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Appropriate levels of arousal potential induce hedonic responses (i.e., emotional
valence). However, the relationship between arousal potential and its factors (e.g.,
novelty, complexity, and uncertainty) have not been formalized. This paper proposes
a mathematical model that explains emotional arousal using minimized free energy to
represent information content processed in the brain after sensory stimuli are perceived
and recognized (i.e., sensory surprisal). This work mathematically demonstrates that
sensory surprisal represents the summation of information from novelty and uncertainty,
and that the uncertainty converges to perceived complexity with sufficient sampling from
a stimulus source. Novelty, uncertainty, and complexity all act as collative properties that
form arousal potential. Analysis using a Gaussian generative model shows that the free
energy is formed as a quadratic function of prediction errors based on the difference
between prior expectation and peak of likelihood. The model predicts two interaction
effects on free energy: that between prediction error and prior uncertainty (i.e., prior
variance) and that between prediction error and sensory variance. A discussion on the
potential of free energy as a mathematical principle is presented to explain emotion
initiators. The model provides a general mathematical framework for understanding
and predicting the emotions caused by novelty, uncertainty, and complexity. The
mathematical model of arousal can help predict acceptable novelty and complexity
based on a target population under different uncertainty levels mitigated by prior
knowledge and experience.

Keywords: emotion, free energy, bayes, gaussian generative models, arousal, uncertainty

INTRODUCTION

Acceptance of novelty and complexity of incoming information depend on receivers’ emotions.
Berlyne considered both novelty and complexity to be collative properties that are sources of arousal
potential (Berlyne, 1970). He suggested that an appropriate level of arousal potential would induce
a positive hedonic response, but extreme arousal potentials induce negative responses. The hedonic
function of the arousal potential shapes an inverse U, the so-called Wundt curve (Figure 1). Arousal
(i.e., intensity) and valence (i.e., positivity or negativity) are known to be dominant emotional
dimensions (Russell, 1980; Lang, 1995). They comprise the core affect and are correlated with neural
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FIGURE 1 | Hedonic function of arousal potential. Collative variables (e.g.,
novelty and complexity) are assumed to be the sources of arousal potential in
Berlyne’s theory. An appropriate level of arousal potential maximizes positive
hedonic response, whereas extreme arousal potential induces negative
response.

activity in specific brain regions (i.e., orbitofrontal cortex and
amygdala, respectively) (Wilson-Mendenhall et al., 2013). The
Wundt curve formulates a relationship between the core affect
when the hedonic response is considered to be a valence
component. In this sense, the Wundt curve is a valence function
of arousal explaining the condition of positive acceptance of
collative properties, such as novelty and complexity.

The mathematical formulation of arousal provides a precise
prediction of the acceptance condition and the effect of certain
factors of arousal in a general manner. Yanagisawa et al.
formalized arousal using the Kullback–Leibler (KL) divergence
(Kullback and Leibler, 1951) of the Bayesian posterior, termed
information gain, and confirmed that it corresponds to human
surprise via participants’ responses using event-related potential,
P300, and subjective reports of surprise to novel stimuli
(Yanagisawa et al., 2019; Ueda et al., 2021). The information gain
is equivalent to Bayesian surprise representing visual salience (Itti
and Baldi, 2009). Yanagisawa et al. formalized the Wudnt curve
as a summation of reward and aversion functions, representing
sigmoidal functions of the information gain (Yanagisawa et al.,
2019; Miyamoto and Yanagisawa, 2021). Novelty, however, is
only one of several sources of arousal potential (i.e., collative
properties). Berlyne exemplified other collative variables, namely
complexity and uncertainty. Experimental studies have shown
that both complexity and novelty affect hedonic responses
(valence) in art and music (Marin et al., 2016; Miyamoto and
Yanagisawa, 2021), design aesthetics (Hekkert et al., 2003; Hung
and Chen, 2012), and food preference (Giacalone et al., 2014).
Information gain is content acquired from novelty; however, it
does not involve complexity and uncertainty. To the best of
my knowledge, a mathematical formulation of arousal potential
caused by all these factors is yet to be established.

The present study proposes an arousal model that includes
complexity and uncertainty as well as novelty. This model

provides a general mathematical framework to explain
arousal, the primary emotion dimension. Information content
formulated as negative log probability of sensory stimuli has
been hypothesized as being processed when one perceives
sensory stimuli. In Section “Surprisal and Free Energy in
Perception,” I mathematically demonstrate that information
content is equivalent to minimized (variational) free energy
or surprisal in perception. Free energy, which is originally a
thermodynamic quantity in statistical physics, has recently been
applied to the neuroscience field as a significant information
quantity. Friston et al. proposed the free-energy principle
that unifies brain theories (Friston, 2010). The principle of
free-energy minimization mathematically explains cognitive
components, such as perception and action (Friston et al.,
2006). In this context, free energy represents a prediction
error and uncertainties of signals in a Bayesian brain model
(Knill and Pouget, 2004).

Recently, the free energy has been applied as a key
information theoretic quantity to explain emotional states.
Joffily and Coricelli (2013) formalized emotional valence as
the rate of change of free-energy over time; they suggest
that decreasing and increasing free energy corresponds to
positive and negative emotion, respectively. The idea behind
such a formulation is that emotional states reflect changes
in the uncertainty about the somatic consequences of action
(Wager et al., 2015; Seth and Friston, 2016; Clark et al.,
2018). Hesp et al. (2021) formalized emotional valence as
increased and decreased confidence (or precision) in one’s
action model, termed affective charge. It is estimated as
a higher metacognitive component of a deep hierarchical
Bayesian model based on active inference that selects an
action policy minimizing (expected) free energy. Although these
studies formalize emotional valence and its dynamics, a formal
representation of emotional arousal in relation to the free
energy has not yet been proposed. Furthermore, the relationship
between the free energy and emotional arousal characterized
by collative properties (e.g., novelty and complexity) of sensory
stimuli have not been elucidated.

In Section “Free Energy as Emotional Arousal Potential,”
I mathematically demonstrate that free energy comprises the
summation of information from both perceived novelty and
perceived complexity of external stimuli and that this complexity
is mathematically equivalent to minimized uncertainty. In
Section “Analysis of Free Energy using a Gaussian Generative
Model,” I derive a functional model of free energy using a
Gaussian generative model. Using the function model, I predict
how predictability (i.e., prior uncertainty and prediction error)
and sensory-data variation (inverse precision) affect arousal
potential. The model prediction of the predictability effect
explains how personal knowledge and experience as factors
of prior uncertainty change the optimal arousal potential
(a peak of the Wundt curve, Figure 1). This helps us
understand the personal differences caused by prior knowledge
and experience, such as between novices and experts, on the
preference of novelty and complexity. I demonstrate that the
prior uncertainty effect is equivalent to the effect of sensory
variance on arousal.
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SURPRISAL AND FREE ENERGY IN
PERCEPTION

The idea at the core of our model is that the total information
content to be processed in the brain after perceiving sensory
stimuli represents the potential cognitive load. This load
functions as a source of emotional arousal (i.e., Berlyne’s arousal
potential) that operates as an initiator of subsequent emotions.
According to information theory (Shannon et al., 1949),
information content is defined by the negative of the logarithm of
probability (−log p), where p is an event’s probability. Therefore,
I consider belief probability distributions in a situation where
one obtains information content by perceiving the external world
(e.g., physical properties like shape and color). Here, perception
is defined as the estimation of the causes of sensory stimuli.
Sensory stimuli are coded to neural activities in the brain (e.g.,
the firing rate of certain neuronal populations) via sensory organs
(Yanagisawa, 2016). I term the neural codes as sensory data
and assume the data to be a random variable, x, that follows
a certain probability distribution. In our study, instead of true
distributions, I assume that the brain has belief distributions,
p(x), where p(x) is marginalized by the possible causes of sensory
data represented as continuous random variables, θ ∈ R (e.g.,
physical properties (θ) like shape features and color that cause
visual sensory data, x, via light).

I assume that a joint probability distribution between sensory
data and its causes, p(x, θ), is learned based on past experiences
of perceiving varied sensory data throughout one’s life. The
statistical model is a generative model (Friston et al., 2006;
Buckley et al., 2017). I assume that the generative model
comprises observation model p(x|θ) and the prior p(θ).

p(x, θ) = p(x|θ)p(θ). (1)

With the generative model, one can predict sensory-data
distributions under the assumption of a cause, θ. For example,
one knows that the color “red” causes “this” sensory data from
previous experience; therefore, one can imagine (generate) “red.”
The exact Bayesian posterior, p(x|θ), represents perception of
the cause, given data x (Knill and Pouget, 2004). This is usually
difficult to compute. The variational Bayesian method then aims
to find sufficient approximations of the exact posterior (Fox
and Roberts, 2012). I assume an approximate posterior, q(θ),
representing recognition density of a cause (Buckley et al., 2017).
The deviation of q(θ) from the posterior p(θ|x) is evaluated using
the KL divergence:

DKL(q(θ)||p(x|θ)) =
〈

ln q (θ)− ln p(x|θ)
〉
q(θ). (2)

I want to minimize the KL divergence to approximate the exact
Bayesian posterior. However, the exact posterior is unknown.
Here, I adopt the free-energy principle (Friston et al., 2006;
Friston, 2010) to approximate the posterior by minimizing
variational free energy in perception. The free-energy principle
suggests that that any self-organizing system (i.e., brain) that is at
equilibrium with its environment must minimize its free energy.
It explains perception as the minimization of free energy, which

comprises a joint occurrence of the sensory input and its cause
(i.e., internal energy) and the negative entropy of the approximate
distribution. It represents the difference between the recognition
density and the generative model averaged over the recognition
density in term of information (i.e., negative log probability).

F = −
〈

ln p (θ, x)
〉
q(θ) +

〈
ln q (θ)

〉
q(θ). (3)

With decomposition p(x, θ) = p(θ|x)p(x), the free energy is
expressed as a summation of KL divergence and surprisal (Friston
et al., 2006). The surprisal is the negative log of the marginalized
likelihood representing model evidence, p(x) =

∫
p(θ, x)dθ .

F = DKL(q(θ)||p(x|θ))− ln p(x). (4)

Because surprisal is independent from the recognition density,
and the KL divergence is greater than zero, the lower bound of
free energy is surprisal: F ≥ −ln p(x). When recognition density
is a sufficient approximation of the exact Bayesian posterior, the
KL divergence becomes zero, and the free energy is equivalent
to the surprisal. This approximation process is connected with
perception using the recognition density according to the free-
energy principle (Friston et al., 2006). Therefore, the surprisal
corresponds to the free energy minimized by perceiving a sensory
stimulus. Free energy is considered to represent information
content that the brain potentially processes using recognition
density to perceive sensory stimuli.

FREE ENERGY AS EMOTIONAL
AROUSAL POTENTIAL

Novelty and Uncertainty
With another decomposition p(x, θ) = p(x|θ)p(θ), free energy is
expressed as a summation of another two terms:

F = DKL(q(θ)||p(θ))+
〈
−ln p(x|θ)

〉
q(θ). (5)

When the recognition distribution is a sufficient
approximation of the exact Bayesian posterior, q(θ) ' p(θ|x), the
first term is equivalent to Bayesian surprise, and the KL diverges
from posterior to prior. Bayesian surprise refers to the difference
of prior information content from posterior information content
averaged over posterior information (Itti and Baldi, 2009). It
represents information content gained by perceiving sensory data
x. In our previous study (Yanagisawa et al., 2019), we defined
Bayesian surprise as information gain because it represents
information content gained from incoming sensory data. I
considered information gain to be an index of novelty and
experimentally verified that it corresponds to human surprise
(i.e., high arousal emotion) induced by unexpected and novel
stimuli (Sekoguchi et al., 2019; Yanagisawa et al., 2019; Miyamoto
and Yanagisawa, 2021; Ueda et al., 2021). Information gain refers
to information content elicited by incongruity between prior
expectation and posterior perception (Friston et al., 2015). Prior
expectations are formed based on past experiences. One expects
an event if it has been frequently observed in one’s life. Therefore,
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an unfamiliar event, which has rarely been observed in the past,
causes incongruity between prior expectation and posterior
perception and surprises the person.

The second term is the inverse accuracy (Penny et al., 2010;
Friston et al., 2017). From the context of human cognition, the
accuracy is how accurately one’s generative model prediction fits
incoming sensory data, x. Thus, the term represents the extent to
which the sensory data support the hypothetical estimates of the
generative model in one’s brain. Lower accuracy implies greater
uncertainty in the estimate. Someone who believes their own
generative model perceives uncertainty of the cause of incoming
sensory data when accuracy is low. Therefore, from a first-person
perspective, the inverse accuracy is interpreted as the perceived
uncertainty of the cause of the sensory data.

Prior/Posterior Uncertainties and
Unfamiliarity
The second term of free energy in Eq. (5), the inverse accuracy〈
−ln p(x|θ)

〉
q(θ), represents the uncertainty of a cause. However,

this uncertainty is distinguished from other types of uncertainties
represented by variances (or inverse precisions) of signals.
In Bayesian brain hypothesis (Knill and Pouget, 2004) and
free energy principle (Feldman and Friston, 2010), the term
“uncertainty” means the variances of neural signals. From that
meaning of uncertainty, I define other types (i.e., prior and
posterior uncertainties), which are represented by prior and
posterior entropies, respectively, as uncertainties generated by
precision of expectation or estimation:

Prior uncertainty :< −ln p(θ) >p(θ), (6)

Posterior uncertainty :< −ln p(θ|x) >p(θ|x) . (7)

Prior uncertainty refers to the extent to which one’s belief of
cause is uncertain before observing sensory data. For instance, if
one is not familiar with paintings, one’s prior uncertainty about
paintings is high. Conversely, if one learns about paintings and
becomes familiar with them, one’s prior uncertainty decreases.
During this learning process, the prior updates to the posterior,
and the decrease of uncertainty averaged over the posterior is
equivalent to the information gain (Bayesian surprise):

DKL(p(θ|x)||p(θ)) =
〈
−ln p (θ) − (−ln p(θ|x))

〉
p(θ|x). (8)

Imagine that one is in an art gallery, but one does not know
which exhibition one is in. One could form a generative model
where θ corresponds to alternative categories of art, and x are
the alternative paintings one could encounter. Upon observing
a painting, x, one can update one’s prior beliefs about which
exhibition one is in to one’s posterior beliefs about the exhibition
(θ) one has found. In this situation, the more unfamiliar painting
one observes, the more one is surprised and learned. Here,
there are two kinds of unfamiliarity: unfamiliarity of a category
(e.g., paintings as a category of art) and unfamiliarity of an
individual (e.g., a specific painting). The former corresponds to

prior/posterior uncertainty and the latter to information gain
elicited by novelty or Bayesian surprise.

Uncertainty Reduction in Bayesian
Updating
The growing body of psychophysical evidence has shown that
computations of perception, sensory motor control, and learning
are Bayes’ optima that lead to the Bayesian coding hypothesis
(Knill and Pouget, 2004; Körding and Wolpert, 2004). The free-
energy principle explains the Bayesian coding hypothesis via
free-energy minimization (Friston, 2010). Furthermore, a variety
of animals in different ecological contexts behave in manners
consistent with predictions of Bayesian updating models (Valone,
2006). Here, I demonstrate how an uncertainty (the second term
of Eq. 5) minimizes in a Bayesian updating process.

Using the definition of conditional probability, p(x|θ)p(θ) =
p(x)p(θ|x), the free-energy representation takes two forms:
summation of Bayesian surprise and the uncertainty and a
summation of KL divergence and surprisal.

F(x) = DKL(q(θ)||p(θ))+
〈
−ln p(x|θ)

〉
q(θ)

= DKL(q(θ)||p(θ|x))− ln p(x). (9)

Here, the uncertainty regards an expected surprise (i.e.,
the information content) of sensory data x given a cause, θ,
−ln p(x|θ), averaged over a recognition distribution, q(θ). From
Eq. 9, the uncertainty is a summation of three terms: KL
divergence, (negative) Bayesian surprise, and surprisal:

U (x) :=
〈
−ln p(x|θ)

〉
q(θ)

= DKL(q(θ)||p(θ|x))− DKL(q(θ)||p(θ))− ln p(x). (10)

I assume that a recognition is set to a prior, q(θ) = p(θ), before
obtaining data x. The uncertainty is equivalent to a summation
of KL divergence and surprisal because the second term (i.e.,
Bayesian surprise) is zero.

Upri :=
〈
−ln p(x|θ)

〉
p(θ)

= DKL(p(θ)||p(θ|x))− ln p(x). (11)

In Bayesian estimation or recognition of θ given x, the
recognition distribution is approximated to the posterior, q(θ) '
p(θ|x). As a result, the uncertainty is approximated to the
summation of negative Bayesian surprise and surprisal because
the first term, KL divergence, is approximated to be zero.

Upost :=
〈
−ln p(x|θ)

〉
p(θ|x)

= −DKL(p(θ|x)||p(θ))− ln p(x). (12)

The difference in uncertainty before and after the recognition
forms a summation of the KL divergence and the Bayesian
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surprise. The difference is always greater than zero because both
KL divergence and Bayesian surprise are greater than zero.

Upri − Upost = DKL(p(θ)||p(θ|x))+ DKL(p(θ|x)||p(θ)) ≥ 0.
(13)

Therefore, the uncertainty always decreases in the recognition
process from the prior to the posterior, q(θ) : p(θ)→ p(θ|x).

The surprisal, the second term of Eq. 12, is a negative log
likelihood marginalized with a prior,−ln p(x) = −ln

〈
p(x|θ)

〉
p(θ).

When a prior is updated to a posterior, p(θ) : p(θ)→ p(θ|x),
the posterior uncertainty is equivalent to the surprisal of the
model prediction with posterior; it corresponds to a negative log
likelihood of a predictive distribution.

U∗ := −ln
〈
p(x|θ)

〉
p(θ|x) = −ln p∗(x), (14)

where p∗(·) =
〈
p(·|θ)

〉
p(θ|x) is a predictive distribution. By

applying Jensen’s inequality, I find that the updated uncertainty,
U∗, corresponds to the lower term of the uncertainty, U. Thus,
the uncertainty decreases in the prior updating process.

Upost =
〈
−ln p(x|θ)

〉
p(θ|x)

≥ −ln
〈
p(x|θ)

〉
p(θ|x) = U∗. (15)

Jensen’s inequity holds for any priors. Therefore,
for any priors, the uncertainty is always decreased by
Bayesian prior updating.

∀p(θ),
〈
−ln p(x|θ)

〉
p(θ) ≥ ln

〈
−p(x|θ)

〉
p(θ). (16)

Hence, the uncertainty is always decreased by both the
recognition (perception) and the prior updating (learning)
process. By alternately repeating the two processes and given the
data from the same stimuli source, the uncertainty minimized to
the surprisal of true distribution of data.

Uncertainty Convergence to Perceived
Complexity
Consider the case where one obtains n data Dn with respect to
m values, xi ∈R (i = 1, . . ., m). The empirical probability for
each value is f (xi), (i = 1, 2, ...,m), where f is the empirical
distribution of obtained data x. From Eq. 14, the lower-bound
uncertainty of a prior updating is the negative log likelihood of
the predictive distribution with respect to the data, Dn. I find that
the lower-bound uncertainty corresponds to the (n times) cross
entropy (Chen et al., 2012).

U∗
(
Dn)
= −ln p∗

(
Dn)

= −ln
m∏

i=1

p∗(xi)
n·f (xi)

= −n
m∑

i=1

f (xi) ln p∗(xi)

= n
〈
−ln p∗(x)

〉
f (x), (17)

where p∗(x)=
〈
p(x|θ)

〉
p(θ|Dn)

is a predictive distribution given
data Dn of a random variable, x, and p∗(xi) is the predictive
probability of value xi. The cross entropy is a summation of a KL
divergence and entropy.

〈
−ln p∗(x)

〉
f (x) = DKL(f (x)||p∗(x))+H(f (x)). (18)

The KL divergence represents the deviation of the model
prediction from the data (empirical) distributions, which is
always greater than zero. Thus, the lower bound of the cross
entropy is the entropy of the sample distribution.

〈
−ln p∗(x)

〉
f (x) ≥ H(f (x)). (19)

As discussed, the lower-bound uncertainty implies that
the uncertainty after a prior is replaced with the Bayesian
posterior; thus, the uncertainty monotonically decreases with
the Bayesian updating of repeated data input given from
the same stimuli source (i.e., a cause target of perception).
Therefore, the cross-entropy converges to the entropy of the
distribution of the data. In other words, when the model
prediction (predictive distribution) fits the data distribution
by updating the prior, the KL divergence is minimized to
zero, and the cross-entropy approaches the entropy of the data
distribution. By the statistical law of great numbers, the empirical
distribution converges to the true distribution of the stimuli
source. Therefore, after sufficiently observing a stimuli source (a
target of perception or a cause of sensory data), the uncertainty
converges to the entropy.

The entropy reflects the disorder or complexity of a
data distribution. Therefore, the uncertainty minimized by
Bayesian updating, given sufficient input data, is interpreted
as the perceived complexity of the data. Previous studies
have shown that the curvature entropy of a shape correlates
to the complexity perceived by human evaluators (Ujiie
et al., 2012; Okano et al., 2020). Those experimental results
support the interpretation that the uncertainty minimized by
observing sufficient data (i.e., evaluating a shape) represents
perceived complexity.

Summary
Table 1 shows a summary of free-energy decomposition and
its meanings in the context of emotion arousal potential.
Free energy, representing sensory surprisal, is equivalent to
the summation of information gain or Bayesian surprise
(e.g., novelty and incongruity). The inverse accuracy and the
uncertainty of causes are the negative log-likelihoods weighted
over recognition. After observing sufficient sensory data from a
stimuli source, the uncertainty represents perceived complexity.
Novelty, incongruity, complexity, and the uncertainty are
the collative properties (i.e., sources of arousal potential)
that Berlyne exemplified. This concordance suggests that
the free energy explains the arousal potential induced by
collative properties.
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TABLE 1 | Summary of semantics of free energy in emotion arousal potential.

Mathematical terms Information contents Arousal potential

−ln p(x) ≥ nH(x) Free energy, surprisal, negative log likelihood Arousal potential of collative variables

DKL(q(θ)||p(θ) ≥ 0 Bayesian surprise, information gain, prior/posterior uncertainty Novelty, incongruity, unfamiliarity

〈−ln p(x|θ) 〉q(θ) ≥ nH(x) Inverse accuracy entropy Uncertainty, Perceived complexity

Arousal potential is formulated as free energy minimized in perception: surprisal. Free energy comprises the summation of information gained from novelty, incongruity,
and unfamiliarity and inverse accuracy representing perceived uncertainty and perceived complexity.

ANALYSIS OF FREE ENERGY USING A
GAUSSIAN GENERATIVE MODEL

Gaussian Free-energy Function
In the free-energy principle literature, Gaussian posterior, the so-
called Laplace approximation, is assumed (Friston et al., 2006,
2007; Buckley et al., 2017). The limitation of this approximation
is that it can be inaccurate when the mode is not near the majority
of the probability mass. However, the Gaussian form is useful
because the parameters provide an exact form of prediction errors
(distance between means) and precisions (inverse variance).
Here, I assume Gaussian distributions for the prior and posterior
to analyze how predictability and sensory variance (i.e. inverse
precisions) affect free energy and its components: the information
gain and the uncertainty. Gaussian distribution is a probability
distribution formed by two parameters: mean and variance.
The difference in the mean of prior and likelihood represents
prediction errors. Variances of the prior and the likelihood
represent the prior uncertainty and the sensory variance,
respectively. Hence, a Gaussian distribution can be used to
explicitly analyze how predictability (prediction errors and prior
uncertainty) and sensory variance affect free energy by partial
differentiations of Gaussian parameters. To be simple, I assume
that a causal state of stimuli does not change over time.

I assume that one obtains n sensory data samples, xn
=

(x1, x2, . . . , xn), from a stimulus source that conforms to
a Gaussian distribution, N(µ, σ2), and has a generative
model, p(x, µ) = p(x|µ)p(µ). Here, the mean (µ) represents
a perception target (i.e., the cause of sensory data). When
the conditional probability, p(x|µ), conforms to a normal
distribution, the likelihood function of a cause (µ) given the
sensory data is:

p(xn
|µ) =

n∏
i=1

p(xi|µ)

=

n∏
i=1

1
√

2πsl
exp

[
−
(xi − µ)

2

2sl

]

=

(
1
√

2πsl

)n
exp

[
−

1
2sl

{
n(µ− x̄)2 + nS

}]
, (20)

where sl is the variance of p(x|µ) (i.e., sensory variance), x̄ is
the sample mean, and S is the sample variance. I assume that
the sensory variance estimates the stimulus’s source variance,
sl ' σ 2.

The sensory data’s free energy, using the generative model, is
represented as follows:

F(xn) = DKL(q(µ)||p(µ))+
〈
−ln p(xn

|µ)
〉
q(µ), (21)

where p(µ) is a prior, and q(µ) is the recognition distribution of
µ. When the prior follows the Gaussian distribution, N(η, sp), the
Bayesian theorem estimates the posterior, p(µ|xn), that follows a
Gaussian distribution, N(ηpost, spost), where

Average : ηpost =
nspx̄+ slη

nsp + sl
,Variance : spost =

spsl

nsp + sl
. (22)

When the recognition distribution is approximated to the
Bayesian posterior, the free energy is expressed as a summation of
the information gain (i.e., Bayesian surprise) and the uncertainty.

DKL
(
N(ηpost, spost)||N(η, sp)

)
+
〈
−ln p(x|µ)

〉
N(ηpost,spost)

= G+ U. (23)

The information gain representing human surprise to novelty
is derived as a quadratic function of prediction error, δ = x̄−
η, which represents the difference between the prior mean
and the likelihood peak, with coefficients as functions of prior
variance (i.e., prior uncertainty), sp, and sensory variance, sl
(Yanagisawa et al., 2019).

Gn = DKL
(
N(ηpost, spost)||N(η, sp)

)
= AGδ

2
+ BG

AG :=
n2sp

2(nsp + sl)2
,BG := −

1
2

(
ln

sl

nsp + sl
+

nsp

nsp + sl

)
. (24)

The uncertainty is also derived as a quadratic function of
prediction error (see the Appendix for the derivation).

Un :=
〈
−ln p(x|µ)

〉
N(ηpost,spost)

= AUδ2
+ BU

AU :=
nsl

2(nsp + sl)2
,BU :=

n
2

(
sp

nsp + sl
+ ln 2πsl +

S
sl

)
.

(25)
Therefore, free energy, as the summation of the information

gain (novelty) and the uncertainty of µ, is also a quadratic
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function of the prediction error with coefficients that are
functions of the variances, sp and sl.

Fn := Gn + Un = AFδ2
+ BF

AF :=
1
2

n
nsp + sl

,

BF :=
1
2

{
ln
(
nsp + sl

)
+ (n− 1) ln sl + n ln 2π + n

S
sl

}
. (26)

Convergence to Entropy and Perceived
Complexity
Here, I demonstrate how the uncertainty converges to entropy
to represent perceived complexity. A prior updated by Bayesian
theorem with n samples follows N(ηn, sn) with an average of
ηn = (nspx̄+ slη)/(nsp + sl) and a variance of sn = spsl/(nsp +

sl). Given additional m samples from the stimulus source, the
posterior follows N(ηn+m, sn+m) with an average of ηn+m =
(n+m)spx̄+slη
(n+m)sp+sl

and a variance of sn+k =
spsl

(n+m)sp+sl
. With the prior

and posterior, the information gain (Gn+m) and the uncertainty
(Un+m) can be derived:

Gn+m := DKL (N(ηn+m, sn+m)||N(ηn, sn))

=
1
2

[
m2 spsl

nsp + sl

(
δ2

(n+m)sp + sl

)2

− ln
nsp + sl

(n+m)sp + sl
+

nsp + sl

(n+m)sp + sl
− 1

]
, (27)

Un+m :=
〈
−ln p(xn+m

|µ))
〉
N(ηn+m,sn+m)

=
m
2

[
sl

((n+m)sp + sl)2
δ2
+

sl

(n+m)sp + sl
+ ln 2πsl +

S
sl

]
.

(28)
When the sample number (n) is large enough (i.e.,

n→ ∞), the information gain converges to zero, and the
uncertainty converges to m times the entropy of the stimulus
source population.

lim
n→∞

Gn+m = 0, (29)

lim
n→∞

Un+m =
m
2
(
ln 2πsl + 1

)
= mH(x), (30)

where the entropy of the sensory data is:

H (x) =
∫
∞

−∞

−p (x) ln p (x) dx

=

∫
∞

−∞

−N
(
µ, σ2) ln N(µ, σ2)dx

=
1
2

(
ln 2πσ2

+
S
σ2

)
∼=

1
2
(
ln 2πsl + 1

)
∵ σ2 ∼= sl, lim

n→∞

S
σ2 = 1. (31)

Entropy is proportional to the logarithm of sensory variance,
H(x) ∝ ln sl, when a Gaussian distribution is assumed. As
discussed, the entropy of the sensory-data distributions
represents the perceived complexity of the stimulus.

The free energy, as the summation of the information gain
and the uncertainty, minimizes to entropy. In other words,
lim

n→∞
Fn+m = lim

n→∞
(Gn+m + Un+m) = mH(x). By obtaining the

sensory data, the information gain decreases to zero because
the prior comes close to the true distribution of the stimuli
source via Bayesian updates. The uncertainty decreases to the
lower limit (i.e., entropy of the true distribution) because the
predictive distribution comes close to the sample distributions,
and the KL divergence becomes zero. With Gaussian posteriors
and likelihoods, the uncertainty monotonically decreases as
n increases. Therefore, when both information gain and the
KL divergence between the predictive and data distribution
converges to zero, free energy is minimized to the entropy of the
data distribution.

Effect of Predictability
Because the uncertainty is a quadratic function of prediction
error, as shown in Eq. 25, deviations from prior expectations
increase the uncertainty. Its gradient AU is always positive
and means the sensitivity of the effect of prediction error on
the uncertainty. The gradient of AU with respect to the prior
variation sp is always negative:

∂AU

∂sp
=

−n2sl

2(nsp + sl)3
< 0. (32)

sp is proportional to the logarithm of prior entropy (e.g., prior
uncertainty; see Eq. 6). Thus, a high prior uncertainty indicates
that the prediction error’s effect on the uncertainty is low. In
other words, a certain expectation (low prior variance) refers
to a significant effect of prediction error on the uncertainty. By
increasing the amount of data sampled, the gradient converges to
zero, lim

n→∞
AU = 0.

The gradient of BU (the intercept) with respect to the prior
variation sp is always positive or zero:

∂BU

∂sp
=

nsl

2(nsp + sl)2
≥ 0. (33)

Therefore, small or zero prediction errors and higher prior
variations (i.e., prior uncertainty) lead to higher uncertainty.
Conversely, large prediction errors and higher prior variation
means smaller uncertainty, owing to greater gradients. By
increasing the number of data samples, the intercept converges
to the entropy times the sample number (i.e., infinite).

lim
n→∞

BU =
1
2
(
ln 2πsl + 1

)
lim

n→∞
n = H(x) lim

n→∞
n. (34)

Hence, the intercept is dominated by the uncertainty when the
sample is large.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 698252

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-698252 November 19, 2021 Time: 10:34 # 8

Yanagisawa Free Energy Model of Emotion

Regarding the free energy function, Eq. 26, the gradient of AF
with respect to the prior variation (sp) is always negative:

∂AF

∂sP
= −

n2

2(nsp + sl)2
< 0. (35)

The gradient of BF with respect to the prior variation (sp) is
always positive:

∂BF

∂sP
=

n
2(nsp + sl)

> 0. (36)

Therefore, small or zero prediction errors and higher prior
variations mean smaller free energy. Conversely, large prediction
errors and higher prior variation means higher free energy.
This inversion is observed in the effect of predictability on
the information gain when sp > sl (Yanagisawa et al., 2019).
Figure 2 shows an example of the inversion of information gain,
uncertainty, and free energy as functions of prediction error
varied by prior uncertainty.

Effect of Sensory Variance
The entropy of sensory data is proportional to the logarithm of
sensory variance (sl) as the estimate of sensory data population
variation. With large data samples, sl comes close to the sensory
data source variation. The entropies of sensory data sources
represent perceived complexity. In this section, I analyze how
the sensory variance affects the uncertainty, the information gain,
and the free energy.

Regarding the uncertainty function, Eq. 25, the gradient of BU
with respect to sensory variance is always positive:

∂BU

∂sl
=

n
2

sp
2
+ sl

2
+ slsp

(nsp + sl)2
≥ 0. (37)

Therefore, zero prediction errors and higher data variances
mean higher uncertainty. The gradient of AU with respect to
sensory variance depends on the magnitude relation of nsp and sl.

∂AU

∂sl
=

n
2

nsp − sl

(nsp + sl)3
. (38)

In most cases, the prior variance is greater than the likelihood
variance, nsp > sl, where n is a large natural number; therefore,
partial derivative is greater than zero (i.e., the gradient of AU
is always positive). In this case, sensory variance increases AU .
It also increases the uncertainty when the prediction error is
greater than zero. Therefore, in most cases, nsp > sl, and sensory
variance and the uncertainty increase (Figure 3A).

Regarding the information gain function, Eq. 24, the gradient
of both AG and BG with respect to the sensory variation is always
negative:

∂AG

∂sl
= −

n2sp(nsp + sl)

(nsp + sl)4
≤ 0, (39)

∂BG

∂sl
=

nsp

2

{
1− (nsp + sl)

(nsp + sl)2

}
. (40)

Therefore, when (nsp + sl) > 1, sensory variance decreases
the information gain (Figure 3B). This is likely when n is a
large natural number.

Regarding the free energy function, Eq. 26, the gradient of AF
with respect to the sensory variation (sl) is always negative:

∂AF

∂sl
=

−n
2(nsp + sl)

< 0. (41)

Therefore, sensory variance decreases the sensitivity of
prediction errors on free energy. The gradient of BF with respect
to sensory variation (sl) is always positive:

∂BF

∂sl
=

1
2

(
1

nsp + sl
+

n− 1
sl

)
> 0. (42)

Therefore, when the prediction error is zero, sensory variance
increases the free energy. However, the gradient is higher when
the sensory variance is smaller. As a result, when the prediction
error is large, this relationship is reversed. The higher the
sensory variance, the smaller the free energy (Figure 3C). Table 2
summarizes the effect of sensory variance on the effects of
prediction errors on the three information quantities.

DISCUSSION

This study presents the relationship between the information
content of perceived sensory stimuli (i.e., the free energy) and
arousal potential (i.e., the potential of the primary emotional
dimension). Information content to be processed after the
perception of sensory stimuli (i.e., sensory surprisal) corresponds
to the formulation of free energy commonly found in various
disciplines, such as physics, statistics, and neuroscience (Friston
et al., 2006). Free energy can be represented as a summation of
the two terms of information content: information gain (Bayesian
surprise) and surprisal (negative-log-likelihood averaged over the
Bayesian posterior) (Eq. 10). Our previous study showed that
the former represents novelty as a source of arousal potential
(Yanagisawa et al., 2019; Ueda et al., 2021). I confirmed that
the term also means expectation incongruity and unfamiliarity.
The latter represents uncertainty of the estimated cause of
sensory data. I demonstrated that the uncertainty decreases
with the recognition and prior updating process based on
Bayesian updating by adding sensory data from a stimuli
source (i.e., a target of perception or cause of sensory data)
in Section “Uncertainty Reduction in Bayesian Updating.” The
uncertainty after the recognition and prior update (i.e., learning)
is decomposed into KL divergence, representing deviation of
sensory data from model prediction and entropy (Eq. 19). By
reducing the model deviation to zero through iterations of
Bayesian updating with enough data, the uncertainty minimizes
to the entropy of sensory-data distribution as shown in Section
“Uncertainty Convergence to Perceived Complexity.” From the
analysis using the Gaussian generative model, I confirmed
that the uncertainty converges to the entropy when sufficient
data is provided in Section “Convergence to Entropy and
Perceived Complexity.” Previous studies showed that the entropy
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FIGURE 2 | (A) Uncertainty, (B) information gain, and (C) free energy as functions of prediction errors for various prior variances ([1.0, 5.0]) when sensory valiance is
0.5. Interactions between prediction error and prior variance were observed for all information quantities.

represents the perceived complexity of a stimuli (Ujiie et al., 2012;
Okano et al., 2020). Therefore, the uncertainty minimization
by sufficiently observing a target of perception is considered to
represent the perceived complexity.

All these factors (i.e., novelty, incongruity, unfamiliarity,
uncertainty, and complexity) are collative variables exemplified
by Berlyne as sources of arousal potential. Our previous model
(Yanagisawa et al., 2019) considered only novelty. Hence, this
model is more general than our previous model, including the
second term regarding perceived complexity and uncertainty.
Indeed, previous empirical studies have shown that the hedonic
function of both perceived complexity and perceived novelty have
inverse-U shapes. Mathematical formulations using free energy
suggest that the sum of information content induced by novelty
and complexity functions represents the arousal potential.

From the analysis of a Gaussian generative model, I found
that all three information quantities (i.e., free energy, uncertainty,
and information gain) are formulated as quadratic functions
of prediction error, and the coefficients (i.e., gradient and

intercept) are functions of prior variance representing prior
uncertainty and sensory variance, which is the variance of
the sensory-data distribution proportional to the entropy.
Prediction errors increase all three information quantities. Prior
variance decreases the effect that prediction errors have on
these information quantities. In other words, the inverse prior
variance functions as the sensitivity of prediction errors on
the arousal potentials. However, the intercept increases as
prior variance increases. Therefore, small or zero prediction
errors mean lower prior variance, which in turn means lower
information quantities.

This causes an interaction effect between the prior uncertainty
and prediction error on the information contents. In our
previous study (Yanagisawa et al., 2019), we experimentally
verified the interaction effect on information gain, representing
surprise to novelty using event-related potential, P300, and
subjective reports of surprise from human participants. Free
energy, representing arousal potential, (e.g., novelty, uncertainty,
and complexity) involves the same interaction effect. Prior
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FIGURE 3 | (A) Uncertainty, (B) information gain, and (C) free energy as functions of the prediction errors for various sensory variances ([1.0, 5.0]) when prior
variance is 3.0. Interactions between prediction error and prior variance were observed only in free energy.

TABLE 2 | Effect of sensory variance on uncertainty, information gain, and free energy and its condition.

Uncertainty Information gain Free energy

Gradient Intercept Gradient Intercept Gradient Intercept

increase Increase
(
nsp + sl

)
≥ 1 decrease Decrease (sp > sl ) decrease increase

The gradient represents the sensitivity of prediction errors. The intercept is the effect when the prediction error is zero. Interaction of prediction error and sensory variance
on free energy is predicted regardless any conditions.

knowledge and experience decrease prior variance (i.e., prior
uncertainty). Therefore, the more solidified the prior beliefs
that one has from prior knowledge and experience, the less
arousal potential that one elicits from events having small
prediction errors. By contrast, the more certain prior belief
one has, the greater arousal potential one elicits from an event
with large prediction error. This characteristic explains the fact
that prior knowledge and experience increase the acceptance of
complexity (Tuorila et al., 1994; Silvia, 2005). Small prediction
errors with certain prior uncertainties mean that one is familiar
with the object (e.g., one is frequently exposed to the object),
or one has sufficient knowledge about the object (i.e., one is

an expert on the object). In such conditions, one’s information
gain is small, and one has the capability to accept or enjoy
more complex stimuli based on the Wundt curve shown
in Figure 1.

I analyzed the effects of sensory variance on all three
information quantities and summarized the results in Table 2.
Sensory variance increases the uncertainty (intercept) and the
sensitivity of prediction errors on the uncertainty (gradient).
By contrast, sensory variance decreases information gain and
the sensitivity of prediction errors on the information gain.
Regarding the free energy (i.e., a summation of the uncertainty
and the information gain), the sensory variance decreases the
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sensitivity of prediction errors (gradient), but it increases the
intercept. When the prediction error is zero or small, sensory
variance increases free energy (arousal potential). Conversely,
when the prediction error is high, sensory variance decreases
the free energy (arousal potential). This interaction effect is the
same as the effect of the prior variance on the free energy (see
Figures 2C, 3C). In conclusion, both the prior and sensory data
are considered information sources or cues for estimating the
cause of sensory stimuli in Bayesian perception (Knill and Pouget,
2004; Körding and Wolpert, 2004). Inverse variances represent
the precision of each source. In this sense, it is reasonable that the
effect of variance (inverse precision) of both sources on arousal
potential is the same.

The model predictions shown in Figures 2, 3 provide
a general scale of arousal (formalized as the free energy
or surprisal) comprising novelty (the information gain) and
perceived complexity (the uncertainty). This scale explains
the difference in acceptable novelty and perceived complexity
of stimuli based on predictability (i.e., prior uncertainty and
prediction errors) caused by knowledge and experience (e.g.,
experts vs. novices) For a detailed analysis of the difference in
acceptable novelty between experts and novices, see Miyamoto
and Yanagisawa (2021). An experimental verification of this scale
should be performed in future studies. This scale can help adjust
to the preferable condition of novelty and complexity when
designing artifacts (e.g., products and services) accepted by a
target population (e.g., customers and users).

The human brain is an organ that processes significant
amounts of information. This information involves a high
cognitive load; therefore, a large amount of energy is required
for processing. According to Friston’s free-energy minimization
(Friston et al., 2006), the brain perceives the causes of sensory
data such that the free energy is variationally minimized. Free-
energy minimization equilibrium is a law that can be applied to
both physical and biological systems. Surprisal corresponds to the
minimized free energy and is concerned with the information
content remaining after the perception of sensory stimuli (or
recognition) is performed where the recognition distributions
can be approximated to the Bayesian posterior. My expectation
is that the minimized or remaining free energy can be used
to activate emotional arousal and subsequent emotions, such
as valence, and for free energy to be used as the general
principle of emotion potential. This prediction supports the
theory of a relationship between valence and free energy variation
(Joffily and Coricelli, 2013).

Emotions motivate certain actions, such as approach and
avoidance. Active inferencing suggests that the free energy can

be reduced by acting to gain sensory evidence (Friston et al.,
2015). This implies that emotions are functions that initiate
actions for reducing the free energy, and the remaining free
energy activates the said functions. In a model setting where an
agent’s action changes hidden states, and the agent’s preference
of sensory outcomes can be predefined as a prior, the confidence
(or precision) of an agent’s action model or the notion of
affective charge is adopted to estimate emotional valence as a state
of metacognitive level of a deep hierarchical generative model
(Hesp et al., 2021).

By contrast, the present study considered valence as a function
of arousal potential characterized by collative properties (i.e.,
novelty and complexity) of sensory stimuli given a static cause (a
hidden state), which does not change over time. See the analysis
of Sections “Uncertainty Convergence to Perceived Complexity”
and “Analysis of Free Energy Using a Gaussian Generative
Model.” Preference to appropriate levels of arousal may be caused
by curiosity and epistemic value in an active agent because these
components comprise expected free energy (Friston et al., 2017),
which is assumed to be arousal potential in the present study.
A future direction to extend the arousal model should consider an
active agent model that elucidates a mechanism of valence caused
by arousal in a dynamic environment.
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APPENDIX

Derivation of uncertainty using the Gaussian generative model:

U =
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where prediction error δ = η− x̄. Therefore,
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