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SLAM-related receptors (SRRs) are important modulators of immune cell

function. While most SRRs are homophilic, 2B4 (CD244) interacts with

CD48, a GPI-anchored protein expressed on many haematopoietic cells.

Here we show that natural killer (NK) cell-expressed 2B4 not only binds in

trans to CD48 on neighbouring cells but also interacts in cis with CD48 on

the same cell. 2B4 uses the same binding site to interact with CD48 in cis
and in trans and structural flexibility of 2B4 is necessary for the cis interaction.

Furthermore, the cis interaction is sufficient to induce basal phosphorylation

of 2B4. However, cis interaction reduces the ability of 2B4 to bind CD48 in

trans. As a consequence, stimulation-dependent phosphorylation of 2B4

upon binding to CD48 positive target cells is reduced. Interfering with the

cis interaction therefore enhanced the lysis of CD48-expressing tumour cells.

These data show that the density of 2B4 and CD48 on both the NK cell and

the potential target cell modulates NK cell activity.
1. Introduction
Natural killer (NK) cells are innate lymphoid cells and are important for effec-

tive early immune responses against viral infections and tumour formation.

Through the engagement of activating receptors, NK cells are able to recognize

and selectively kill transformed or virally infected cells [1]. Furthermore, they

can secrete various cytokines and chemokines and are involved in modulating

adaptive immune responses [2].

The family of SLAM-related receptors (SRRs) has important functions in

modulating the reactivity of various immune cells [3]. Human NK cells

express the SRRs NTB-A, CRACC and 2B4 [4]. While all other SRRs are

homophilic, 2B4 recognizes the GPI-anchored Ig-like protein CD48 that is

expressed on all haematopoietic cells including NK cells [5,6]. Binding of

CD48 to 2B4 induces the phosphorylation of four immunoreceptor tyrosine-

based switch motifs (ITSMs) in its cytoplasmic tail and recruitment of small

adapter proteins SAP and EAT-2 [7]. This in turn activates signalling cascades

resulting in NK cell cytotoxicity and production of cytokines such as IFNg

and TNF-a. While SAP can bind to all four phosphorylated ITSMs, the

third ITSM can additionally recruit the phosphatases SHP-1, SHP-2, SHIP

and the inhibitory kinase Csk [7,8].

In resting NK cells, 2B4 has co-stimulatory functions and can increase the

response of other activating receptors in a synergistic manner [9]. In IL-2

primed NK cells, triggering 2B4 alone is sufficient to induce NK cell effector

functions [2]. In addition, 2B4 seems to play an important role for integrin

activation and the induction of a high-affinity state of LFA-1 [10]. Finally, trig-

gering of 2B4 by CD48-expressing target cells or antibody cross-linking induces

a strong downmodulation of 2B4 expression levels on NK cells, which might be

another mechanism for regulation of NK cell function [11,12].
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The extracellular part of 2B4 comprises an N-terminal

V-type Ig-like domain, which contains the binding interface

for CD48 [13,14], and a membrane-proximal C2-type Ig-like

domain. The two Ig-like domains are connected by a six

amino acid linker, and a short stalk couples the C2-domain

to the transmembrane segment [13,15].

Several surface receptors have been shown to interact with

their ligand on the surface of the same cell. Such cis inter-

actions have been demonstrated for several inhibitory NK

cell receptors with their MHC ligands [16]. Especially, the

functional relevance of cis interaction between mouse Ly49A

and its ligand H-2Dd for NK cell function was extensively

studied. The authors demonstrated that cis interaction is mask-

ing the receptor for interaction with ligands in trans, thereby

reducing recruitment of the receptor to the immunological

synapse [17,18]. Further, sequestration of Ly49A through cis
interaction was shown to be necessary for NK cell education

by reducing the suppressive effect of unengaged Ly49 receptor

during maturation [19,20]. Besides Ly49 receptors, also the

Ig-like proteins of the LILRB family were found to interact

with MHC in cis. For the mouse homologue PIRB it was

shown that this cis interaction is involved in the regulation

of mast cell activity. In contrast to Ly49A, the PIRB-MHC

class I cis interaction is supposed to generate tonic inhibitory

signals by counteracting the activating FceRI [21,22].

Here we describe the interaction of the activating NK cell

receptor 2B4 with its ligand CD48 in cis and the necessity of

structural flexibility for this interaction. Furthermore, we find

that this cis interaction modulates 2B4 cell surface expression

and baseline phosphorylation. Finally, we show functional con-

sequences for 2B4 phosphorylation after contact with

susceptible target cells and subsequent cytotoxicity.
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Figure 1. 2B4 on NK cells is masked by cis interaction with CD48 on the
same cell. (a) NK92.C1, primary NK cells and HEK-2B4 cells were stained
for 2B4 using anti-2B4 mAb C1.7 (upper row) or soluble CD48-ILZ fusion
proteins (lower row). Staining controls IgG1-PE or NKp30-ILZ (NK cells)
and CS1-ILZ (HEK), respectively, are shown in grey. One representative exper-
iment out of three is shown. (b) Absolute number of 2B4 and CD48 molecules
on NK92.C1 and primary NK cells was determined before and after PI-PLC
treatment using the QiFi kit. Data are shown as mean+ s.d. of three inde-
pendent experiments. (c) NK92.C1 and primary NK cells were left untreated or
treated with 1 U ml21 PI-PLC for 1 h at 378C. Cells were stained for 2B4
with soluble CD48-ILZ fusion proteins. NKp30-ILZ was used as negative
control. One representative experiment out of at least three is shown.
2. Results
Within the SRR family, 2B4 is the only heterophilic receptor

and binds to the GPI-anchored protein CD48. To study the

impact of this interaction on NK cell function, we investigated

the binding of soluble CD48-ILZ fusion protein (sCD48) to 2B4

on primary NK cells and the NK cell line NK92.C1. While sur-

face expression of 2B4 was clearly detectable by antibody

staining (figure 1a, upper panel), we could not stain 2B4 on

NK cells with sCD48 (figure 1a, lower panel). As a control,

we achieved a clear staining of 2B4 on stably transfected

HEK293T-2B4 cells using sCD48, demonstrating the functional-

ity of this reagent. One difference between the HEK293T-2B4

and NK cells is that the latter also express CD48. Quantification

of 2B4 and CD48 revealed that CD48 expression levels on NK

cells exceed the number of 2B4 molecules by about fivefold

(figure 1b). We assumed that a possible cis interaction between

2B4 and CD48 on the same NK cell might interfere with

the binding of sCD48 in trans. To test this hypothesis, we trea-

ted NK92.C1 cells with phosphatidylinositol-specific

phospholipase C (PI-PLC) to remove CD48 and all other

GPI-anchored proteins from the cell surface. This resulted in

a strong reduction of CD48 molecules per cell, while the

number of 2B4 epitopes was not affected (figure 1b). Impor-

tantly, after PI-PLC treatment we now could detect the

binding of sCD48 to NK cell 2B4 (figure 1c).

To confirm the possible cis interaction between 2B4 and

CD48, we took advantage of a Jurkat cell line defective in

GPI-anchor synthesis. The J7.X cell line carries a mutation
in the phosphatidylinositol glycan-A (PIG-A) gene and there-

fore does not express GPI-anchored proteins on the cell

surface [23]. The J7.P cell line has been re-transfected with

intact PIG-A cDNA and is therefore positive for GPI-

anchored proteins. As all Jurkat cell lines are derived from

CD4þ T cells, they do not express endogenous 2B4. With

this cellular system, we were able to generate cell lines
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Figure 2. Cis interaction between 2B4 and CD48 on Jurkat cells. Jurkat J7.X
and J7.P cells expressing CD48 and/or 2B4 were exposed to the chemical
cross-linker BS3-D0. Cell lysates were analysed by reducing SDS-PAGE and
western blotting. Membranes were probed with a biotinylated antibody against
2B4 (left panel) and reprobed to detect CD48 (right panel). 2B4 appears as
prominent band at a size of 75 kDa (black symbol), CD48 is detected at
43 kDa (white symbol). After BS3 treatment an additional band of approx.
125 kDa appears only in the sample co-expressing 2B4 and CD48 on the
same cell. One representative experiment out of four is shown.
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expressing either CD48 or 2B4 or both. To directly test for

the interaction between 2B4 and CD48, we used the

cell-impermeable chemical cross-linker bis(sulfosuccinimi-

dyl)suberate (BS3-D0). Owing to a short spacer of 11.4 Å

this cross-linker can only covalently link two proteins when

they are in direct contact. We treated Jurkat cells expressing

2B4 (J7.X-2B4), CD48 (J7.P) or both (J7.P-2B4) either alone

or in cell mixing experiments with the cross-linker and

subsequently analysed the cell lysate by anti-2B4 and anti-

CD48 western blotting (figure 2). In samples containing

only 2B4-expressing cells, we detected a prominent band at

75 kDa, which corresponds to the expected size of fully glyco-

sylated 2B4. This band was absent in lysates from

untransfected Jurkat cells. Mature CD48 in J7.P cells was

detected as a band of about 43 kDa. When 2B4 and CD48

were present in the same Jurkat cell (J7.P-2B4) an additional

band of about 125 kDa was detected only when we treated

the cells with the cross-linker. This band was detectable by

anti-2B4 and anti-CD48 antibodies, suggesting that it rep-

resents a complex of 2B4 and CD48. This demonstrates that

2B4 and CD48 can interact not only in trans when present

on different cells, but also in cis when both molecules are

present on the same cell.

To investigate the structural requirements for this inter-

action in a more controllable system, we stably transfected

HEK293T cells with vectors encoding 2B4 or CD48. We had

previously shown that 2B4 is internalized when it is engaged

by its ligand [11]. We could reproduce this finding when we

engaged 2B4 in trans by mixing HEK cells expressing 2B4

with CD48-expressing cells, which resulted in a strong down-

modulation of 2B4 surface expression (figure 3a, left). To

investigate the co-expression of 2B4 and CD48 on the same

cell, HEK-2B4 cells were transiently transfected with CD48

or empty vector. This also resulted in a decrease of 2B4 sur-

face expression; however, under normal culture conditions

we could not discriminate if this was due to the interaction
between 2B4 and CD48 in cis, or due to the engagement of

2B4 by neighbouring CD48-expressing cells in trans. We

therefore cultured the HEK-2B4 cells at a very low density

to drastically limit cell contact and thereby prevent trans
interactions. Also under these conditions we observed a

downmodulation of 2B4 which was due to the presence of

CD48 on the same cell (figure 3a, right). This indicates that

the interaction between 2B4 and CD48 in cis also occurs in

transfected HEK cells and that the cis interaction is sufficient

for modulation of 2B4 surface expression.

Next, we wanted to investigate the structural basis for the

2B4/CD48 cis interaction. For this we wanted to use a 2B4

mutant that can no longer interact with CD48 in trans.

In our hands, the previously published 2B4 mutant K68A/

E70A [24] did not interfere with binding of sCD48 and

showed no impairment in a functional assay (electronic sup-

plementary material, figure S1). We therefore generated a

new 2B4 binding defective mutant (2B4KHT) based on the

published crystal structure of mouse 2B4 bound to its

ligand [13]. The introduction of three alanine substitutions

K54A, H65A and T110A within the putative ligand binding

site completely disrupted binding of sCD48 to HEK cells

stably expressing 2B4KHT (figure 3b). As a consequence, co-cul-

ture of HEK-2B4KHT with HEK-CD48 cells did not lead to

downmodulation of 2B4 expression, confirming the elimination

of the trans interaction (figure 3c). Interestingly, we also did not

observe a downmodulation of 2B4KHT upon interaction with

CD48 in cis when we co-expressed the mutant together with

CD48 in the same cell and eliminated trans interaction by

culturing the cells without cell-to-cell contact (figure 3c). From

these findings, we conclude that cis and trans interaction with

CD48 are mediated by the same binding epitope in 2B4.

The use of the same interface in 2B4 for both cis and trans
binding implies either flexibility of the cell membrane, or intra-

molecular flexibility of 2B4 or CD48 in order to interact with

neighbouring molecules. The intramolecular flexibility of 2B4

might be provided by the short linker between the two Ig-

like domains or the stalk between the membrane-proximal

Ig-like domain and the transmembrane segment. Therefore,

we created 2B4 deletion mutants lacking the linker (D127–

132) or the stalk motif (D211–223) and transiently transfected

them into HEK293T cells. Unfortunately, both mutant 2B4

receptors were only poorly expressed at the cell surface (elec-

tronic supplementary material, figure S2) making functional

analysis impossible. However, they were detectable in permea-

bilized cells, indicating that the stalk region and the linker

domain are indispensable for correct folding or trafficking of

2B4 to the cell surface. In addition, we generated HEK293T

cells stably expressing a deletion mutant lacking the entire

membrane-proximal Ig-like domain of 2B4 (DIg, aa 141–

210). Co-expression of CD48 in these cells led to a strong

decrease in 2B4 surface expression comparable with that of

2B4 wt (electronic supplementary material, figure S3). Similar

results were obtained when the membrane-proximal Ig-like

domain of CD48 (DIg, aa 132–212) was also deleted, indicating

that the membrane distal Ig-like domains are sufficient for

trans and cis interactions between 2B4 and CD48.

To explore the impact of the 2B4 linker on cis binding in

more detail we exchanged linker aa residues 127–132

(DKVEKP) with the more rigid b-strand motif connecting

the Ig-like domains D1 and D2 in human CD4 (114–127,

QKEEVQLLVFGLTA) [25] to generate a more stiff 2B4 variant

(2B4 bs). The 2B4 bs mutant was expressed on HEK293T
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cells, although to a lower extent than 2B4 wt. Furthermore,

we could stain the 2B4 bs mutant with soluble CD48-ILZ,

verifying the capability of 2B4 bs to interact with CD48 in

trans (figure 4a). Additionally, co-culture of HEK cells

stably expressing 2B4 bs with HEK-CD48 led to a consider-

able downmodulation of 2B4 bs surface expression similar

to 2B4 wt (figure 4b,c). Importantly, co-expression of 2B4 bs

and CD48 on the same cell did not affect the expression level

of 2B4 bs (figure 4b,c), indicating that the stiffened linker

between the Ig-like domains effectively interfered with the

interaction of 2B4 and CD48 in cis. This demonstrates that

the structural flexibility provided by the loop-like linker and

the stalk motifs of 2B4 are sufficient to enable cis interaction

between 2B4 and CD48.

Engagement of 2B4 results in rapid tyrosine phosphoryl-

ation of the ITSM motifs in its cytoplasmic part [26,27].

However, even in the absence of target cell contact we could

detect some constitutive low level phosphorylation of 2B4 in

NK cells [28]. We therefore speculated that this basal phos-

phorylation may be due to the cis interaction between 2B4 and

CD48. To investigate this hypothesis we used the Jurkat cells

expressing 2B4, CD48 or both molecules and analysed 2B4 phos-

phorylation. In cells expressing 2B4 and CD48, we readily

detected a basal phosphorylation of 2B4, even when we only

allowed cis interaction by culturing the cells without cell-

to-cell contact (figure 5a). We detected a similar amount of 2B4

phosphorylation when we only allowed trans interaction

between Jurkat-2B4 and Jurkat-CD48 cells. However, in the

absence of CD48 we detected no 2B4 phosphorylation, demon-

strating that the engagement of 2B4 by CD48 in cis or in trans
between neighbouring cells is necessary for the basal phos-

phorylation of the receptor. To confirm this finding in NK cells

we used the NK cell line NKL and reduced CD48 surface

expression by PI-PLC treatment. Similar to our findings

with Jurkat cells, cis binding of 2B4 to CD48 was sufficient to

induce baseline 2B4 phosphorylation (figure 5b). As 2B4 is

expressed by virtually all NK cells, it was difficult to assess the

role of only the trans interaction between 2B4 and CD48. There-

fore, we expressed HA-tagged 2B4 in NKL and manipulated

CD48 expression by PI-PLC treatment. Similar to the Jurkat

cells we could show in these NKL cells that cis interaction was

sufficient to induce 2B4 phosphorylation to a similar extent as

only the trans interaction, while we observed the strongest

phosphorylation level when allowed for both interactions to

occur (figure 5c). These data demonstrate that the cis interaction

is sufficient to induce the basal phosphorylation of 2B4.

These results raised the question whether the degree of basal

phosphorylation might affect the induced phosphorylation

level that is caused by triggering of 2B4 in trans by CD48-

expressing target cells. Therefore, NKL cells were pre-treated

with PI-PLC and cultured with or without cell-to-cell contact

to establish baseline phosphorylation levels. Subsequently,

these cells were mixed with Ba/F3 cells expressing CD48 to trig-

ger 2B4 in trans. As expected, cell mixing with susceptible target

cells led to a further induction of 2B4 phosphorylation beyond

baseline levels (figure 5d). Interestingly, the amount of induced

2B4 phosphorylation was lower in cells where 2B4 also inter-

acted with CD48 in cis. Similar results were also obtained

with freshly isolated primary human NK cells (figure 5e),

suggesting that the cis interaction between 2B4 and CD48 can
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limit the trans interaction with CD48-expressing target cells and

as a result reduce 2B4 phosphorylation induced upon contact

with CD48-expressing target cells.

We therefore addressed whether the cis interaction

between 2B4 and CD48 has consequences for NK cell effector

functions. Removal of CD48 by PI-PLC treatment increased

the NK cell-mediated lysis of CD48-expressing HEK293T

and Ba/F3 target cells (figure 6). However, PI-PLC treatment

removes all GPI-anchored surface proteins, which could

influence NK cell activity independently of 2B4. We therefore

also tested for the lysis of CD48 negative, control transfected

target cells. Importantly, this lysis was unaffected by the PI-

PLC treatment, suggesting that the effect was specific for

2B4-mediated NK cell activation and was probably due to

the removal of CD48 from the NK cells. This demonstrates

that the cis interaction between 2B4 and CD48 on the surface

of NK cells can limit the trans interaction of 2B4 and thereby

modulate 2B4 engagement, phosphorylation and subsequently

2B4-mediated NK cell cytotoxicity.
3. Discussion
Our data show that 2B4 not only can bind to CD48 in trans
but also interacts with CD48 in cis by using the same binding
interface. As 2B4 is proposed to adopt a rod-like structure

during interaction with CD48 in trans [13], the binding to

its ligand on the same cell in cis requires large intramolecular

rearrangements and implies great structural flexibility of the

extracellular part of 2B4 and possibly also of CD48. Other

receptors have been shown to interact with their ligands in

cis and the flexible linker between Ig-like domains was pro-

posed to be crucial for cis interaction of LILRs with MHC I

[16]. Functional analyses and modelling of Ig-like domains

of LILRB2 [29] and Drosophila Dscam [30] support our find-

ing, that the short linker between the Ig-like domains of

2B4 is essential for providing structural flexibility to enable

binding to CD48 in cis and in trans. In fact, our stiff 2B4 bs

variant carrying the more rigid CD4 b-strand motif between

the two Ig-like domains was defective in cis interaction, while

the binding to soluble CD48 or CD48 on neighbouring cells

remained intact. Deletion mutants lacking the entire mem-

brane-proximal Ig-like domain of 2B4 or CD48 were still

able to interact in cis. Therefore, the stalk regions of the sur-

face molecules might provide additional flexibility to enable

cis binding.

We demonstrated that constitutive phosphorylation of 2B4

ITSMs occurs only in the presence of CD48, and that cis bind-

ing is sufficient to induce substantial levels of baseline

phosphorylation. We have previously shown that 2B4 is
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activation-dependently recruited to membrane microdomains

and that this recruitment is essential for the phosphorylation

of the receptor [28]. As the GPI-anchored CD48 is constitutively

associated with membrane microdomains, its cis interaction

with 2B4 might help to localize 2B4 into these specialized

membrane domains and thereby induce receptor phosphoryl-

ation. Similar findings were described for a growing number

of receptors. On B cells, cis binding of CD22 to sialic acids

leads to phosphorylation of CD22 ITIMs and constitutive

association with SHP1 [31,32]. This tonic inhibitory signalling

is thought to increase the threshold for B-cell activation and

to prevent unwanted/spontaneous B-cell activation [33,34].

Similarly, binding of mouse PIRB to MHC I on the same cell

was shown to dampen accidental mast cell activation by consti-

tutive association with SHP1, thereby increasing the threshold

for activating signals [29]. These findings raise the question

whether cis interaction of 2B4 can influence NK cell functions

in a similar fashion. 2B4 can also have inhibitory functions in

the absence of SAP [35] and we have previously shown that

Csk, SHP1/2 and SHIP can bind to the third ITSM of 2B4 [8]

to mediate these negative signals. However, so far, we were

not able to show a correlation between cis interaction and

association with inhibitory signalling molecules. Additionally,

the interaction between 2B4 and CD48 may be important

for some functions of CD48, as cross-linking of CD48 on

mouse NK cells was shown to induce IL-13 production via

co-clustering of 2B4 and subsequent signalling through 2B4 [36].

Cis binding of Ly49A to MHC I does not induce receptor

phosphorylation [37], but instead reduces Ly49A accessibility

for binding to MHC I ligand in trans by masking the receptor

[18,37]. This sequestration of inhibitory Ly49A accessible in

trans is thought to lower the threshold for activating signals.

A growing number of receptors were shown to encounter

their ligands in cis. Examples are the NK cell receptors

NKp44 [38], Siglec7 [39] and herpesvirus entry mediator

(HVEM) binding to BTLA (B and T lymphocyte attenuator)

on T cells [40]. Similar to Ly49 receptors, cis binding does

not induce receptor phosphorylation or downstream signal-

ling, suggesting that modulation of activation threshold

occurs by competitively inhibiting encounter of activating
ligands in trans. Likewise, our data show that masking of

2B4 by NK cell CD48 abolishes binding of soluble CD48

and interferes with 2B4-mediated signalling during the

encounter of CD48-expressing target cells. One might there-

fore consider a general role for cis interactions in the

regulation of receptor function by modulating the threshold

for receptor engagement in trans.

Along with its role in shaping NK cell activation threshold,

Ly49 cis binding was also shown to impact the education of

mouse NK cells [20]. Both cis and trans binding of Ly49A seem

important for education, as Ly49 mutants only capable to inter-

act in trans are not sufficient for education [41]. There is no

evidence for cis binding of inhibitory NKG2/CD94 or

KIR2DL1 [42], which are necessary for NK cell education in

humans [43]. The signalling adapter SAP is absent in early NK

cell development, resulting in inhibitory 2B4 functions [44,45].

It is, therefore, interesting to speculate that the 2B4 cis interaction

may also play a role during NK cell development. PNH (parox-

ysmal haemoglobinuria) patients carry a somatic mutation

in the PIG-A gene. Mosaicism of haematopoietic stem cells

results in clonal expansion of blood cells lacking GPI-anchored

proteins. A subset of NK cells from PNH donors lacks CD48.

The resulting lack of 2B4 cis interaction may be one reason

why these NK cells show a skewed KIR repertoire [46].

Additionally, reduced numbers of NK cells are found in the per-

iphery due to defective chemokine function [47]. In functional

assays, NK cells from PNH patients did not display defects in

cytotoxicity [48]. However, these assays were performed with

K562 target cells which lack CD48. Therefore, it is unknown

how the absence of CD48 affects 2B4-mediated functions in

these NK cells.

2B4 belongs to the family of SRRs. With the exception of

2B4 all of these receptors are homophilic [4]. As a conse-

quence, any cell expressing a SRR also expresses the ligand

for this receptor on its surface. It is, therefore, interesting to

speculate that also these receptors engage in cis interactions.

While it is difficult to experimentally distinguish between

trans and cis interactions of homophilic receptors, it is likely

that their function is also regulated by cis interactions on

the surface of the same cell.
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4. Material and methods
4.1. Reagents and cells
For flow cytometry the following antibodies (Abs) were used.

PE-labelled anti-CD56 (MEM-188), FITC-conjugated anti-

CD48 Ab (MEM-102), anti-2B4 (C1.7) labelled with FITC,

APC or PE and PE-labelled donkey-anti-goat IgG were pur-

chased from BioLegend. PE-labelled goat-anti-mouse IgG

was purchased from Jackson ImmunoResearch. The anti-iso-

leucine zipper mAb (ILZ-11) [49,50] and rabbit-anti-2B4

[26] antibodies have been previously described. CD48-ILZ

fusion proteins and respective negative controls NKp30-

ILZ, NKp44-ILZ and CS1-ILZ were produced and purified

as described previously [49,50].

The following antibodies were used for immunoprecipita-

tion and western blotting. MOPC21 (Sigma), mouse-anti-2B4

(clone C1.7) and rabbit-anti-HA (clone C29F4, Cell Signaling

Technology) were used for immunoprecipitation. Membranes

were probed with biotinylated anti-phosphotyrosine (4G10,

Upstate), polyclonal goat-anti-CD48 and biotinylated goat-

anti-2B4 antibodies (both R&D Systems) and rabbit-anti-2B4

[26], and HRP-conjugated secondary antibodies goat-anti-

rabbit, goat-anti-mouse, donkey-anti-goat or streptavidin

(all Dianova/Jackson).

All media were purchased from Gibco, Life Technologies

and were supplemented with 10% FCS and penicillin/

streptomycin unless indicated otherwise. Polyclonal pri-

mary NK cells (NKpop) were purified from PBMC using the

UntouchedTM human NK cells kit (Invitrogen), according to

the manufacturer’s instructions. NK cells were between 90%

and 99% NKp46þ, CD32 and CD56þ, as confirmed by flow

cytometry, and were cultured in IMDM, 10% human serum,

1% non-essential amino acids, 1% sodium pyruvate and

100 U ml21 IL-2 (NIH cytokine repository), or IMDM, 10%

FCS, penicillin/streptomycin and 100 U ml21 IL-2.

Cell lines used were HEK293T cells, stably or transiently

transfected with pBABEplus-CD48, pBABEplus-2B4 and

empty pBABEplus vector, respectively, cultured in DMEM

containing 0.5 mg ml21 puromycin. For analysis of 2B4 sur-

face expression, 2 � 105 cells were cultured in 48-well plates

(cell contact) or 75 cm2 flasks (no cell contact) for 8–24 h.

The murine pre-B cell line Ba/F3 stably expressing CD48

was cultured in RPMI supplemented with 50 mM b-ME and

1 mg ml21 puromycin. The GPI-deficient cell line Jurkat J7.X

and the rescue cell line Jurkat J7.P [23] were a kind gift

from Frank Momburg, DKFZ, Heidelberg, Germany. Cells

were maintained in RPMI, J7.P were kept under selection

with 750 mg ml21 geneticin. Jurkat cells stably transfected

with pMOW-2B4 were cultured with 0.5 mg ml21 puromycin.

The IL-2 independent NK cell line NK92.C1, stably expres-

sing IL-2, was grown in alphaMEM containing 12.5% FCS,

12.5% horse serum, 1% penicillin/streptomycin and 50 mM

b-ME.
4.2. Mutagenesis
Mutated variants of 2B4 and CD48 were generated by using

standard PCR techniques as described elsewhere. The mutant

2B4 K68A E70A was generated using the primer published in

Mathew et al. [24]. The following primers were used for

mutagenesis.
2B4 K54A for
 50 C AGC ATT GCA TGG GCG AAG TTG CTG 30
2B4 K54A rev
 50 CAG CAA CTT CGC CCA TGC AAT GCT G 30
2B4 H65A for
 50 GGA TTT CAT GCC ATA TTG AAG TGG G 30
2B4 H65A rev
 50 C CCA CTT CAA TAT GGC ATG AAA TCC 30
2B4 T110A for
 50 CTG GAG GTC GCC AGT ATA TCT GGA AAA G 30
2B4 T110A rev
 50 C TTT TCC AGA TAT ACT GGC GAC CTC CAG 30
2B4 þ CD4b for
 50 CAG GTT TTT GTA TTT CAG AAG GAG GAG GTG 30
2B4 þ CD4b rev
 50 CAC CTC CTC CTT CTG AAA TAC AAA AAC CTG 30
CD4b þ 2B4 for
 50 GGA TTG ACT GCC CGC CTA CAG GGG 30
CD4b þ 2B4 rev
 50 CCC CTG TAG GCG GGC AGT CAA TCC 30
2B4 del127 – 132

for
50 GTT TTT GTA TTT CGC CTA CAG GGG CAG GGG 30
2B4 del127 – 132

rev
50 CCC CTG TAG GCG AAA TAC AAA AAC CTG GAA

CG 30
2B4 del Ig2 for
 50 CAG GGG AAG ATC CAG GAC TGT CAG AAT 30
2B4 del Ig2 rev
 50 ATT CTG ACA GTC CTG GAT CTT CCC CTG 30
CD48 del Ig for
 50 GTG CTT GAC CCT GTA CCA CCC TGT ACC CTG 30
CD48 del Ig rev
 50 CAG GGT ACA GGG TGG TAC AGG GTC AAG CAC 30
h2B4 del stalk

long for
50 CCT GAA TCT CAC TCC GTT TTT GGT GAT CAT CG 30
h2B4 del stalk

long rev
50 G ATC ACC AAA AAC GGA GTG AGA TTC AGG

GTG TG 30
4.3. Flow cytometry
Flow cytometric analysis of intact and permeabilized cells

using mAbs or ILZ fusion proteins was performed as

described [49]. Quantitation of 2B4 and CD48 epitopes per

cell was performed using the QiFi Kit (Dako) according to

the manufacturer’s instructions. All samples were measured

on a FACSCalibur or LSR Fortessa and data were analysed

using the FLOWJO software (TreeStar, Inc.). The relative fluor-

escence index (RFI) for comparison of 2B4 expression levels

was calculated by subtracting the mean fluorescence intensity

(MFI) of staining with the control antibody from the MFI of

the specific staining and dividing the result by the MFI of

the control staining: RFI ¼ (MFI specific 2 MFI control)/

MFI control. Statistical significances were calculated with

two-way ANOVA and Bonferroni’s post test.
4.4. Chemical cross-linking
For chemical cross-linking, 2 � 106 Jurkat cells per sample

were washed twice with ice-cold PBS and were then

resuspended in 250 ml PBS containing 0.7 mM bis(sulfosucci-

nimidyl)suberate (Pierce, Thermo Scientific). Samples were

incubated for 30 min at 48C. Reaction was quenched by

addition of 20 mM (f.c.) Tris–HCl, pH 7.4. Cells were lysed

in 50 ml lysis buffer (150 mM NaCl, 20 mM Tris–HCl, pH

7.4, 10% glycerol, 0.5% Triton X-100, 2 mM EDTA, 10 mM

NaF) supplemented with 0.1% SDS, 0.5% Na-deoxycholate,

1 mM PMSF and 0.1 mg ml21 DNase. Lysates were cleared

by centrifugation and an equivalent of 0.5 � 106 cells was

analysed for 2B4 and CD48 by reducing SDS-PAGE and

western blotting.
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4.5. PI-PLC treatment
Cells were resuspended in medium at a concentration of

1 � 107 cells ml21 and incubated for 1 h at 378C in the

absence or presence of 1 U ml21 PI-PLC (Sigma-Aldrich)

and then washed with medium. Removal of CD48 was

monitored by flow cytometry and cells were immediately

used in functional assays.

4.6. Determination of 2B4 phosphorylation
For establishing 2B4 baseline phosphorylation, 1 � 107 Jurkat

cells per sample were incubated without cell-to-cell contact

in a 175 cm2 flask or with cell-to-cell contact in a 9.6 cm2

well (6-well plate) for at least 2 h at 378C. Then, cells were

immediately put on ice and subjected to lysis and immunopre-

cipitation. Alternatively, PI-PLC-treated or untreated NKL

cells (1 � 107) were incubated without cell-to-cell contact in a

175 cm2 flask or with cell-to-cell contact in a 9.6 cm2 well

(6-well plate) for 1 h at 378C. Then, cells were chilled on ice,

sedimented by centrifugation and lysed. 2B4 phosphorylation

was analysed by immunoprecipitation and western blotting.

NKL HA-2B4 were treated with or without PI-PLC,

washed and incubated for 30 min without cell-to-cell contact

in a T175 flask to eliminate basal 2B4 phosphorylation, and

then immediately put on ice. Pre-treated NKL HA-2B4 were

mixed with an equal amount of normal NKL cells, centri-

fuged to establish cell-to-cell contact and incubated for

10 min either on ice or in a 378C water bath. Incubation

was stopped by addition of ice-cold PBS. Cells were lysed

and HA-2B4 was immunoprecipitated.

To determine target cell-induced 2B4 phosphorylation,

NKL or primary NK cells (1 � 107) were treated with or

without PI-PLC, washed and incubated for 30 min without

cell-to-cell contact in a T175 flask to eliminate basal 2B4

phosphorylation, and then immediately put on ice. Pre-treated

NK cells were mixed with (0.5 � 107) Ba/F3-CD48, centrifuged

to establish cell-to-cell contact and incubated for 10 min either

on ice or in a 378C water bath. Incubation was stopped by

addition of ice-cold PBS. 2B4 phosphorylation was analysed

by immunoprecipitation and western blotting.

4.7. Immunoprecipitation and western blotting
For immunoprecipitation, cells were lysed in lysis buffer

(150 mM NaCl, 20 mM Tris–HCl, pH 7.4, 10% glycerol,

0.5% Triton X-100, 2 mM EDTA, 10 mM NaF) supplemented
with 1 mM Na-orthovanadate, 1 mM PMSF. Pre-cleared

lysates were first incubated for 1 h at 48C with 0.5 mg of con-

trol IgG1 (MOPC21), followed by incubation with 0.5 mg of

the indicated specific antibody, each coupled to 10 ml Protein

G Dynabeads (Life Technologies). Beads were washed three

times in cold lysis buffer and proteins were eluted in 2.5�
reducing sample buffer (5% SDS, 25% glycerol, 12.5% 2-

ME, 0.156 M Tris–Cl (pH 6.8), and 0.01% bromphenol

blue). For western blotting, proteins were separated on 4–

12% SDS NuPage gels (Life Technologies) and transferred

to a PVDF membrane (Millipore). Membrane was blocked

with 5% milk powder in PBS-T and incubated at 48C over-

night with the indicated primary antibodies. After washing,

the membrane was incubated with the respective HRP-

conjugated secondary antibody and developed using

SuperSignal West Pico or Dura (Pierce).
4.8. 51Chromium release assay
Target cells were labelled in 100 ml assay medium (IMDM with

10% FCS and 1% penicillin/streptomycin) with 100 mCi 51Cr

(Hartmann Analytik, Braunschweig, Germany) for 1 h at 378C
in a humidified 5% CO2 incubator. Cells were washed twice

and resuspended at 5�104 cells ml21 in assay medium. Five

thousand target cells/well were used in the assay. NK92.C1

were distributed on a U-bottom 96-well plate. Effectors were

mixed with labelled target cells at different effector-to-target

ratios. Maximum 51Cr release was determined by incubating

target cells in 1% Triton X-100. For spontaneous release, targets

were incubated without effectors in assay medium alone. Plates

were incubated for 4 h at 378C and supernatant was harvested.
51Cr release was measured in a gamma counter. Percentage

specific release was calculated as [(experimental release 2

spontaneous release)/(maximum release 2 spontaneous

release)] � 100. All samples were performed in triplicates.
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