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Abstract

Yeast DNA polymerase e (Pol e) is a highly accurate and processive enzyme that participates in nuclear DNA replication of
the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease
active sites, Pol e also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose
functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of
their absence on the biochemical properties of Pol e in vitro and on genome stability in vivo. The fidelity of DNA synthesis in
vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol e holoenzyme. Nonetheless,
deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the
loss of Pol e proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Ddpb4D does not lead to a
synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Ddpb4D
strains is partly dependent on REV3, as well as the proofreading capacity of Pol d. Finally, biochemical studies demonstrate
that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol e and the template DNA during processive
DNA synthesis and during processive 39 to 59exonucleolytic degradation of DNA. Collectively, these data suggest a model
wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork
progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are
eventually filled by Pol f or Pol d, in a post-replication process that generates errors not corrected by the DNA mismatch
repair system.
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Introduction

The accuracy by which DNA polymerases synthesize DNA is

essential for maintaining genome stability and preventing

carcinogenesis. Eukaryotes utilize many DNA polymerases, with

different properties, during DNA replication and in DNA repair

[1]. DNA polymerase d (Pol d), DNA polymerase e (Pol e) and

DNA polymerase a (Pol a) (with associated primase activity) are

required for bulk synthesis of DNA during chromosomal

replication [2]. Several studies have suggested that there is a

division of labor between Pol d and Pol e at the replication fork.

Genetic and biochemical studies position Pol d on the lagging

strand [3–6], whereas Pol e was shown to participate in the

synthesis of the leading strand in S. cerevisiae [7]. These studies were

preceded by genetic experiments showing that Pol e and Pol d
proofread opposite strands [8–10]. In addition, the Pol e 39R 59 –

exonuclease activity, contrary to the Pol d 39R 59 –exonuclease

activity, does not participate in the correction of errors made by

Pol a. This suggests that the proofreading function of Pol e is

restricted to the leading strand [11], while the exonuclease activity

of Pol d, or perhaps another exonuclease, may proofread both

strands [12].
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The organization of the replication fork during normal DNA

replication, with Pol e on the leading strand and Pol d on the

lagging strand [6,7], can be disrupted by DNA lesions or sequence

contexts in an undamaged template that influence the ability of the

replicative polymerase to remain processive [12–14]. When

polymerases dissociate, the replication machinery must accommo-

date to complete the replication process and if possible maintain

high fidelity. To accomplish this, a variety of strategies are used,

including translesion synthesis and recombination pathways [15].

DNA lesions which disengage Pol d or Pol e result in single-

stranded gaps which are filled in during post-replication repair

[16–18]. Furthermore, biochemical experiments have shown that

collisions between DNA polymerase and transcribing RNA

polymerase leads to the abortion of DNA synthesis followed by a

reinitiation event when the RNA transcript is used as a primer

[19]. To summarize, post-replication repair processes, uncoupled

from the replication fork, are likely to occur on both leading and

lagging strands to complete DNA replication.

Pol a, Pol d and Pol e are all composed of several subunits

encoded by separate genes. Besides the catalytic subunit, Pol2

(256 kDa), yeast Pol e consists of three auxiliary subunits, Dpb2

(79 kDa), Dpb3 (23 kDa) and Dpb4 (22 kDa) [20]. DPB2 is an

essential gene in yeast with an unknown function [21], yet it is

required for early steps in DNA replication and is regulated by

Cdc28 kinase [22,23]. Recently dpb2 mutations that increase

spontaneous mutagenesis were found in S. cerevisiae, suggesting that

the second subunit contributes to the fidelity of DNA replication

by an unknown mechanism [24,25]. DPB3 and DPB4 are non-

essential genes. Deletion of DPB3 was previously shown to result in

a modest mutator effect [26,27]. Dpb3 and Dpb4 both contain

histone fold motifs that are known to be important in protein-

protein interactions [28,29]. Interestingly, Dpb4 is a component of

a chromatin-remodeling complex in S. cerevisiae, ISW2, corre-

sponding to the CHRAC complex found in Drosophila and humans

[30,31].

The structure of the Pol e holoenzyme revealed two large

domains separated by a flexible hinge [32]. It was suggested that

the tail domain of Pol e was comprised of the Dpb2, Dpb3 and

Dpb4 subunits and was important for the binding to and

association with the primer-template dsDNA during DNA

synthesis [32]. A purified Dpb3-Dpb4 heterodimer was shown to

possess dsDNA binding properties, which in part could explain the

properties of the tail-domain [29]. However, this does not exclude

the possibility that Dpb2 by itself has properties which allow the

tail-domain to interact with dsDNA even without Dpb3 and

Dpb4.

In this work, we address whether the Dpb3 and Dpb4 subunits

have an effect on the biochemical properties of Pol e and the

fidelity of replication in yeast via a function at the tail-domain of

Pol e. We find that Dpb3 and Dpb4 are important for the

processivity of Pol e polymerase and exonuclease activities,

suggesting a role of these two subunits in stabilization of Pol e
interaction with primer-template DNA. Evidently this indirectly

affects the fidelity of the overall DNA replication process, since

deletion of DPB3 and DPB4 increases both spontaneous frameshift

and base substitution mutagenesis, despite an unchanged fidelity of

the purified Pol2/Dpb2 complex. A genetic analysis suggests that

REV3 contributes to the increased mutation rate in dpb3Ddpb4D
and the mutational intermediates escape correction by the

mismatch repair system.

Results

Influence of dpb3D and dpb4D on spontaneous
mutagenesis and interaction with pol2-4

To investigate the in vivo role of the Pol e accessory subunits

Dpb3 and Dpb4, we constructed yeast strains wherein either

DPB3, DPB4 or both of these genes were deleted. The frequency of

spontaneous mutations in these strains was measured in two

reversion assays and one forward mutation assay. We studied the

his7-2 and lys2::insE-A14 reversion alleles to score frameshift

mutations. The his7-2 allele contains a single base pair deletion

in a run of 8 T(A) and revert via +1 insertions or -2 deletions [33].

The lys2::insE-A14 allele contains a homonucleotide run of 14 T(A)

and revert mainly via -1 mutations [34]. The forward mutation

assay scores various types of mutations that inactivate the CAN1

gene and result in resistance to canavanine. We found that the

dpb3D dpb4D double deletion has a moderate mutator effect in all

assays. Mutation rates for his7-2 reversions and lys2::insE-A14 were

increased 2.7 and 2.6-fold when compared to the wt E134 strain

(Table 1). The mutation rate in the forward mutation assay for

canavanine resistance was increased 7.4-fold compared to the wt

strain (Table 1). The individual contribution of dpb3D or dpb4D
was comparable to the effect of the deletion of both these genes

(dpb3Ddpb4D) (Table 1). A proofreading deficient allele of the

catalytic subunit, pol2-4, introduced in the same genetic back-

ground resulted in an elevation of the mutation rates similar to the

dpb3Ddpb4D strain (Table 1).

To determine if the participation of Pol e in DNA replication

depends on DPB3 and DPB4, we combined dpb3D, dpb4D, or

dpb3D dpb4D with the pol2-4 mutation. The analysis revealed

different genetic interactions. Combining dpb3D and pol2-4 led to

an additive effect on his7-2 reversion (Table 1). A higher than

additive increase in mutation rate was observed with the his7-2

allele when pol2-4 was combined with dpb4D or dpb3D dpb4D
(Table 1). Reversions scored in the lys2::insE-A14 allele revealed a

close to epistatic interaction between pol2-4, dpb3D, dpb4D, and

dpb3D dpb4D (Table 1). The pol2-4 mutation itself elevated the

reversion rate of the lys2::insE-A14 allele 2.7-fold, which agrees with

previous results [35,36]. The forward mutation assay with the

CAN1 gene revealed an additive effect of the pol2-4 mutation and

the double dpb3D dpb4D deletion. An additive interaction was also

found in the pol2-4dpb3D strain, but the combination of pol2-4 and

dpb4D gave a higher than additive increase in mutation frequency

(Table 1). The disparate genetic interactions of DPB3 and DPB4

with the proofreading activity of Pol2 could be due to the separate

Author Summary

The high fidelity of DNA replication is safeguarded by the
accuracy of nucleotide selection by DNA polymerases,
proofreading activity of the replicative polymerases, and
the DNA mismatch repair system. Errors made by
replicative polymerases are corrected by mismatch repair,
and inactivation of the mismatch repair system results in a
multiplicative increase in error rates when combined with
a proofreading deficient allele of a replicative polymerase.
In this study, we demonstrate that the deletion of two
non-essential genes encoding for two subunits of Pol e
give an increased mutation rate due to increased synthesis
by the error-prone DNA polymerase f. Surprisingly, there
was no multiplicative increase in error rates when the
mismatch repair system was inactivated. We propose that
the deletion of DPB3 and DPB4 gives a defective replisome,
which in turn gives increased synthesis, in part, by Pol f
during an error-prone post-replication process that is not
efficiently repaired by the mismatch repair system.

DPB3/DPB4 and High Fidelity Replication

PLoS Genetics | www.plosgenetics.org 2 November 2010 | Volume 6 | Issue 11 | e1001209



function of Dpb4 in a chromatin remodeling complex, ISW2

[30,31,37,38]. However, there are no reports demonstrating that

ISW2 influence the mutation rate in S. cerevisiae. Another

possibility could be that Dpb3 and Dpb4 influence the fidelity of

DNA synthesis by Pol e.

Fidelity of Pol2/Dpb2 in vitro
To measure the fidelity of Pol e lacking Dpb3/Dpb4, we

purified the wild type (i.e., exonuclease proficient) Pol2/Dpb2

complex and the exonuclease deficient pol2-4/Dpb2 complex, and

then measured their fidelity in an M13mp2 gap-filling assay [39].

The lacZ mutant frequency of the DNA synthesis reaction

products generated by the wild type Pol2/Dpb2 complex was

0.0018, comparable to the previously reported value of 0.0019 for

the four-subunit Pol e [40]. Both values are near the background

lacZ mutant frequency of uncopied DNA, indicating that the

exonuclease proficient Pol2/Dpb2 complex is highly accurate.

The pol2-4/Dpb2 complex was less accurate, as expected because

it is proofreading deficient. However, it was no less accurate than

the exonuclease-deficient 4-subunit holoenzyme, as indicated by

the similar lacZ mutant frequencies observed for both complexes

(Table 2). To analyze if the error specificity of the 2-subunit

enzyme differed from that of the holoenzyme, we sequenced 277

independent mutants generated by pol2-4/Dpb2, and compared

the results to those reported in an earlier study [40] of 285 lacZ

mutants generated by the holoenzyme. Comparable error

specificity was observed (Table 2) for substitutions, frameshifts

Table 1. Spontaneous mutation rates in strains with dpb3D and dpb4D, pol2-4 mutation, msh6D, and pol-5DV.

Strain Mutation Rate (x10-8) * (95% Confidence Limits)

His+ Lys+ Canr

Absolute rate
Relative rate
(mutants vs. wt) Absolute rate

Relative rate
(mutants vs. wt) Absolute rate

Relative rate
(mutants vs. wt)

Wild type 1.5 (0.6–2.4) 1 12.9a1 (9.5–26.2) 1 10.1a (3.9–14.6) 1

dpb3D 4.4 (3.6–5.7) 3.9 35.7 (31.9–56.7) 2.8 81.8 (72.2–95.2) 8.1

dpb4D 3.7 (3.0–5.0) 2.5 22.3 (19.9–28.6) 1.7 63.4 (57.3–71.4) 6.3

dpb3D dpb4D 4.1 (2.5–5.1) 2.7 33.41 (25.9–46.4) 2.6 74.3 (66.4–89.5) 7.4

pol2-4 6.9 (4.2–8.6) 4.6 35.71 (32.9–48.3) 2.7 77.9 (69.4–90.5) 7.7

pol2-4 dpb3D 13.4 (10.9–18.8) 8.9 44.5 (37.8–52.5) 3.4 153 (128–210) 15.1

pol2-4 dpb4D 28.1 (23.0–30.4) 18.7 44.5 (39.1–59.9) 3.4 224 (200–268) 22.2

pol2-4 dpb3D dpb4D 22.1 (18.5–26.8) 14.8 41.01 (35.6–49.3) 3.2 132 (123–170) 13

msh6D 5.3 (3.5–6.7) 3.5 2720 (2390–3690) 211 165 (119–226) 16.3

msh6D dpb3D 7.0 (5.5–9.4) 4.6 1360 (1100–1550) 105 299 (216–399) 29.6

msh6D dpb4D 7.6 (6.3–9.3) 5.1 1430 (1180–1590) 111 278 (217–344) 27.5

msh6D dpb3D dpb4D 9.0 (8.1–12.4) 6.0 2200 (2060–2830) 171 261 (217–346) 25.8

msh6Dpol2-4 71.1 (55.7–82.7) 47.4 7180 (6190–8870) 557 7150 (6410–9810) 708

msh6D pol2-4 dpb3D 72.6 (45.9–119) 48.4 2460 (1800–4670) 190 13400 (11200–17000) 1320

msh6D pol2-4 dpb4D 76.6 (32.6–121) 51.1 2590 (1870–5510) 201 17800 (10500–21100) 1760

msh6D pol2-4 dpb3D dpb4D 68.6 (54.9–100) 45.7 2600 (594–4010) 201 8450 (6670–13800) 837

pol3-5DV 7.3 (6.2–8.8) 4.9 71 (57–77) 5.5 350 (304–419) 35

pol3-5DV dpb3D dpb4D 17.8 (15–21) 11.9 67 (54–85) 5.2 363 (288–547) 36

The genetic experiments were performed with derivatives of the strain created by [34] and named E134 [33] obtained as described in Materials and Methods.
aMutation rates are given as median of one experiment with nine independent cultures and coincide with previously published data.
*For all other cases, mutation rates were obtained as the median of 18–45 independent cultures and determined as described in [33]. In all cases, the mutation rates in
mutants differ from that in the wild type (confidence limits do not overlap).

19/9 sequenced revertants contained -1 frameshift mutation within 14A run.
doi:10.1371/journal.pgen.1001209.t001

Table 2. Mutations generated by exonuclease-deficient Pol e
in vitro.

Polymerase
Holoenzyme
(pol2-4) pol2-4/Dpb2

Mutant Frequency 0.026 0.029

Total Mutants Sequenced 285 277

Substitutions 214 229

21 frameshifts 53 35

+1 frameshifts 9 7

Other mutationsa 11 29

The results for the holoenzyme are from [40].
For both enzymes, only phenotypically detectable changes in the lacZ gene are
included.
aOther mutations include deletions of 2–3 bases, more complex substitution-
deletions, and deletions of larger numbers of bases between direct repeat
sequences. Statistical analysis of the distributions of substitutions produced by
the four subunit and two-subunit pol e along lacZ was performed using the
COLLAPSE program [70].These two spectra are not different (P = 0.90). This
result strongly suggest that properties of four subunit and two subunit
polymerases are highly similar (linear correlation coefficient for the two
spectra = 0.72, P,0.01). We also compared the raw data from Table 2 using
the same approach. These two distributions are different (P = 0.005). However,
they are not different after the removal of the category ‘‘Other mutations’’
(P = 0.11). The only reason why two spectra are different are long deletions
(.100 bp) that are included under ‘‘Other mutations.’’ After removal of these
long deletions the spectra are not different (P = 0.17).

doi:10.1371/journal.pgen.1001209.t002

DPB3/DPB4 and High Fidelity Replication
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and other mutations. We conclude that the increased mutation

rates in the dpb3D dpb4D strain is unlikely to be due to a lower

fidelity of DNA synthesis by Pol e per se.

Genetic interaction between rev3D and dpb3D dpb4D
The REV3 gene encodes the catalytic subunit of DNA

polymerase f (Pol f), which is known to be a major contributor

to both spontaneous and DNA damage inducible mutagenesis in

wild type strains and in strains with defects in other DNA

polymerases [27,41,42]. Yeast Pol f has relatively high fidelity for

single-base insertions and deletions, and somewhat lower fidelity

for base substitutions [43]. Deletion of the REV3 gene suppresses

mutagenesis in CAN1 in the dpb3D dpb4D strain but not

mutagenesis in the his7-2 or lys2::insE-A14 allele (Table 3). Thus,

the increase in frameshift mutagenesis observed in the his7-2 and

lys2::insE-A14 alleles is Pol f-independent.The independence of

frameshift his7-2 and lys2::insE-A14 reversion from Pol f is

consistent with an earlier observation that replication defects

(e.g. in Pol d mutant, the pol3-Y708allele) cause Pol f dependent

mutagenesis for base substitutions only [44].

Genetic interaction between Pol d and dpb3D dpb4D
Published results suggest that Pol d can proofread errors made

by Pol a [11]. To ask if Pol d proofreads errors generated in the

dpb3D dpb4D strain, we combined the proofreading deficient Pol d
allele pol3-5DV with dpb3D dpb4D. The pol3-5DV dpb3D dpb4D
strain was viable, in contrast to pol3-01 pol2-4 and pol3-5DV pol2-4

haploid strains [9]. The mutation rates in pol3-5DV dpb3D dpb4D
and pol3-5DV in the CAN1 gene were similar (Table 1). In contrast,

the reversion rate of the his7-2 allele was greater than additive in

the pol3-5DV dpb3D dpb4D strain, when compared to the pol3-5DV

strain and dpb3D dpb4D strain. We conclude that Pol d has the

capacity to proofread a fraction of frameshift errors that occur in

the dpb3D dpb4D strain, but there could also be some other 39R59

exonuclease that participates in the process.

Genetic interaction with MSH6, MSH2, MLH1, and PMS1
The mismatch repair protein Msh6 is involved in recognizing a

subset of replication errors, specifically single base mismatches and

small insertion-deletion intermediates [45]. Although less severe

than msh2D, pms1D or mlh1D, inactivation of the MSH6 gene

results in a strong increase in mutagenesis (Table 4). For instance,

msh6D leads to a dramatic increase of lys2::insE-A14 allele reversion

rates as a result of single nucleotide deletions (Table 4, [34,35]). To

ask whether DPB3 and DPB4 interact with the mismatch repair

system we measured the mutation rates in strains with dpb3D and

dpb4D deletions in an Msh6-deficient background to score for

base-base mismatches and small insertion-deletion errors.

The combination of the msh6D with the dpb3D and dpb4D gave an

additive increase in the his7-2 reversion and can1 mutation rates

(Table 1). The strong synergetic interaction between proofreading

defects (pol2-4, pol3-01) and defects in the mismatch repair system

was previously observed for short homopolymeric runs and base

substitutions, but not for long homopolymeric runs, such as the A14

run in the lys2::insE-A14 allele [34,35,46]. In agreement with that, we

observed a synergetic interaction between pol2-4 and msh6D when

mutation rates in a pol2-4 msh6D strain were estimated in the his7-2

and CAN1 loci (Table 1). In the short 8A run of the his7-2 allele,

neither the deletion of DPB3 or DPB4 nor both genes affected the

mutation rate of the pol2-4 msh6D. The multiplicative interaction of

pol2-4 and dpb4D is absent in the msh6D background. The mutation

rate in the lys2::insE-A14 gave a complex interaction between msh6D
and dpb3D and dpb4D. The mutation rate was somewhat lower

(though not statistically significant, see overlapping confidence limits

in Table 1) when either dpb3D or dpb4D was combined with msh6D,

than when the dpb3D dpb4D was combined with msh6D. When pol2-4

was added to the msh6D strain, the combination with dpb3D, dpb4D
or dpb3D dpb4D gave a mutation rate that was one third of the

mutation rate in the pol2-4 msh6D strain. At present, it is not clear

why this small reduction in mutation rate occurs.

The lack of a synergetic interaction between dpb3D, dpb4D and

msh6D was unexpected and led us to ask if this was also true for other

genes that are required for mismatch repair. Msh2 forms a

heterodimer with either Msh3 or Msh6. Thus, msh6D strains still

have active Msh2-Msh3 which corrects most replication errors. To

completely abolish mismatch repair we deleted MSH2, MLH1, or

PMS1. The combination of mlh1D or pms1D with dpb3D dpb4D did not

reveal a strong synergetic interaction on the his7-2 reversion or can1

mutation rates (Table 4). The combination of msh2D and dpb3D dpb4D
gave only a two-fold increase in mutation rate on his7-2 reversions and

no increase on can1 mutation rates. These data indicate that dpb3D
dpb4D do not act in series with the mismatch repair system.

DNA sequence changes in the CAN1 gene in strains
lacking DPB3 and DPB4 genes

Forward mutations giving resistance to canavanine can arise by

many different mechanisms. Earlier studies have shown that even a

small collection of sequenced can1 mutants can reveal significant

changes in the mutation spectra (e.g. upon deletion of POL32, a

small subunit of Pol d, or inactivation of Pol e proofreading with the

pol2-4 allele [9,47]). To analyze if the deletion of DPB3 and DPB4

might drastically influence the distribution of types of mutations in

the CAN1 gene, we sequenced 48 can1 mutants in four isogenic

strains: wt, dpb3Ddpb4D, pol2-4 and pol2-4 dpb3Ddpb4D (Table 5).

The difference between strains carrying the pol2-4 allele and

carrying POL2 was statistically significant according to a modified

Pearson x2 test of spectra homogeneity (see Table S1 and Table S2).

There was a characteristic reduction of CGRGC changes and an

increase of frameshift mutations in the pol2-4 spectrum (Table 5).

The comparison between wt and dpb3D dpb4D or pol2-4 and pol2-4

dpb3D dpb4D showed that the deletion of DPB3 and DPB4 did not

give a statistically significant alteration in mutation spectra (see

Table S1). The sample size was insufficient to demonstrate the

enhancement of an error signature for Pol f despite the increased

contribution of REV3 dependent mutations in CAN1. We conclude

Table 3. Influence of rev3D on spontaneous mutagenesis in
the strain lacking DPB3 and DPB4 genes.

Strain Mutation Rate (x10-8) * (95% Confidence Limits)

His+ Lys+ Canr

Abs.a Rel.b Abs. Rel. Abs. Rel.

dpb3D dpb4D 4.1
(2.5–5.1)

1 33.4
(25.9–46.4)

1 74.3
(66.4–89.5)

1

dpb3D dpb4D
rev3D

3.6
(2.7–4.2)

0.9 33.2
(30.1–39.1)

1 26c

(20.7–29.1)
0.3

The genetic experiments were performed with derivatives of the strain created
by [34] and named E134 [33] obtained as described in Materials and Methods.
*Mutation rates were obtained as median of 18–45 independent cultures and
determined as described in [33].
aAbsolute mutation rate for a particular mutation event.
bRelative mutation rate – mutation rate for a particular strain vs. mutation rate

for Wild type.
cThere was only a significant difference for CAN1 when comparing mutation
rates in REV3 and rev3D strains.

doi:10.1371/journal.pgen.1001209.t003
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that the CAN1 mutations appearing in the pol2-4 background and in

the dpb3D dpb4D mutants arise by different mechanisms.

Dpb3 and Dpb4 subunits are required for both
processive polymerase and processive 39 to 59

exonuclease activity of Pol e
The contribution of Pol f to the elevated mutation rates

suggested that a Pol2/Dpb2 complex does not support a fully

functional replisome. To ask if Dpb3 and Dpb4 influence the

processivity of Pol e, we purified a Pol2/Dpb2 complex with an

intact polymerase and exonuclease activity. We measured the

processivity of the polymerase activity on a singly-primed, single

stranded circular DNA template under single-hit conditions [48].

We found that a 40-fold molar excess of the primer-template over

Pol e and a 20-fold molar excess of the primer-template over Pol2/

Dpb2 fit the criteria for single-hit conditions. The processivity of

Pol e on this template was comparable to a previous report, with a

strong pause-site 63 nucleotides from the primer (Figure 1B) [48].

The absence of Dpb3 and Dpb4 from Pol e lowers the processivity

Table 4. Spontaneous mutation rates in strains with dpb3D dpb4D and mismatch repair deficiency.

Strain Mutation Rate (x10-8) * (95% Confidence Limits)

His+ Lys+ Canr

Absolute rate
Relative rate
(mutants vs. wt) Absolute rate

Relative rate
(mutants vs. wt) Absolute rate

Relative rate
(mutants vs. wt)

Wild type 1.5 (0.6–2.4) 1 12.9a1 (9.5–26.2) 1 10.1a (3.9–14.6) 1

dpb3D dpb4D 4.1 (2.5–5.1) 2.7 33.41 (25.9–46.4) 2.6 74.3 (66.4–89.5) 7.4

msh6D 5.3 (3.5–6.7) 3.5 2720 (2389–3690) 211 165 (119–226) 16.3

msh6D dpb3D dpb4D 9.0 (8.1–12.4) 6.0 2203 (2061–2832) 171 261 (217–346) 25.8

mlh1D 120 (101–144) 80 126060 (110000–
161000

9770 772 (506–895) 76

mlh1Ddpb3D dpb4D 103 (87–110) 69 136955 (116000–
144000)

10600 505 (429–669) 50

pms1D 68 (53–84) 45 123499 (110000–
155000)

9570 449 (346–666) 44

pms1D dpb3D dpb4D 88 (62–126) 59 128931 (101000–
148000)

9990 446 (374–697) 44

msh2D 69 (52–86) 46 126181 (85000–
154000)

9780 418 (355–671) 41

msh2D dpb3D dpb4D 115 (95–149) 77 168424 (134000–
316000)

13100 662 (512–835) 66

The genetic experiments were performed with derivatives of the strain created by [34] and named E134 [33] obtained as described in Materials and Methods.
aMutation rates are given as median of one experiment with nine independent cultures and coincide with previously published data.
*For all other cases mutation rates were obtained as median of 18–45 independent cultures and determined as described in [33].
19/9 sequenced revertants contained -1 frameshift mutation within 14A run.
doi:10.1371/journal.pgen.1001209.t004

Table 5. CAN1 forward mutation spectrum.

Types of mutations Amount of mutations in strains:

Wild type dpb3D dpb4D pol2-4 pol2-4dpb3D dpb4D

Base substitutions:

AT-.TA 1 (2.1%) 1 (2.0%) 6 (12.5%) 6 (12.5%)

AT-.CG 2 (4.2%) 1 (2.0%) 5 (10.4%) 4 (8.3%)

AT-.GC 3 (6.3%) 3 (6.1%) 5 (10.4%) 0 (0.0%)

GC-.CG 12 (25.0%) 9 (18.4%) 4 (8.3%) 8 (16.7%)

GC-.AT 7 (14.6%) 9 (18.4%) 3 (6.3%) 2 (4.2%)

GC-.TA 10 (20.8%) 8 (18.3%) 6 (12.5%) 7 (14.6%)

-1 frameshifts 5 (10.4%) 9 (18.4%) 5 (10.4%) 9 (18.8%)

+1 frameshifts 2 (4.2%) 1 (2.0%) 11 (22.9%) 6 (12.5%)

Complex 1 (2.1%) 5 (10.2%) 2 (4.2%) 3 (6.3%)

Other 5 (10.4%) 3 (6.1%) 1 (2.1%) 3 (6.3%)

Total 48 (100%) 49a (100%) 48 (100%) 48 (100%)

aOne of the sequenced Canr genes carried two independent mutations located 215 nt apart.
doi:10.1371/journal.pgen.1001209.t005
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of polymerization. Some products reached a length of 63

nucleotides, but products were terminated with a higher

probability at numerous positions (Figure 1C). On average, the

termination probability at each position on the template increased

two to three-fold for Pol2/Dpb2 as compared to the four subunit

Pol e.
Next, we asked if the Dpb3 and Dpb4 subunits are required for

processive exonucleolytic degradation of DNA. We carried out an

exonuclease assay with a 57-nt long primer annealed to a 75-nt

long template to generate 57-nt dsDNA region. Again, the

conditions were empirically determined to achieve single-hit

kinetics. This time a five-fold molar excess of primer-template

over the four-subunit Pol e was used, whereas an equimolar ratio

of primer-template and enzyme was used for Pol2/Dpb2. We

found that the Pol e holoenzyme efficiently degraded the first 24

nucleotides of the primer (Figure 2B). At this point only ,32 nt of

the primer remained. This correlates well with the minimal length

of dsDNA required for processive synthesis of DNA by Pol e [32].

By analogy, the processivity of Pol e exonuclease activity could

depend on a specific interaction between the tail-domain and the

dsDNA. In agreement with this hypothesis, we found the

exonuclease activity of Pol2/Dpb2 to be less processive. Very

few primers were degraded further than 11 nucleotides. On

average, the termination probability at each position on the primer

increased two to three-fold for Pol2/Dpb2 as compared to four-

subunit Pol e (Figure 2C). In addition, the absence of Dpb3 and

Figure 1. Processivity of the polymerase activity of Pol e holoenzyme and Pol2/Dpb2 complex. (A) A 50 nt long, 32P-59end-labeled,
oligonucleotide was annealed to pBluescript II SK (+) ssDNA and used as a DNA substrate in the polymerization assay. (B) Shown is the image of
extension products generated by four-subunit Pol e and a two-subunit Pol2/Dpb2 complex, separated on a 8% denaturing polyacrylamide gel (for
details see Materials and Methods). A DNA sequencing ladder with the identical template was used as a molecular weight marker on the right hand.
Reaction times are indicated under each lane. (C) The termination probability at each position on the template was calculated for the four-subunit Pol
e holoenzyme and Pol2/Dpb2 complex (for details see Materials and Methods).
doi:10.1371/journal.pgen.1001209.g001
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Dpb4 did not result in a general inactivation of the exonuclease

activity, since the exonuclease activity of the Pol2/Dpb2 complex

and four-subunit Pol e was comparable on single-stranded DNA

(data not shown). We conclude that Dpb3 and Dpb4 stabilize the

interaction of Pol e with primer-template DNA and therefore

positively affect the processivity of the polymerase and exonuclease

activities of Pol e. The removal of Dpb3 and Dpb4 would then

lead to frequent dissociation of Pol e that may disrupt the synthesis

of the leading strand and potentially result in single-strand gaps.

Discussion

In general, defects at the replication fork which give higher

mutation rates act in series when combined with an inactivated

mismatch repair system, i.e. mutator alleles of the catalytic subunit

of Pol a, Pol d, and Pol e, temperature sensitive mutations of DPB2

(subunit of Pol e), rfa1-29t, or the rfc1::Tn3 allele (subunit of clamp

loader) [9,24,25,49–52]. The interpretation has been that errors

made in the proximity of the replication fork are corrected by

mismatch repair and this results in a synergistic increase in

mutation rates when mismatch repair is inactivated. In this study

we show that deletion of DPB3 and DPB4 have the unique

property among replication fork associated genes to give an

increased mutation rate, but do not act in series with the mismatch

repair system.

Defective replisome-driven mutagenesis
The unaltered fidelity of the Pol2/Dpb2 complex suggested that

Dpb3 and Dpb4 are not important for the fidelity of DNA

synthesis by Pol e per se. In contrast, our genetic analysis

demonstrated that the inactivation of DPB3 and DPB4 in yeast

elevates the mutation rates comparable to the proofreading

deficient pol2-4 allele of Pol e. This suggests that the dynamics of

the replication fork was altered in the dpb3D dpb4D strain and the

defect influenced the fidelity of the replisome. The hypothesis was

supported by the observation that a Pol2/Dpb2 complex (lacking

Dpb3 and Dpb4) was less processive both when polymerizing new

DNA and degrading DNA (Figure 1 and Figure 2).

Recently, it was shown that Pol f participates in the synthesis on

undamaged DNA templates during defective replisome-induced

mutagenesis as well as synthesis on stretches of single-stranded

DNA carrying DNA lesions [42,53]. Our genetic analysis supports

a role for Pol d and Pol f in spontaneous mutagenesis in dpb3D
dpb4D strains since the mutagenesis in CAN1 depends in part on

Pol f and Pol d proofreading suppresses mutations in his7-2. One

explanation for our observations could be that Pol e dissociates

more frequently from the template when DPB3 and DPB4 are

deleted. After reinitiation, a gap is left that will be filled in by a

post-replication repair mechanism analogous to what might

happen when a replicative polymerase encounters a DNA lesion

that cannot be bypassed. During this process, there will be time for

the 39-end to repeatedly melt and reanneal. A short homonucleo-

tide run at the his7-2 site may frequently reanneal at the wrong

nucleotide creating 1 or 2 nt loops. Such errors could be corrected

by proofreading by the replicative polymerases [34] and the

presence of Exo+ Pol d during the gap-filling process would lead to

decreased level of mutations. In a pol3-5DV strain, this proofread-

ing is absent leading to a more than additive increase in mutation

rate. In this scenario, we detect errors that appear not because of

synthetic errors by Pol e but instead due to an intermediate DNA

structure that is prone to frameshift mutations. Thus a greater than

additive interaction could be expected because Pol e without Dpb3

and Dpb4 and proofreading by Pol d act in series. The effect is

detected because of the property of the reversion assay, which

Figure 2. Processivity of the exonuclease activity of Pol e
holoenzyme and Pol2/Dpb2 complex. (A) A 57 nt long, 32P-59end-
labeled, oligonucleotide was annealed to a 75 nt oligonucleotide,
creating a primer-template to be used as a DNA substrate in the
exonuclease assay. (B) Shown is the image of degradation products
generated by four-subunit Pol e and two-subunit Pol2/Dpb2 complex,
separated on a 12% denaturing polyacrylamide gel (for details see
Materials and Methods). Reaction times are indicated above each lane.
(C) The termination probability at each position on the template was
calculated for the four-subunit Pol e holoenzyme and Pol2/Dpb2
complex (for details see Materials and Methods).
doi:10.1371/journal.pgen.1001209.g002
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focuses on a single mutational pathway. We do not observe the

same effects in the CAN1 gene because, in this case, we detect

mutations generated by many different pathways. There is,

however, a strong synergetic interaction between pol3-5DV and

inactivation of mismatch repair. This can easily be explained by

the proofreading deficiency of pol3-5DV that generates errors on

the lagging strand at the replication fork. In addition, pol3-5DV is a

mutator allele due to a defect in Okazaki fragment maturation

[54]. Because of the multiple roles of Pol d and its proofreading

activity, more experiments are required to establish the nature of

the effect of the pol3-5DV that we observed for his7-2 reversion.

The deletion of DPB3 and DPB4 could also result in lesser

overall DNA synthesis by Pol e on the leading strand. This is not

likely to be the case as the mutation rate in the pol2-4 strain is not

higher than in the pol2-4 dpb3D dpb4D strain and the mutation

signature from pol2-4 in the CAN1 gene is also found in the pol2-4

dpb3D dpb4D strain, suggesting that exonuclease deficient pol2

synthesize approximately the same amount of DNA regardless if

Dpb3 and Dpb4 are present or not.

It was earlier shown that defective replicative DNA polymerases

(encoded by pol1-1, pol2-1, pol3t and pol3-Y708A) lead to an

increased mutation rate that is in part dependent on Pol f. To our

knowledge, the in vitro fidelity of the enzymes encoded by the four

mutant alleles, pol1-1, pol2-1, pol3t and pol3-Y708A has not been

measured. Thus, it is not firmly established if these alleles replicate

DNA with a reduced fidelity. It is however, plausible that pol3-

Y708A has a reduced fidelity based on analogous mutations in the

Klenow fragment and RB69 DNA polymerase (discussed in [44])

and the position of Tyr708 in the active site [55]. The pol3-t

mutant has a temperature sensitive mutation that also may affect

the polymerase site and alter the fidelity of Pol3 [44,55]. In cases

where the effect of mismatch repair has been studied, clear synergy

was observed for pol1-1 [56], pol3-t [57] and pol3-Y708A [44].

Mutant alleles encoding for polymerases that by itself synthesize

DNA with a higher error-rate are likely to show synergy with the

inactivation of mismatch repair, even if a substantial part of the

mutations in the strain are REV3 dependent. The dual mechanism

of mutator effects are exemplified by pol3-Y708A, which is likely to

encode a polymerase that both generate errors that are corrected

by mismatch repair and also induce PCNA ubiquitylation and a

Pol f dependent increase of mutation rates. Here we present, for

the first time, data on a mutant possessing two-subunit Pol e with a

confirmed unchanged error-rate in vitro, and a Pol f dependent

increase in mutation rates, but no observed synergy with the

inactivation of mismatch repair. This observation provides a

distinction of errors made at the replication fork from errors made

during postreplication DNA synthesis.

Errors depending on dpb3D dpb4D are not corrected by
mismatch repair system

The deletions of DPB3 and DPB4 led to an increased mutation

rate but did not act in series with msh6D, msh2D, pms1D or mlh1D.

The lack of synergy could be due to an essential function for DPB3

or DPB4 in mismatch repair that inactivates the mismatch repair

system. It was proposed earlier that the 39R 59exonuclease activity

of Pol e could be involved in the excision step of mismatch repair

in yeast [35]. However, the reversion rate at the lys2::insE-A14

allele in the dpb3D dpb4D strain is too low to support a role for

DPB3 and DPB4 in mismatch repair (compare dpb3D dpb4D with

msh6D, msh2D, pms1D or mlh1D (Table 1 and Table 4)). Yet, there

is a possibility that redundancy, due to genes with over-lapping

functions in mismatch repair, suppress the mutation rate in dpb3D
dpb4D strains. The possible redundancy only allows us to conclude

that there is no evidence for a role of DPB3 and DPB4 (or Pol e) in

mismatch repair.

Whether mismatch repair is carried out in the near proximity of

the replication fork or is uncoupled from the replication fork

remains unclear. It has been proposed that mismatch repair may be

physically linked to the replication fork [58], but DNA lesions from

MNNG may induce a futile repair cycle where mismatch repair

functions outside the S-phase [59]. Based on the genetic analysis of

DPB3 and DPB4 we propose a model with two zones where

mutagenesis occurs during DNA replication. The first zone is in the

near proximity of the replication fork where Pol f- independent

mutagenesis occurs and errors are corrected by mismatch repair.

The second zone where Pol D and Pol f carries out post-replication

repair is uncoupled from the replication fork. In this zone, Pol f-
dependent mutagenesis occurs and errors are not at all or very

inefficiently corrected by the mismatch repair system.

There is a series of observations upon which this model is based.

We have clearly shown that the mutagenesis of the CAN1 gene in

dpb3D dpb4D strains depends on Pol f and some mutation

intermediates in the his7-2 allele are proofread by Pol D. Gap-

filling during a post-replication repair process is likely to depend

on PCNA, thus giving an advantage to Pol d and Pol f over Pol e
to synthesize DNA since Pol e has a slow on-rate on the PCNA-

primer ternary structure [14,48]. Recently, during defective-

replisome-induced mutagenesis it was independently shown that

Pol f replicates undamaged DNA under conditions when the

dynamics of the replication fork is affected [42]. Mismatch repair

is functional in the dpb3D dpb4D background and yet there is no

synergism. A hypothetical role for Rev3 in the close proximity of

the replication fork would result in replication errors that are

expected to be corrected by the mismatch repair system, analogous

to errors produced by proofreading deficient Pol e. At this position

Rev3 would be a major contributor to the mutation rate in a

msh2D strain, because Rev3 is responsible for at least half the

mutation rate in the CAN1 gene in wild-type strains. The

combination of rev3D and msh2D would then result in a

substantially lower mutation rate; however, this was not the case.

Instead, the mutation rate in a rev3Dmsh2D strain was comparable

to a msh2D strain [47], suggesting that errors by Pol f are not

efficiently corrected by mismatch repair. Our results demonstrate

that errors generated by Pol f are not efficiently repaired by

mismatch repair and are supported by evidence that some

mutations generated by Pol f in a rad52D background are not

corrected by mismatch repair in the lys2D A746-NR allele [60].

Based on the sum of these observations we propose that the

deletion of DPB3 and DPB4 results in a decreased Pol e
processivity, generating a DNA substrate, which must be processed

to some extent by Pol d and Pol f during post-replication repair.

This event occurs in a zone separated from active replication forks

where the correction of errors by mismatch repair may be

inefficient.

Alternative interpretations could be that synthesis by Pol f at

stalled replication forks is not under mismatch repair surveillance.

The transient dissociation of Pol e would, in this case, create

specific conditions when mismatch repair cannot function. Under

these specific conditions any repair synthesis at the replication fork

as well as post replicative repair synthesis in the single stranded

gaps might escape MMR. The influence of chromatin on mutation

rates and mismatch repair could also be an explanation. A

potential mechanism could be that PCNA is post-translationally

modified, due to check-point activation, blocking the interaction

between mismatch repair proteins and PCNA. Regions with post-

translationally modified PCNA would then be less efficiently

repaired by mismatch repair.
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Mismatch repair genes are not exclusively involved in correcting

replication errors at the replication fork. Recently, it was shown

that mismatch repair genes suppress recombination and promote

translesion synthesis by Pol f in an assay measuring spontaneous

mutation rates [60]. Other examples are immunoglobulin genes

where mismatch repair together with Pol g is required for

hypermutation at A/T pairs [61]. This is a paradox as the

mismatch repair system promotes error-prone DNA synthesis by

Pol f and Pol g in these two examples. The deletion of DPB3 and

DPB4 unveils another example of how error-prone DNA synthesis

is accepted to complete DNA synthesis and the mismatch-repair

system does not correct the errors. The contribution of these Pol f
dependent errors is small when compared to the error load which

is corrected by mismatch repair at the proximity of the replication

fork (compare CAN1 mutation rate in dpb3D dpb4D with msh2D
(Table 4)). Yet, we found that the error-rate in the dpb3D dpb4D
strain was comparable to the pol2-4 strain. The error-rate in pol2-

4/pol2-4 mice was recently reported to be sufficient to support

tumor development in mice [62]. Although the mechanism by

which the error rates increases in pol2-4 and dpb3D dpb4D strains

clearly differs, it is tempting to speculate that the inactivation of

the mammalian homologues to DPB3 and DPB4 could result in

defective replisomes, elevated mutation rates and tumor develop-

ment.

Materials and Methods

Yeast strains
All S. cerevisiae strains used in this study are isogenic to E134

(MATa ade5-1 lys2::InsEA14 trp1-289 his7-2 leu2-3,112 ura3-52) [33].

The dpb3D mutant was kindly provided by P. Shcherbakova and is

described in [27]. Other strains carrying dpb3D were obtained as

described in [27]. The dpb4D mutants were constructed by

transformation with PCR fragment carrying the hygB selectable

marker and obtained using primers DPB4/kanMX-F (59-ATGC-

CACCAAAAGGTTGGAGAAAAGACGCCCAAGGGAATTA-

CCCCCGTACGCTGCAGGTCGAC) and DPB4/kanMX-R (59-

TTACGTTTGCTCAAGGTTTTGAACTCTAGTTTCTACA-

TCTTGGCTATCGATGAATTCGAGCTCG) and the pAG32

plasmid as a template [63]. The disruption was confirmed by PCR

analysis. The pol2-4 mutation was obtained as described in [64]

using YIpJB1 plasmid carrying pol2-4 mutation [65]. The pol3-5DV

mutation was obtained as described in [64] using plasmid p170-

5DV [66].The presence of the pol2-4 mutation after integration into

the chromosome was confirmed by SfcI digest of short PCR

fragment encompassing mutation and DNA sequencing. Deletion of

the MSH6 gene was obtained as described in [67]. The REV3 gene,

encoding the catalytic subunit of Pol f, was deleted as described in

[68]. Deletion of the MSH2 gene was obtained by transformation

with PCR product obtained from the pRS305 plasmid using oligos

MSH2_del_F (CTCCACTAGGCCAGAGCTAAAATTCTCT-

GATGTATCAGAGGAGAGCAGAGCAGATTGTACTGAGA-

GTGCACC) and MSH2_del_R (CCTTCACTTTTCTAATC-

CACTCTTTCAGTAAAGCCTTCAAACGAACGCATCTGT-

GCGGTATTTCACACCGC). The same strategy was used for

deletion of the PMS1 and MLH1 gene. To obtain pms1D we used

oligos PMS1_A (TATCAAAGCTAGATCATATTTCGTAAT-

CCTTCGAAAATGAGCTCCAATCACGTAAAATATCTTG-

ACCGCAGTTAA) and PMS1_S (AAGGTGTAAGCAAAAG-

GAACAGAGGTATATCCCTGTGAAATATTTATTTAGCC-

CCTATGAACATATTCCATT). The mlh1D was obtained by

transformation with the PCR product obtained from the pRS306

plasmid using oligos MLH1_A (AAGTTAACACCTCTCAA-

AAACTTTGTATAGATCTGGAAGGTTGGCTATTTCCAA-

CACCGCAGGGTAATAACTGAT) and MLH1_S (ATACGA-

TAGTGATAGTAAATGGAAGGTAAAAATAACATAGACCT-

ATCAATAAGCACGGTCACAGCTTGTCTGTAA).

Measurement of spontaneous mutation rates
The fluctuation tests to determine spontaneous mutation rates

were, unless otherwise indicated, performed in two to five

independent experiments of nine independent cultures each with

independently obtained derivatives. Single two-day-old colonies

from YPD plates were inoculated in 5 ml of liquid YPD medium

and were grown with strong aeration for two days and processed

as described [33].

Sequencing of His+ revertants and Canr mutants
Independent His+ revertants and Canr mutants were grown as

small patches on YPD plates. Regions of corresponding genes were

amplified by PCR. Amplified DNAs were purified by QIAGEN

PCR purification kit and sequenced by MWG Biotech (www.

mwgdna.com). CAN1 spectra obtained in four strains were

compared using several statistical techniques. A Monte Carlo

modification of the Pearson x2 test of spectra homogeneity [69]

was used to compare 2 x N tables (two mutation spectra, N$2).

Small probability values (P#0.05) indicate a significant difference

between two spectra. Calculations were done using the program

COLLAPSE [70].

Purification of Pol e, Pol2/Dpb2, and Pol2/Dpb2 exo-
complexes

All purification steps were carried out as described in [32].

39R59exonuclease processivity and primer extension
assay

We used primer 3NY (59-AGGTCACGATGCGGCATAGC-

CTGCATTGATCGCACGATGATCAGCGGACTGCTTACC)

annealed to the template 19wt (39-TCCAGTGCTACGCCG-

TATCGGACGTAACTAGCGTGCTACTAGTCGCCTGACG-

AATGGACAGTGCCATTGTCACTG) as a substrate for the

exonuclease reaction. The primer (8 mM) was labeled with 40 mCi

of [c-32P]ATP in a 20-ml reaction with 10 U T4 polynucleotide

kinase (Promega) for 1 h. The reaction was stopped with EDTA and

labeled products were purified through PAGE. The end-labeled

primer was annealed to the template at 1.5: 1 ratio for a 5 minute

incubation at 80uC followed by slow cooling to room temperature.

For the exonuclease assay 0.5 nM substrate was incubated with

0.1 nM Pol e or 0.5 nM Pol2/Dpb2 complex in a 65 ml reaction

mixture (40 mM Tris-HCl pH 7.8; 1 mM DTT; 0.2 mg/ml Ac-

BSA; 8 mM MgCl2; 125 mM NaAc). Fifteen ml aliquots were taken

at the indicated time points and were mixed with 8 ml stop solution

(80% formamide; 50 mM EDTA; 1 mM bromophenol blue).

Before loading the reactions on a 12% polyacrylamide-urea gel,

the primer-templates were denatured at 99u C for 4 min and then

cooled on ice. The intensity of bands corresponding to different

exonuclease products was quantified using phosphoimager plates

and the ImageQuant software package supplied with a Typhoon

9400 phosphoimager (Amersham Biosciences).

For primer extension assay a [c-32P]ATP –labeled (as described

previously) 50-mer oligonucleotide was annealed to the pBlue-

script II SK(+) ssDNA in a ratio of 1:1.5. For the DNA synthesis

processivity assay, the substrate (14 nM) was incubated with the

four-subunit Pol e (0.35 nM) or Pol2/Dpb2 complex (0.7 nM) in a

reaction mixture (40 mM Tris-HCl pH 7.8; 1 mM DTT; 0.2 mg/ml

Ac-BSA; 8 mM MgCl2; 125 mM NaAc; 100 mM dNTP). Because

the loading efficiency of the Pol2/Dpb2 complex on DNA was
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compromised we used a two and five-fold higher concentration of the

Pol2/Dpb2 complex, compared to the full-subunit Pol e, in the

primer-extension assay and exonuclease assay, respectively. The

conditions were empirically determined to meet single-hit kinetics, i.e.

where a polymerase molecule never re-associated with a previously

extended primer.

In the primer-extension assay, the termination probability at

position N at each primer/template was calculated by dividing the

intensity of the band N by the intensity of all bands $ N. In the

exonuclease processivity assay, the termination probability at

position N at each primer/template was calculated by dividing the

intensity of the band N by the intensity of all bands # N [71].

Assay to measure polymerase fidelity in vitro
DNA synthesis fidelity was measured using the bacteriophage

M13mp2 forward mutation assay described previously [39,40].

Briefly, double-stranded M13mp2 DNA with a 407-nucleotide

single-stranded region containing a portion of the lacZ gene was

used as a substrate for in vitro DNA synthesis. Reactions mixtures

contained ,1.5 nM DNA template, 50 mM Tris-Cl (pH 7.5),

2 mM DTT, 100 mg/ml BSA, 10% glycerol, 250 mM dNTPs and

14 nM wild type or exonuclease-deficient 2-subunit Pol e.
Reactions were incubated at 30uC for 30 min. Aliquots of the

reactions were analyzed by agarose gel electrophoresis to confirm

complete gap-filling, and another aliquot of DNA was introduced

into E.coli to score the frequency of light blue and colorless plaques

reflecting errors made during in vitro DNA synthesis. Single

stranded DNA was isolated from independent mutant M13

plaques and the lacZ gene was sequenced. Error rates (ER) for

individual types of mutation were calculated according to the

following equation: ER = [(Ni/N)6MF]/(D60.6) where Ni is the

number of mutations of a particular type, N is the total number of

mutants analyzed, MF is frequency of lacZ mutants, D is the

number of detectable sites for the particular type of mutation, and

0.6 is the probability of expressing a mutant lacZ allele in E. coli.

Supporting Information

Table S1 Probability that two mutation spectra from CAN1 gene

are homogeneous. (*) indicates that two spectra are different. Raw

numbers from Table 5 were used as input. Statistical analysis was

performed using the COLLAPSE program [66].

Found at: doi:10.1371/journal.pgen.1001209.s001 (0.03 MB

DOC)

Table S2 Mutations found in CAN1 when sequencing Canr

alleles.

Found at: doi:10.1371/journal.pgen.1001209.s002 (0.34 MB

DOC)
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