC-MS approach. With this strategy, we identified hundreds of unique histone-modified species
isolated from mice following influenza infection. As a result, we now know that several new bivalent
combinations are present in effector T cells; the histone map changes as T cells relocate during influenza
infection; and the secondary recall response of CD8 T cells induces a significant increase in histone PTMs
associated with transcriptional activation. These histone modifications appear to oscillate or accumulate
over the course of T cell differentiation in a PTMs specific manor. Recent advancements in top-down
technology will facilitate more confident and comprehensive histone proteoform characterization and
enable us to approach (near) single-cell sized samples to better address cell heterogeneity challenge.
Furthermore, computational approaches are rapidly advancing [48,149,150], and we anticipate even
more detailed data-mining to be achieved from HiPTMap with the analysis that will result in the
discovery of interdependent relationships between unique modified forms identified here and reported
elsewhere to decipher the histone code.
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47. Tian, Z.; Tolić, N.; Zhao, R.; Moore, R.J.; Hengel, S.M.; Robinson, E.W.; Stenoien, D.L.; Wu, S.; Smith, R.D.;
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