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Introduction: Establishment of a cell classification platform for evaluation and selection of human
pluripotent stem cells (hPSCs) is of great importance to assure the efficacy and safety of cell-based
therapy. In our previous work, we introduced a discriminant function that evaluates pluripotency
from the cells’ glycome. However, it is not yet suitable for general use.
Methods: The current study aims to establish a high-precision cell classification platform introducing
supervised machine learning and test the platform on glycome analysis as a proof-of-concept study. We
employed linear classification and neural network to the lectin microarray data from 1577 human cells
and categorized them into five classes including hPSCs.
Results: The linear-classification-based model and the neural-network-based model successfully pre-
dicted the sample type with accuracies of 89% and 97%, respectively.
Conclusions: Because of the high recognition accuracies and the small amount of computing resources
required for these analyses, our platform can be a high precision conventional cell classification system
for hPSCs.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Human pluripotent stem cells (hPSCs) such as induced plurip-
otent stem cells [1,2] and embryonic stem cells [3] play a central
role in regenerative medicine, due to their pluripotency of differ-
entiation and unlimited self-renewal abilities [4]. A number of re-
searchers have developed technologies using hPSCs that have
advanced to clinical trials [5e10]. However, it is still a challenge to
evaluate the characteristics of hPSCs used for treatments [11].
Establishment of a high-precision cell classification method is of
great importance in order to define criteria for the selection of
hPSCs and to assure the efficacy and safety of cell-based treatments.
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Lectin microarrays are recognized as powerful analytical plat-
forms for understanding the type and condition of cells [12]. This is
a technology that enables rapid quantitative analysis of the gly-
come, the whole glycan profile of a sample [13,14]. In this method,
glycans of glycoproteins are captured with lectins, which are pro-
teins that specifically interact with glycans. Lectin microarray uti-
lizes a series of lectins to enable the simultaneous detection of
multiple kinds of glycans. Owing to their sensitivity and high-
throughput performance [15], lectin microarrays have been used
to uncover biomarkers or typical glycome patterns of the cells or
glycoproteins of interest [16e23]. Such research includes our prior
studies on endometrial cancer cells [24] and hPSCs [25]. The latter
work describes two lectins that act as markers of pluripotency and
generated a discriminant tool that can be used to evaluate the
pluripotency of cells based on lectin microarray data. Although it
achieved 100% accuracy, it is not practical for three reasons: (i) the
tool was derived and tested with a small number of samples (less
than 100); (ii) the test samples were composed of a few types of
cells; and (iii) the tool depended on data from only a few lectins.
Despite the uncertainty of usefulness of this preliminary tool, the
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work indicates that the glycome has a potential to be a powerful
information source for building a cell classification platform.

Machine learning is effective for data analysis inmany aspects of
modern medicine, including diagnosis and prediction of outcome
of patients [26e31]. In this study, we employed supervised ma-
chine learning method, one of the machine learning methods that
analyzes labeled data. Supervised machine learning method allows
the model to optimize parameters that define decision boundaries
through repetitive training of the dataset. Two commonly used
methods of supervised machine learning, linear classification and
neural network, were adopted to our cell classification models. One
of the most significant differences in these algorithms is the flexi-
bility of a decision boundary. The former represents the boundary
as a linear combination of features, whereas the latter does so in a
non-linear form. This enables neural-network-based model to form
a more complex boundary than that of the linear-classification-
based model. In this study, we demonstrate that an analytical
platform of supervised machine learning on lectin microarray data
exhibited a high capability for multiclass cell classification by cell
types. Our study provides an answer to one of the fundamental
questions for the establishment of an evaluation system of hPSCs:
Which analyses can perform cell classification effectively? The re-
sults of this study may pave the way to a wide application of hPSCs
to cell-based treatments by enriching the foundational knowledge
in constructing cell classification system of the hPSCs.
2. Results

Our dataset consists of lectin microarray data from 1577 human
cell samples with 45 different lectins (Table S1). Each sample was
manually annotated as one of the five classes: pluripotent stem
cells, mesenchymal stromal cells, endometrial and ovarian cancer
cells, cervical cancer cells, or endometrial cells. After pre-
processing of the dataset, we performed principal component
analysis (PCA), an unsupervised machine learning method, to
visualize the datasets. Then we designed supervised machine
learning models with a linear classification and a neural network.
Furthermore, we extracted weight coefficients of the lectins in the
decision boundaries from linear-classification-based classifiers, i.e.
trained models.
2.1. Data visualization by PCA

PCAwas performed on 12 different datasets that were generated
by the unique combinations of four pre-processing methods (see
Experimental Procedures). None of the PCA plots showed clear
clusters by class (Fig. S1), including those of the raw dataset
(dataset A) and one of the pre-processed datasets (dataset H)
Fig. 1. PCA plots of dataset A (the raw dataset) and dataset H (the dataset subjected to corr
ratios at PC2 were 0.87 and 0.41, respectively. See also Fig. S1.
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(Fig. 1). Dataset H was subjected to the minmax-normalization of
the fluorescent values among the samples to remove the experi-
mental bias and among the features to uniform the value range.
Dataset H was adopted for further analyses because i) its pre-
processing method included data corrections which were impor-
tant for effective machine learning and ii) its PCA plot was less
biased than others.
2.2. Cell classification by supervised machine learning methods

Linear classification and neural network are two commonly
used supervised machine learning methods. For both algorithms,
we first optimized hyper-parameters, which cannot be tuned by the
machine learning model itself, and then generated classifiers (see
Experimental Procedures). All of the supervised machine learning
analyses for classification employed leave-one-out cross-validation
to maximize the number of training samples within the limited
data. In this method, one of the samples was assigned as the test
sample and themodel was trained on the rest of the samples, hence
the classifiers were generated as many as the total number of the
samples [32]. The recognition accuracy, an index of the recognition
ability of the model, was calculated by dividing the number of
correct predictions (the sum of the number of true positives and
true negatives) by the number of the samples (1,577).

Two hyper-parameters, regularization weight and the number
of epochs, were optimized for linear-classification-based model.
The former is involved in howmuch the parameters are updated in
each iteration and the latter defines the number of repetitions of
learning. The overall recognition accuracy, which is the recognition
accuracy for all the samples, showed two peaks (88.7%) at regula-
rization weights 3 and 30 (Fig. 2A). Since a small regularization
weight slows the learning compared to a large one, the recognition
accuracy of the model with a smaller regularization weight is
considered to havemore room for improvement when the numbers
of epochs are the same. Therefore, regularization weight was set to
3 for further analyses. With the regularization weight at 3, the
overall recognition accuracy reached its highest score (89.0%) at
240 epochs (Fig. 2B). With these hyper-parameters (regularization
weight: 3, the number of epochs: 240), the overall recognition ac-
curacy was 89.3 ± 0.1% (standard error of the mean). The recogni-
tion accuracy of the best predicted class (mesenchymal stromal
cell) was 97.7 ± 0.1% and that of the worst predicted class (endo-
metrial and ovarian cancer cell) was 74.8 ± 0.2% (Table 1). In order
to test these recognition accuracies were not achieved by chance,
the prediction was performed in the same protocol on a shuffled
dataset, the dataset of which labels were reassigned randomly. The
overall recognition accuracy of the model on the shuffled dataset
was 26.8 ± 0.2% (Table S2) and this confirmed that the recognition
ection of the fluorescent values among samples and probes). Cumulative contribution



Fig. 2. Hyper-parameter optimization of the linear-classification-based model (A) Regularization weight (B) Number of epochs.

Table 1
Recognition accuracy of linear-classification-based classifiers.

Class Number of samples Recognition accuracy [%]

Pluripotent stem cell 391 92.7 ± 0.1
Mesenchymal stromal cell 511 97.7 ± 0.1
Endometrial and ovarian cancer cell 313 74.8 ± 0.2
Cervical cancer cell 48 84.0 ± 1.1
Endometrial cell 314 86.7 ± 0.2
Total 1577 89.3 ± 0.1
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accuracy of the model on the original dataset was not achieved
randomly.

Three hyper-parameters, i.e. the number of hidden layers of a
model, the number of nodes in each hidden layer and the number
of epochs, were tuned for a neural-network-based model. The first
two are the parameters that regulate the complexity of the model.
The highest recognition accuracy was achieved by the three-
hidden-layer model, however, the two-hidden-layer model was
adopted for the further analysis, considering the trade-off between
the performance and the complexity of the model. The recognition
accuracies of the models with two to five hidden layers were
roughly within the same range (95.4%e95.8%) and were higher
than that of the single-hidden-layer model (94.7%), therefore, the
model was expected to have at least two hidden layers for the best
performance. However, the number of hidden layers were
encouraged to be kept minimal in order to simplify the model itself
and the optimization of the number of nodes in each hidden layer.
Hence, the model with two hidden layers were adopted to
compromise these requirements. The overall recognition accuracy
of this model marked the highest score of 97.1%, when both hidden
layers had 300 nodes (Fig. 3BeE). The increase in the complexity of
the model accompanied both rise and drop of the overall recogni-
tion accuracies within this search area. This implies that complexity
contributed to better prediction within the range where the
recognition accuracies rose, however, it induced overfitting in the
area where the accuracies dropped (Fig. S2). Overfitting is a situa-
tionwhere generalization ability of a model drops due to exceeding
the adaptation of the decision boundary to the limited training
dataset. It becomes an issue when the flexibility of a model exceeds
the need [33]. Taking these observations into consideration, the
model with 300 nodes in each hidden layer was selected. The best
recognition accuracy of this model was 97.8% at 120 epochs
(Fig. 3F). With the optimized hyper-parameters (the number of
hidden layers: 2, the number of nodes in each hidden layer: 300,
the number of epochs: 120), the model was run three times to test
its performance. The overall recognition accuracy of the model
reached 97.4 ± 0.2% (Table 2). The best class prediction was for
mesenchymal stromal cells, with a recognition accuracy of
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98.6 ± 0.2%, and the worst class prediction was for cervical cancer
cells, with an accuracy of 95.6 ± 0.5%. The recognition ability of the
neural-network-based model was also tested on the shuffled
dataset. The overall recognition accuracy on the shuffled dataset
was 24.8 ± 0.5% (Table S3). This confirmed that the recognition
accuracy of the model on the original dataset was not achieved by
chance.

2.3. Glycome pattern extraction via linear classification

Weight coefficients of the features were extracted from the
decision boundaries to better understand the contribution of each
lectin to the coefficients. The regularizationweight and the number
of epochs were set to 3 and 240, respectively, as previously opti-
mized. All 1577 samples were used as training data in this analysis
in order to maximize the number of training samples. Each class
demonstrated distinctive patterns of weight coefficients (Fig. 4).
The lectins that strongly influenced the prediction of the cells were
detected as those with large absolute values of weight coefficients
in the decision boundaries.

3. Discussion

Establishment of a high-precision cell classification method is a
challenge that calls for solutions to assure efficacy and safety of cell-
based treatments through evaluation and selection of hPSCs. As a
starter for approaching this challenge, our research proposed that a
supervised machine learning platform on lectin microarray data
was one of the prospective methods to realize a practical cell
classification platform. We demonstrated that an analytical plat-
form that employed supervised machine learning on lectin micro-
array data exerted high capability in multiclass cell classification.
Our linear-classification-based and neural-network-based models
predicted the samples into one of the five classes with high
recognition accuracies of 89% and 97%, respectively. These results
show that both of the supervised learning models succeeded in
capturing the difference of the data distribution of the classes in
multi-dimensional space, whereas PCA, one of the widely-used



Fig. 3. Hyper-parameter optimization of the neural-network-based model (A) Number of hidden layer(s) (BeE) Number of nodes in each hidden layer (F) Number of epochs.

Table 2
Recognition accuracy of neural-network-based classifiers.

Class Number of samples Recognition accuracy [%]

Pluripotent stem cell 391 97.8 ± 0.2
Mesenchymal stromal cell 511 98.6 ± 0.2
Endometrial and ovarian cancer cell 313 95.6 ± 0.5
Cervical cancer cell 48 96.5 ± 1.5
Endometrial cell 314 96.7 ± 0.2
Total 1577 97.4 ± 0.2
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unsupervised machine learning methods to analyze lectin micro-
array data, failed. Moreover, they suggest that the majority of the
data points can be separated by linear hyperplane in a high-
dimensional space. Comparing our two supervised machine
learning models, the one designed with the neural network per-
formed better (8% higher score in overall recognition accuracy).
This suggests that the neural-network-based model succeeded in
drawing decision boundaries among the data points including
those that were inseparable by linear hyperplanes. This flexibility of
the decision boundaries is considered to stem from the nature of
the neural network to draw nonlinear decision boundaries.

The high recognition accuracies of the models, especially that of
the model based on neural network, satisfied our expectation for
this study. This success is partially due to the characteristics of
198
lectin microarray data. The data in this study were derived from 45
lectins, which means the number of the input features for our
models was 45. This number is quite small compared with other
applications of supervised machine learning where input data with
more than thousand features are not uncommon. This small
number of features contributed to the high recognition accuracies
of our models, though enabling a detailed hyper-parameter opti-
mization by shortening the computational time the models
required. This indicates that unlike gene expression microarray
data which often have 10,000 probes, lectin microarray yields
intriguing biological data to be used with supervised machine
learning.

Furthermore, we showed theweight coefficients of lectins to the
decision boundary of each class by the linear-classification-based



Fig. 4. Weight coefficients of the lectins in each decision boundary drawn by the linear-classification-based classifiers. See also Table S1.

M. Shibata, K. Okamura, K. Yura et al. Regenerative Therapy 15 (2020) 195e201
classifiers. Unlike the neural network, a decision boundary from
linear classification is expressed as the linear combination of the
features. Hence, it is easier to interpret the contributions of each
probe to the decision boundaries drawn by the model designed
with linear classification. In this study, the model was built for
multiclass classification, where decision boundaries are formed to
distinguish the class of interest against all the others. The pattern of
weight coefficients of each decision boundary was unique, sup-
porting that the five classes in this work were indeed composed of
types of cells that had different glycome patterns. The absolute
values of the weight coefficients demonstrate how influential the
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values of the features are for the samples to be predicted as the
class of interest. The negative coefficients in the hyperplane mean
that the lectins were expressed less in the class than in all the other
classes and positive coefficients mean that the lectins were
expressed more in the class than the others.

For instance, to the decision boundary between pluripotent
stem cells and other four classes of cells, Calsepa, a lectin that binds
specifically to mannose and maltose, showed the largest positive
coefficient, while TJA-I, whose binding specificity is Siaa2-6Gal/
GalNAc, had the largest value in negative coefficients. TJA-I is highly
expressed not only in pluripotent stem cells, but also in other types



M. Shibata, K. Okamura, K. Yura et al. Regenerative Therapy 15 (2020) 195e201
of cells [24,25]. The preprocessing of the dataset used for the
classification included normalization of the value range of the
fluorescent intensity among lectins. This means that this dataset
focuses on the relative differences of the fluorescent values among
the cell classes rather than the absolute intensity values of the
signals among lectins. In the case of TJA-I, the subtle change in
signal contributes significantly to the cell classification. Hence, our
interpretation here does not contradict the observation that TJA-I
signal is highly expressed in hPSCs as well as other classes of cells.

The high recognition accuracies of the supervised machine
learning classifiers supported our expectation that the combination
of supervised machine learning and lectin microarray was an
effective approach for multiclass cell classification by cell types.
However, there are still a large gap between our models in this
study and a model for quality evaluation of hPSC-based products in
regenerative medicine. A predominant contributor for this gap is
lack of information on efficacy and safety. Priority of the future
work is to prepare lectin microarray dataset of hPSC-based prod-
ucts including annotation of safety and efficacy and build a super-
vised machine leaning model to test whether our combinatorial
analysis platform can predict safety/efficacy with accuracy as high
as that for cell type prediction. We conclude that supervised ma-
chine learning analysis on lectin microarray data is a powerful
candidate for a high-precision multiclass cell classification system.
This study will serve as the first step to assure efficacy and safety of
cell-based products by providing the knowledge for one of the
effective analysis methods to perform cell classification.

4. Experimental Procedures

4.1. Lectin microarray data and data visualization

The lectin microarray data was derived from 1577 samples and
45 lectins andwere retrieved fromour previous studies [24,25]. The
fluorescent values of each sample were measured on a TIFF file of
the microarray chip by bundled software provided by Glyco-
Technica. Each sample was manually annotated as one of the five
classes: pluripotent stem cell, mesenchymal stromal cell, endo-
metrial and ovarian cancer cell, cervical cancer cell, and endome-
trial cell (Table S4). The annotated data were then subjected to
different pre-processing methods to generate 12 unique datasets
(dataset A to L). The pre-processing methods consisted of none or
combinations of the following four methods: (i) minemax
normalization of a sample (rescale fluorescent values of a sample
so that their minimum becomes 0 and maximum becomes 1); (ii)
logarithm conversion (take the logarithm of all the fluorescent
values to base 10 after substituting 0 by 0.00001); (iii) minemax
normalization of a feature (rescale fluorescent values of a feature, a
set of the fluorescent values that correspond to one feature for all
the samples, to make their minimum 0 and maximum 1); (iv)
standardization of a feature (convert fluorescent values of a feature
to make their mean 0 and standard deviation 1) (Table S5). The
aims of these methods were to correct the differences in fluores-
cent value distributions that come from using different microarray
chips (method (i)), to magnify the difference among small fluo-
rescent values (method (ii)), and to make the data distribution
suitable for machine learning (method (iii) and (iv)). The 12 data-
sets were visualized by scatter plots of PCA (Fig. S1). Scikit-learn
(version 0.19.1) [34] was used to perform PCA.

4.2. Cell classification by supervised machine learning

Two supervised machine learning algorithms, linear classifica-
tion and neural network, were applied to the dataset which un-
derwent the correction of the fluorescent values among samples
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and features. Hyper-parameters weremanually optimized based on
the recognition accuracy calculated from the result of a single run.
The number of epochs was set to 20 in order to try many different
hyper-parameter values with small computational cost. The
recognition accuracy of prediction was calculated as the mean
recognition accuracies of the triple runs. Each runwas performed in
a manner of leave-one-out cross-validation and the order of the
training samples was randomized in order to prevent biased
learning.

Linear classification was performed using Jubatus (version 1.1.1,
http://jubat.us/en/). The model adopted the normal herd [35] for
learning algorithm. Two hyper-parameters, regularization weight
and the number of epochs, were optimized. Regularization weight
was tested from 0.01 to 100 (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100) with
the number of epochs set at 20. Then the number of epochs was
tested from 10 to 300 by 10. After the hyper-parameters were
optimized, the model was trained and its recognition ability was
tested. In addition to the cell classification, the weight coefficients
of the lectins in each decision boundary were extracted.

Classification of neural-network-basedmodel was performed by
Keras (version 2.2.4) [36] using Tensorflow (version 1.14.0) [37]
backend. Three hyper-parameters, i.e. the number of hidden layers,
the number of nodes in each hidden layer, and the number of
epochs, were optimized. The number of hidden layers was tested
from 1 to 5 with the number of nodes in each hidden layer(s) 100
and the number of epochs 20. Then, the numbers of nodes were set
to be one of these 4 values, 30, 100, 300 and 1000 for each hidden
layer (therefore, 42 ¼ 16 patterns of the numbers of nodes in total
for the model with 2 hidden layers, the adopted model) with epoch
set at 20. Finally, the number of epochs was tested from 10 to 300
by 10. Throughout the analyses, the model consisted of 45 nodes in
the input layer and 5 nodes in the output layer, corresponding to
the number of features (different type of lectins) and classes
(different type of cells), respectively. ReLU was adopted as an
activation function for all the layers except the output layer, where
the softmax function was used. We employed Adam [38,39] for the
optimizer with default parameters (lr ¼ 0.001, beta 1 ¼ 0.9, beta
2 ¼ 0.999, ε ¼ None, decay ¼ 0.0, amsgrad ¼ False) and He normal
initializer [40] as kernel weights initializer. In addition, dropout
technique [41] was adopted to all hidden layers to prevent the
model from overfitting (rate ¼ 0.1). Out of all the training data,
validation data accounted for 20% and the batch size was set to be
32. Batch normalization [42] was used for all the layers except the
output layer.

After the recognition accuracies of the final model were calcu-
lated, those on the shuffled dataset were also tested. In this dataset,
the labels of the dataset were shuffled randomly, resulting in only
about 23% of all the samples to retain the original annotation.
Prediction of the labels was performed in the same protocol: three
trials by the optimized model on the shuffled dataset in leave-one-
out cross-validation method.
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