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Abstract

and MDH or eDNA.

Background: Escherichia coli and Staphylococcus aureus are the main pathogens infectious to poultry, and their
resistances against antibiotics have become troublesome currently. Biofilm formation is an important reason for
drug resistance. Our previous research has found that the extract of Camellia oleifera seeds has lots of
pharmacological effects. In order to find the substitute for antibiotics, the saponin was isolated from the defatted C.
oleifera seeds with structural identification. Its efficacy was evaluated by the inhibition on amoxicillin-resistant £. coli
and erythromycin-resistant S. aureus and therapeutic effect on chicks infected by the two bacteria.

Results: The bacterial growth inhibition rate increased and the bacterial count in vivo decreased significantly in
dose dependence after administration of the saponin and its combination with amoxicillin or erythromycin,
suggesting its antibacterial effect. The saponin identified as camelliagenin shows significant inhibition on the
biofilm of E. coli and S. aureus, and it is related to the decrease of mannitol dehydrogenase (MDH) activity and
extracellular DNA (eDNA) content. Molecular simulation reveals the strong interaction existing between the saponin

Conclusions: The mechanism of camelliagenin’s improvement on antibiotic effects is its interaction with MDH and
eDNA in biofilm. The saponin is a prospective substitute of antibiotics, and molecular simulation is a convenient
alternative method to find out hopeful candidates of antibiotics substitute.

Keywords: Camellia oleifera, Camelliagenin, Antibacterial effect, Bacterial biofilm, Antibiotic substitute

Background

Escherichia coli and Staphylococcus aureus are major
pathogenic bacteria infectious to poultry. E. coli causes
the colibacillosis such as acute septicaemia, vitelline
peritonitis, enteritis, genital diseases, and so forth, its
morbidity and lethality are the highest in bacterial
diseases of chicks in China [1, 2]. The pathogen is cur-
rently treated by antibiotics, but its resistance against
antibiotics can be easily acquired, and antibiotics lead to
the deficiency of therapeutic effects [3]. S. aureus can
cause acute septicaemia, arthritis, chick omphalitis,
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cutaneous necrosis and periostitis, and it is another
pathogen leading great economic losses to the animal
husbandry in China [4]. It is also easy to acquire drug
resistance; especially methicillin resistant S. aureus
(MRSA) is resistant to most of antibiotics. The resist-
ance against antibiotics becomes great threat to animals
and human being, and it is meaningful to find out the
antibiotic substitute to reduce the usage of antibiotics.
Herbs and plants offer plenty of compounds, which may
replace antibiotics with strong antibacterial activities.
Camellia oleifera, an evergreen plant, mainly grows in
the middle region of China. Its seeds are used for the ex-
traction of edible oil. The yield of the seeds dramatically
increases in recent years because of plant edible oil re-
quirement and cultivation, the production of defatted
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seeds is up to 800,000 tons per year [5]. Although the defat-
ted seeds are rich in active compounds [6, 7], they have
been discarded without isolation and further exploitation.
The total flavonoids, saponins and polysaccharides were
detected in seeds of Camellia oleifera with the contents of
1-3, 10-14 and 15-20 % respectively [8—10]. The effective
utilization of them will provide large amount of bioactive
products. It is valuable to extract them for industrialization.

Our previous research has found that the extract of
Camellia oleifera seeds have lots of pharmacological
effects such as antioxidation, anti-inflammation and
analgesia, which are mainly due to the saponin [11]. It
is possible to develop the saponin extract as antibiotic
substitute for animal husbandry because of its abun-
dant and cheap resource.

In order to evaluate its effect and discuss the mechanism,
the saponin was isolated from the defatted seeds of C.
oleifera with structural identification. Its efficacy was evalu-
ated by amoxicillin-resistant E. coli and erythromycin-
resistant S. aureus induced infection in chicks. Bacterial
biofilm formation is an important reason for the resistance
against antibiotics, recurrence and difficulty to control by
chemicals [12]. The action mechanism was revealed by in-
hibitory effect of the saponin on biofilm formation through
interaction with mannitol dehydrogenase (MDH) activity
and extracellular DNA (eDNA).

Results and discussion

Purity of the extract and structure of the purified compound
Natural saponins generally exist in forms of glycosides, and
different kinds of glycosides of saponin have been found in
seeds of C. oleifera [13]. Saponin glycosides are soluble in
water and aqueous solvents. The extracts are the mixture
of different glycosides, which can be achieved by current
technique [14]. HCI aqueous solution with ultrasonic ex-
traction applied in our research can hydrolyze saponin gly-
cosides into sapogenin, which are insoluble in water and
easily isolated by precipitation to get the purified products.

Average yield of the saponin extract was (12.5+0.7) %
by the separation technique in three repetitions. Purity
of the extract was calculated by peak areas in HPLC
(Fig. 1). Relative percentage of saponin is (82.3 £ 4.2) %.
The vyield and purity suggests that the technique is prac-
tical and cost effective because the ultrasonic assisted
acid-base alternative extraction does not need organic
solvent and expensive equipment. Ultrasonic can expedite
dissolution in lower temperature, which protects activity
of thermosensitive compounds in the extraction [15].

The purified saponin was amorphous powder, insoluble
in water, and soluble in ethanol, acetone and DMSO. mp
251.2-251.7 °C, m/z 488.1 (M+). There was an absorption
peak of UV at 207 nm. IR spectra: hydroxyl (3435 cm™),
no characteristic absorption of a, p-unsaturated ester and
ether. There were one carbonyl (d 9.49, ] =12.48), two
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olefinic protons (d 8.01, 7.49) but no Tig moiety signal in
"H NMR spectra. The signals of ">C NMR spectra were
shown in Fig. 2 and attributable to the following: 6206.5
(C-25), 143.5 (C-12), 121.6 (C-13), 76.7 (C-19), 74.1 (C-2),
69.7 (C-31), 66.8 (C-16), 57.4 (C-3), 47.5 (C-4, 10, 22),
44.7 (C-17), 42.6 (C-11, 20), 40.3 (C-9, 18), 37.9 (C-5, 6,
15), 31.7 (C-8, 20), 28.4 (C-28, 29), 24.2 (C-14, 34), 15.3
(C-24, 26, 27). It is a sapogenin structure named camellia-
genin (C30H,305), which is consistent with literature [16].
Its structure is shown in Fig. 3.

Inhibitory effect of the saponin on bacteria in vitro and

in vivo

Inhibitory effect of the saponin on bacteria in vitro was
measured by MICy, and ICs, of the camelliagenin on bac-
terial growth in culture medium. MICy of the saponin on
35 strains of E. coli and 30 strains of S. aureus was separ-
ately 714 £ 6.3 pg/ml and 94.5 + 9.7 pg/ml. The camellia-
genin had significant inhibition on growth of both E. coli
and S. aureus, but its effect on E. coli was stronger than S.
aureus suggestive of its selectivity. Amoxicillin and
erythromycin had no obvious inhibitory effects on the
two bacteria, indicating that the bacteria were resistant
against the antibiotics. The camelliagenin plus antibiotics
had better inhibition on bacteria than the camelliagenin
or antibiotics alone, showing that the camelliagenin can
strengthen bacterial sensitivity to antibiotics (Table 1).

Inhibition of the camelliagenin on bacteria in vivo was
evaluated by its therapeutic effect on chicks induced by
E. coli and S. aureus. Chicks in negative groups showed
serious symptoms of depression, anorexia, dullness, and
diarrhea. Amoxicillin and erythromycin did not relieve
these symptoms obviously, suggesting bacterial resistance
against the antibiotics. The camelliagenin and combined
administration of the camelliagenin and antibiotics signifi-
cantly (p < 0.01) increased the body weight, immune organ
index and reduced bacterial counts of liver in dose depend-
ence, indicating that the camelliagenin enhances bacterial
sensitivity to antibiotics and improves chicks immunity.
The results are shown in Fig. 4. It further proves that the
camelliagenin can not only substitute antibiotics, but also
enhance antibiotic effects.

In order to reduce the number of experimental animals
and limitation of models, inhibitory tests were both carried
out on bacteria in vitro and in vivo. The results show posi-
tive effects on inhibition of bacterial growth, indicating that
the camelliagenin is promising as an effective antibacterial
agent for E. coli and S. aureus. It may take effects on other
kinds of bacteria, but needs further evaluation.

Effects of the camelliagenin on biofilm formation and
exudates

Bacterial biofilm is a key factor to induce resistance
against antibiotics and a target of new antimicrobials
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Fig. 2 NMR spectra of the camelliagenin
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Fig. 3 Structures of the saponin isolated from the defatted seeds of Camellia oleifera

[17]. Thus the biofilms of E. coli and S. aureus were an-
alyzed in our research. The results showed that amoxi-
cillin or erythromycin had no different effect on
biofilms from negative group (Table 1), and ICsq of the
camelliagenin on biofilm of the two bacteria were
lower than that of amoxicillin or erythromycin at sig-
nificant level (p <0.01). It indicates that antibacterial
effects of the camelliagenin are related to its inhibition
on bacterial biofilm formation.

The expression of specific genes is involved in biofilm
formation and responsible for bacterial drug resistance
[18]. The main difference between biofilm bacteria and
planktonic bacteria is that biofilm bacteria are tightly

Table 1 Inhibition concentration (ug/ml) of the saponin extract
on 50 % bacterial growth and biofilm formation of Escherichia
coli and Staphylococcus aureus

Groups E. coli S. aureus

Growth Biofilm Growth Biofilm
Amo 726+79  728+96  1386+110 1298+105
Sap 502+57°  436+42°  796+91°  702+102°
Sap:Amo (1:1)  304+65*° 228+52*° 590+96%° 524+80%°
Sap:Amo (5:1) 234456 186+57°F 432+59* 392+35%°
Sap:Amo (10:1) 21.6+5.1%° 156+35%  352+45%  302+70%°
Ery 692+63  656+105 1262+67  1228+83
Sap:Ery (1:1)  282+52°¢ 268+6.8°¢ 51.6+80°° 444+6.1°¢
Sap :Ery (5:1)  244+47°° 192+48°¢ 354+53°C  286+63°¢
Sap :Ery (10:1)  134+39°¢ 128+51°¢ 276+57°° 228+62°¢

Data were presented as mean + standard deviation (n =5)
Amo amoxicillin, Sap saponin, Ery erythromycin

p < 0.01, compared with amoxicillin

Pp < 0.01, compared with the saponin

°p < 0.01, compared with erythromycin

packed and wrapped in their own secreted extracellular
polysaccharide matrix called extracellular polymeric sub-
stances (EPS). The main component of EPS is alginate
[19]. Mannitol dehydrogenase is a key enzyme in algin-
ate synthesis process of biofilm [20]. Some antimicrobials
can destroy biofilm formation since it inhibits activity of
mannitol dehydrogenase in biosynthetic pathway of alginate
[21]. In addition, large amount of extracellular DNA
(eDNA) is found in the biofilm [22], it not only affects the
formation of biofilms, but also increases the resistance of
biofilms by chelating cation [23]. It is proved that eDNA
enzymes can clear immature biofilm in vitro [24], and
biofilm formation can be regulated by mannitol de-
hydrogenase and eDNA [25].

MDH and eDNA in biofilm were measured respect-
ively by a decrease in the absorbance of reactive mixture
at 340 nm and biofilm lysate at 260 nm compared to un-
treated controls. AAzy and AA,g increased significantly
(p<0.01) after the treatments of the camelliagenin at
concentration dependence (Fig. 5). It suggests that they
play a role in the inhibition of MDH and eDNA in the
biofilms.

Interaction of the camelliagenin with mannitol
dehydrogenase and eDNA

Molecular docking as a better method of molecular
simulation is applied in this research. Docking simula-
tion shows that the saponin can interact with mannitol
dehydrogenase (MDH) and eDNA. Each molecule suc-
cessfully docks in 10 poses. The average binding energy
is separately -86.94+1.99 kcal/mol and -105.01+
1.19 kcal/mol, the average interactive energy is respect-
ively 39.70 + 2.28 kcal/mol and 19.77 + 1.64 kcal/mol. It
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Fig. 4 The effects of the saponin on body weight increase (a), spleen index (b), thymus index (c) and bacterial count (d) in liver of chicks
infected by Escherichia coli and Staphylococcus aureus. Chicks in each group were injected intraperitoneally by 0.2 ml (1 x 10% CFU/ml) of E. coli or
S. aureus suspension except normal group, 10 h later administered with feed containing erythromycin (50 mg/kg) or the saponin (50 mg/kg in
low dose, 250 mg/kg in middle dose, 500 mg/kg in high dose) respectively for consecutive 3 d. The chicks were weighed, monitored for 14 d. a,
p < 0.01, compared with negative group; b, p <0.01, compared with erythromycin group. Nor: normal group; Neg: negative group; LDS: low dose
of the saponin; MDS: middle dose of the saponin; HDS: high dose of the saponin; Ery: erythromycin; LDSE: low dose of the saponin +
erythromycin; MDSE: middle dose of the saponin + erythromycin; HDSE: high dose of the saponin + erythromycin
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suggests that the camelliagenin can spontaneously bind
to MDH and eDNA and exerts stronger interaction.
Mimic diagrams of the camelliagenin binding to manni-
tol dehydrogenase and DNA are shown in Fig. 6, illus-
trating that they can well bind and interact with each
other.

Based on the lock-key principle and complementary
structural hypothesis, molecular docking simulates mu-
tual interaction between ligand and receptor [26]. If re-
ceptor and ligand can interact, they must approach each
other, and then combine in a particular conformation of

the binding site, finally reach stable complex by adjust-
ing conformation. Correct affinity prediction is condu-
cive to drug design and screening. The main factors
affecting the binding stability of ligand and receptor are
hydrophobic force and bonding force. Free energy value
is an important parameter for evaluation of docking af-
finity, binding activity and stability of receptor and lig-
and, and it can be used to judge the interaction of ligand
and receptor. We simulated the interaction of the camel-
liagenin with mannitol dehydrogenase and eDNA, the re-
sult shows a good correlation between the interaction and
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Fig. 5 Activity of mannitol dehydrogenase (a) and content of extracellular DNA (b) in bacterial biofilm affected by the saponin and

antibiotics (x 4+ 5, n=5). Data were measured respectively by a decrease in the absorbance of reactive mixture at 340 nm and biofilm lysate
at 260 nm compared to untreated controls. A 340 nm reflects decrease of mannitol dehydrogenase activity, and A 260 nm reflects decrease
of eDNA in biofilm. a, p < 0.01, compared with amoxicillin; b, p < 0.01, compared with the saponin; ¢, p <0.01, compared with erythromycin.

its anti-biofilm effect. It suggests that molecular docking
can be used to predict the saponin effect on biofilm
inhibition.

Saponins are detergent-like substances showing antibac-
terial potential, and the mechanism deserves discussion.

The critical micelle concentration of the camelliagenin is
0.5 % [27], but its MICy, and ICs, are far away from the
concentration whereas it shows detergent activity, demon-
strating that its antibacterial activity is not due to the sur-
face property. It is reported that the effect of saponin is
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(b)

Fig. 6 Interaction of the saponin with mannitol dehydrogenase (a) and extracellular DNA (b)

associated with the changing of membrane permeability of
Gram-negative cells in contrast to Gram-positive cells.
Saponin might interact with Gram-negative cells compo-
nents, like lipid A and thereby increase the permeability of
bacterial cell wall [28]. Because the camelliagenin can re-
duce mannitol dehydrogenase and eDNA in biofilm, we
provide a new hypothesis that the camelliagenin interacts
with key components in biofilm, and blocks their activities
in biofilm formation. The interaction of the camelliagenin
with mannitol dehydrogenase and eDNA contributes to its
anti-biofilm activity.

Conclusions

The camelliagenin is isolated from the defatted seeds of
C. oleifera by ultrasonic assisted acid—base alternative
technique. This is cost effective for industrialization be-
cause no organic solvent and expensive equipment are
applied in the process. It is identified as camelliagenin
and has significant antibacterial activities on E. coli and
S. aureus in vitro and in vivo. It suggests that the

camelliagenin is hopeful candidate for prevention of
antibiotic resistance. The effects of the camelliagenin in-
clude its inhibition on bacterial biofilm formation, which
is related to MDH and eDNA in the biofilm. The camel-
liagenin can spontaneously bind to and interact with
MDH and eDNA. That could be the mechanism of the
camelliagenin action on the two bacteria.

Methods

Drugs and bacteria

The defatted seeds of Camellia oleifera Abel were col-
lected from oil manufacturing company (Meizhou, China).
Escherichia coli was collected from fecal samples of chicks
with generalized colibacillosis in Guangdong Chicken
Farm, and identified as amoxicillin-resistant E. coli using
the reported method [29]. Staphylococcus aureus was col-
lected from nasal swab species of chicks with staphylocosis
in Guangxi Chicken Farm, and identified as erythromycin-
resistant S. aureus by the method in the reference [30]. The
fecal and nasal samples from the chickens were taken
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after we obtained consent from the farm owners. E. coli
control strain ATCC25922 and S. aureus control strain
ATCC25923 were purchased from Guangdong Microbial
Institute (Guangzhou, China). Reagents for biofilm assay
were NH broth, crystal violet, amoxicillin and erythromycin
purchased from Shanghai Hualan Biochemical Company
(Shanghai, China). Chemical reference substance camellia-
genin was bought from Shanghai Chemicals Company
(Shanghai, China). Other reagents were purchased from
Guangzhou Reagent Company (Guangzhou, China).

Animals

The experiments were carried out on ten-day-old male
Roman chicks. The chicks were housed under conditions
of 24 +2 °C, 50 £ 10 % humidity with a 12 h light/ dark
cycle for 1 week adaptation. Food and water were ac-
cessible ad libitum. The experiments have been per-
formed in accordance with the Chinese guidelines for
the use of laboratory animals, and received approval
from the animal experimentation ethic committee of
South China University of Technology. All efforts were
made to minimize animal suffering and to reduce the
number of animals used. All sections of this report ad-
heres to the ARRIVE guidelines for reporting animal re-
search. A completed ARRIVE guidelines checklist is
included in Checklist.

Procedure of the isolation

1 kg of the defatted seeds of C. oleifera were crushed to
pass through 20 mesh sieve, submerged in 2 % HCI
aqueous solution (water / seeds =20 / 1 in ml / g) with
ultrasonic at 300 W for 1 h. In order to protect the com-
pounds from heat, temperature was controlled below
60 °C with cooling water. The extract solution was stood
for 5 h. The precipitate was washed with 1000 ml of 2 %
NaOH and 500 ml of water, and dried in vacuum to get
the saponin extract.

Determination of purity by HPLC

The analysis of saponin was run on HP 1100 HPLC
(Agilent Company, USA) in the following operating
conditions: column: Hypersil ODS (250 x 4.6 mm,
5 pm); flow phase: methanol/water (80/20); injection
volume: 10 pl; flow rate: 1 ml/min; temperature: 25 °C;
wavelength: 209 nm [31].

Structure determination
1 g of saponin extract was dissolved in 5 ml of 80 %
methanol, and purified by silica gel chromatograph with
elution by chloroform/methanol (8/2). The peaks were
collected and dried in vacuum, and 0.5 g saponin was
obtained for structural analysis.

UV spectra analysis was carried out on UV-3010 Ultra
violet spectrometer (Hitachi Company, Japan) scanning
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from 200 to 600 nm. IR spectra were measured on Nicolet
380 FI-IR spectrograph (Nicolet Apparatus Company,
USA) with KBr tablets from 4000 to 400 cm™ with reso-
lution 2 cm™. Mass spectra were recorded on Bruker
Esquire Hct Plus Mass spectrometer with ESI (Bruker
Company, Germany) in m/z of cation model scanning
from 150 to 1200 for 60 min. NMR spectra were deter-
mined on 400 MHz AM NMR (Bruker Company,
Switzerland) in DMSO-d, operating at 101 MHz for
'>C NMR and 400 MHz for '"H NMR.

Antibacterial activity

The antibacterial activity of the saponin against E. coli and
S. aureus was examined using the microbroth dilution
method according to the CLSI standard [32]. Thirty-five
strains of E. coli and 30 strains of S. aureus were isolated
using the method reported [33, 34], they were respectively
inoculated in broth medium, which was cultured for 24 h
at 37 °C, and diluted to 10> CFU/ml. Serial dilutions were
prepared from 500 pg/ml of the saponin using DMSO to
make 500, 250, 125, 62.5, 31.25, and 15.625 pg/ml. The
wells were inoculated with 0.1 ml aliquot of test bacteria
(10° CFU/ml) having serial dilutions of the saponin (50 pl,
each). The micro plate was incubated at 37 °C+1 °C for
24 h. Dilution of the saponin to respective test organism
showing no visible growth was considered as MIC. The
minimum inhibitory concentration on 90 % bacterial strains
was calculated as MICyj.

Bacterial biofilm experiment

Bacterial biofilm experiments were carried out according to
the reference [35]. The diluted bacteria (10° CFU/ml) of E.
coli and S. aureus were divided into the saponin groups,
negative control (no drug), antibiotic groups (amoxicillin
and erythromycin) and groups of the saponin plus antibi-
otics (1:1, 5:1, 10:1) with 5 repetition wells for each. The ex-
tracts were dissolved with water to 500 pg/ml. 50 pl of drug
solution and 450 pl of diluted bacteria (final drug concen-
tration 50 pug/ml) were mixed in one well of 24 well plates,
cultured for 24 h, and then absorbance in 490 nm (ODq)
was measured with water as blank to calculate the bacterial
growth inhibition rate. The medium in the cell was care-
fully removed and washed 3 times with 1 ml of distilled
water, and 1 % crystal violet solution (500 pl) was added to
dye the biofilm. 30 min later, the solution was aspirated,
and 500 pl of ethanol was added to extract crystal violet
from the biofilm. The absorbance in 560 nm (ODs¢y) was
determined with ethanol as blank to calculate the biofilm
inhibition rate.

Bacterial growth inhibtion rate (%)
Negative OD,99—Drug OD
_ (Negative 490 rug ODyg) « 100%
Negative OD.g
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Biofilm inhibition rate (%)

Negative ODs¢p—D OD
_ (Negative .560 rug 560) « 100%
Negative ODs¢

Inhibitory concentrations (ICs) of the drugs on 50 %
bacterial growth and biofilm formation were determined
by dilution until the inhibition rate was 50 %. It is used
as the index to evaluate the inhibitory effects on bacteria.

Assay of mannitol dehydrogenase and extracellular DNA
in biofilm

The saponin extract and the antibiotics were diluted to
final drug concentration in culture medium at 50, 25,
12.5, 5, 2.5, 1 pg/ml for 48 h bacteria culture. After re-
moving the medium, the biofilm was homogenized in
500 pl of 50 mmol/l phosphate buffer (pH 5.5), 10 pl of
the supernatant was taken for enzyme activity assay, and
the rest was used for extracellular DNA determination.

Mannitol dehydrogenase (MDH) activity was determined
according to a modified method [36]. Briefly, MDH was
measured by the decrement of NADH, which was moni-
tored by the absorbance at 340 nm. The reaction mixture
contained 50 pl of 200 mM sodium phosphate buffer
(pH 5.5), 50 pl of 2 mM NADH, 50 pl of water and 10 pl of
the biofilm extract. The mixture was maintained at 32 °C
for 2 min, and the reaction was started by adding 40 pl of
1 M fructose and lasted for 5 min. The absorbance at
340 nm was detected by UV-3010 spectrometer (Hitachi
Company, Japan).

Extracellular DNA (eDNA) was measured in the fol-
lowing protocol [37]. The biofilm extract was mixed
with 10 U/ml cellulase at 37 °C for 1 h, followed by
treatment with 10 U/ml proteinase K for another 1 h.
Treated samples were centrifuged at 10, 000 g for
10 min. The supernatant was collected and the absorb-
ance was detected at 260 nm by UV spectrometer to de-
duce eDNA content in biofilm.

Antibacterial test in vivo

The antibacterial tests were performed as the reported
with some modification [38]. Two tests including E. coli
and S. aureus were carried out separately. For one test,
the chicks were randomly divided into 9 groups with 30
chicks in each group, including normal group, negative
group, antibiotic group, the saponin extract and the sap-
onin extract plus antibiotic groups in high, middle and
low dose. The groups of chicks except normal group were
injected intraperitoneally with 0.2 ml of 1x 10° CFU/ml
bacterial suspension, 10 h later they were administered with
1 kg of feed containing 50 mg amoxicillin or erythromycin
in antibiotic group, 50 mg, 250 mg and 500 mg in low,
middle and high dose of the saponin extract respectively
for consecutive 3 d. The doses were based on regular use of
antibiotics and safety of the saponin [39]. The chicks were
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weighed, monitored for 14 d, and evaluated by relief of
symptoms of anorexia, lassitude, diarrhea, etc. [40]. The
chicks were euthanized on the fifteenth day, thymus and
spleen were removed and weighed to calculate immune
organ index (organ weight / body weight). Chick liver was
plated onto Tryptose Soya Agar (TSA) plates for bacterial
colony count, and the bacterial density was expressed as
the number of CFU per liver.

Simulation of molecular interaction

Molecular docking was simulated by Discovery Studio V2.5
software (Accelry Inc., CA, USA) in the following proced-
ure [41]. Structural data of mannitol dehydrogenase and
eDNA were downloaded from Brookhaven Library. The
missing amino acids and hydrogens were supplemented,
and excessive protein conformation was removed. Mannitol
dehydrogenase and eDNA were separately defined as the
receptor, and then binding sites and coordinates were de-
fined. A new plot window was open to draw structure of
the extracts, optimize 3 D geometric structures, and apply
CHARMmM force field to ensure correct bond length, bond
angle in a state of energy stability. CDOCKER Protocol was
run to obtain binding parameters, which are used to evalu-
ate the interaction. CDOCKER energy and CDOCKER
interaction energy are two important parameters, and their
absolute values are in according with the affinity and action
force between the receptor and ligand.

Statistical analysis

Data was presented as mean + standard deviation (% =+ s).
SPSS 11.0 software (SPSS Inc., USA) was used to analyze
the data of animal tests in groups by one-way ANOVA
and Dunnett’s test.
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