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Abstract. Ethical issues, along with transparency, disinformation, and
bias, are in the focus of our information society. In this work, we pro-
pose the bias goggles model, for computing the bias characteristics
of web domains to user-defined concepts based on the structure of the
web graph. For supporting the model, we exploit well-known propagation
models and the newly introduced Biased-PR PageRank algorithm, that
models various behaviours of biased surfers. An implementation discus-
sion, along with a preliminary evaluation over a subset of the greek web
graph, shows the applicability of the model even in real-time for small
graphs, and showcases rather promising and interesting results. Finally,
we pinpoint important directions for future work. A constantly evolving
prototype of the bias goggles system is readily available.

Keywords: Bias · Web graph · Propagation models · Biased
PageRank

1 Introduction

There is an increasing concern about the potential risks in the consumption
of abundant biased information in online platforms like Web Search Engines
(WSEs) and social networks. Terms like echo chambers and filter-bubbles [26]
depict the isolation of groups of people and its aftereffects, that result from
the selective and restrictive exposure to information. This restriction can be
the result of helpful personalized algorithms, that suggest user connections or
rank highly information relevant to the users’ profile. Yet, this isolation might
inhibit the growth of informed and responsible humans/citizens/consumers, and
can also be the result of malicious algorithms that promote and resurrect social,
religious, ethnic, and other kinds of discriminations and stereotypes.

Currently, the community focus is towards the transparency, fairness, and
accountability of mostly machine learning algorithms for decision-making, clas-
sification, and recommendation in social platforms like twitter. However, social
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platforms and WSEs mainly act as gateways to information published on the web
as common web pages (e.g., blogs and news). Unfortunately, users are unaware
of the bias characteristics of these pages, except for obvious facts (e.g., a page
in a political party’s web site will be biased towards this party).

In this work, we propose the bias goggles model, where users are able to
explore the biased characteristics of web domains for a specific biased concept
(i.e., a bias goggle). Since there is no objective definition of what bias and biased
concepts are [27], we let users define them. For these concepts, the model com-
putes the support and the bias score of a web domain, by considering the support
of this domain for each aspect (i.e., dimension) of the biased concept. These
support scores are calculated by graph-based algorithms that exploit the struc-
ture of the web graph and a set of user-defined seeds representing each aspect of
bias. As a running example we will use the biased concept of greek politics, that
consists of nine aspects of bias, each one representing a popular greek party, and
identified by a single seed; the domain of its homepage.

In a nutshell, the main contributions of this work are:

– the bias goggles model for computing the bias characteristics of web
domains for a user-defined concept, based on the notions of Biased Concepts
(BCs), Aspects of Bias (ABs), and the metrics of the support of the domain
for a specific AB and BC, and its bias score for this BC,

– the introduction of the Support Flow Graph (SFG), along with graph-based
algorithms for computing the AB support score of domains, that include
adaptations of the Independence Cascade (IC) and Linear Threshold (LT)
propagation models, and the new Biased-PageRank (Biased-PR) variation
that models different behaviours of a biased surfer,

– an initial discussion about performance and implementation issues,
– some promising evaluation results that showcase the effectiveness and effi-

ciency of the approach on a relatively small dataset of crawled pages, using
the new AGBR and AGS metrics,

– a publicly accessible prototype of bias goggles.

The rest of the paper is organized as follows: the background and the related work
is discussed in Sect. 2, while the proposed model, and its notions and metrics are
described in Sect. 3. The graph-based algorithms for computing the support score
of a domain for a specific AB are introduced in Sect. 4. The developed prototype
and related performance issues are discussed in Sect. 5, while some preliminary
evaluation results over a relatively small dataset of web pages are reported in
Sect. 6. Finally, Sect. 7 concludes the paper and outlines future work.

2 Background and Related Work

Social platforms have been found to strengthen users’ existing biases [21] since
most users try to access information that they agree with [18]. This behaviour
leads to rating bubbles when positive social influence accumulates [24] and min-
imizes the exposure to different opinions [31]. This is also evident in WSEs,
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where the personalization and filtering algorithms lead to echo chambers and fil-
ter bubbles that reinforce bias [4,12]. Remarkably, users of search engines trust
more the top-ranked search results [25] and biased search algorithms can shift
the voting preferences of undecided voters by as much as 20% [8].

There is an increasingly growing number of discrimination reports regard-
ing various protected attributes (e.g., race, gender, etc.) in various domains,
like in ads [7,29] and recommendation systems [13], leading to efforts for defin-
ing principles of accountable1, auditing [28] and de-bias algorithms [1], along
with fair classifiers [6,14,34]. Tools that remove discriminating information2,
flag fake news3, make personalization algorithms more transparent4, or show
political biases in social networks5 also exist. Finally, a call for equal opportuni-
ties by design [16] has been raised regarding the risks of bias in the stages of the
design, implementation, training and deployment of data-driven decision-making
algorithms [3,11,20].

There are various efforts for measuring bias in online platforms [27]. Bias in
WSEs has been measured as the deviation from the distribution of the results of
a pool of search engines [23] and the coverage of SRPs towards US sites [30]. Fur-
thermore, the presence of bias in media sources has been explored through human
annotations [5], by exploiting affiliations [32], the impartiality of messages [33],
the content and linked-based tracking of topic bias [22], and the quantification
of data and algorithmic bias [19]. However, this is the first work that provides a
model that allows users to explore the available web sources based on their own
definitions of biased concepts. The approach exploits the web graph structure
and can annotate web sources with bias metrics on any online platform.

3 The bias goggles Model

Below we describe the notions of Biased Concepts (BCs) and Aspects of Bias
(ABs), along with the support of a domain for an AB and BC, and its bias score
for a BC. Table 1 describes the used notation.

3.1 Biased Concepts (BCs) and Aspects of Bias (ABs)

The interaction with a user begins with the definition of a Biased Concept (BC),
which is considered the goggles through which the user wants to explore the web
domains. BCs are given by users and correspond to a concept that can range from
a very abstract one (e.g., god) to a very specific one (e.g., political parties). For
each BC, it is required that the users can identify at least two Aspects of Bias
(ABs), representing its bias dimensions. ABs are given by the users and correspond
to a non-empty set of seeds (i.e., domains) S, that the user considers to fully
1 http://www.fatml.org/resources/principles-for-accountable-algorithms.
2 http://www.debiasyourself.org/.
3 https://www.facebook.com/help/572838089565953.
4 https://facebook.tracking.exposed/.
5 http://politecho.org/.

http://www.fatml.org/resources/principles-for-accountable-algorithms
http://www.debiasyourself.org/
https://www.facebook.com/help/572838089565953
https://facebook.tracking.exposed/
http://politecho.org/
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Table 1. Description of the used notation. The first part describes the notation used
for the Web Graph, while the second the notation for the proposed model.

Symbol Description

W the set of crawled Web pages

p a page in W

dom(p) the normalized SLD of page p

doms(W) the set of normalized SLDs in W

dom an SLD in doms(W)

linkp,p′ a link from page p to p′ | p, p′ ∈ W

linkdom,dom′ a link from domain dom to dom′ | dom, dom′ ∈ doms(W)

links(W) the set of crawled links between pages in W

dom(links(W)) the set of crawled links between the domains in doms(W)

inv(linkp,p′ ) the inverse link of linkp,p′ , i.e., linkp′,p

inv(linkdom,dom′ ) the inverse link of linkdom,dom′ , i.e., linkdom′,dom

inv(links(W)) the set of inverse links between the pages in W

inv(dom(links(W))) the set of inverse links between the domains in doms(W)

G(W) the graph with doms(W) as nodes and dom(links(W)) as edges

outInvLinks(dom) the set of linkp,∗ ∈ inv(links(W)) | p ∈ W, dom(p) = dom

outInvLinks(dom, dom′) the set of linkp,p′ ∈ inv(links(W)) | p, p′ ∈ W,
dom(p) = dom, dom(p′) = dom′

neigh(dom) the set of all dom′ ∈ doms(W) | linkdom,dom′ ∈ dom(links(W))

invNeigh(dom) the set of all dom′ ∈ doms(W) | linkdom,dom′ ∈ inv(dom(links(W)))

wdom,dom′ the weight of the linkdom,dom′

SFG(W) the weighted graph with doms(W) as nodes and

inv(dom(links(W))) as edges where wdom,dom′ =
outInvLinks(dom,dom′)

outInvLinks(dom)

S a non-empty set of normalized domain urls (i.e., seeds)

sign(S) the signature of a set of seeds

ABsign(S) an Aspect of Bias (AB) as identified by sign(S)

seeds(ABsign(S)) the set of seeds that define ABsign(S)

AU the universe of all available ABs

A a non-empty set of ABs | A ⊆ AU, |A| ≥ 2

BCA a Biased Concept (BC) as defined by A

dA an |A|-dimensional vector holding the ABs of BCA

dA[i] the AB stored in dimension i of dA

sup(dA[i], dom)
sup(ABsign(S), dom)

support score of domain dom regarding AB dA[i]

sdomdA
vector holding support scores ∀dA[i] ∈ dA for domain dom

sdomdA
[i] support score of dimension i of sdomdA

sup(sdomdA
) sup(BCA, dom) support score of domain dom regarding BC BCA

bias(BCA, dom)
bias(sdomdA

)
bias score of dom for BC BCA

1|A| An |A|-dimensional vector with support 1 in all dimensions
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support this bias aspect. For example, consider the homepage of a greek political
party as an aspect of bias in the biased concept of the politics in Greece. Notice,
that an AB can be part of more than one BCs. Typically, an AB is denoted by
ABsign(S), where sign(S) is the signature of the non-empty set of seeds S. The
sign(S) is the SHA1 hash of the lexicographic concatenation of the normalized
Second Level Domains (SLDs)6 of the urls in S. We assume that all seeds in S

are incomparable and support with the same strength this AB.

Assumption 1. Incomparable Seeds Support. The domains in the set of
seeds S are incomparable and equally supportive of the ABsign(S) .

The user-defined BC of the set of ABs A ⊆ AU, where |A| ≥ 2 and AU the
universe of all possible ABs in the set of domains doms(W) of the crawled pages
W, is denoted by BCA and is represented by the pair < dA, descA >. The dA

is an |A|-dimensional vector with |A| ≥ 2, holding all ABsign(S) ∈ A of this BC
in lexicographic order. descA is a user-defined textual description of this BC. In
this work, we assume that all ABs of any BC are orthogonal and unrelated.

Assumption 2. Orthogonality of Aspects of Bias. All ABs in a user-
defined BC are considered orthogonal.

Using the notation, our running example is denoted as BCR =< dR, descR >,
where dR is a vector that holds lexicographically the SHA1 signatures
of the nine ABs singleton seeds of greek political parties R = {
{“anexartitoiellines.gr”}, {“antidiaploki.gr”}, {“elliniki − lisi.gr”},
{“kke.gr”}, {“mera25.gr”}, {“nd.gr”}, {“syriza.gr”}, {“topotami.gr”},
{“xryshaygh.com”}}, and descR = “politics in Greece” is its description.

3.2 Aspects of Bias Support and Biased Concepts Support

A core metric in the proposed model is the support score of a domain dom to
an aspect of bias ABsign(S), denoted as sup(ABsign(S), dom). The support score
ranges in [0, 1], where 0 denotes an unsupportive domain for the corresponding
AB, and 1 a fully supportive one. We can identify three approaches for computing
this support for a dataset of web pages: (a) the graph-based ones that exploit
the web graph structure and the relationship of a domain with the domains in
seeds(ABsign(S)), (b) the content-based ones that consider the textual informa-
tion of the respective web pages, and (c) the hybrid ones that take advantage
of both the graph and the content information. In this work, we focus only
on graph-based approaches and study two frequently used propagation mod-
els, the Independence Cascade (IC) and Linear Threshold (LT) models, along
with the newly introduced Biased-PageRank (Biased-PR), that models various
behaviours of biased surfers. The details about these algorithms are given in
Sect. 4.

6 We follow the standard URL normalization method (see https://en.wikipedia.org/
wiki/URI normalization) and get the SLD of an url.

https://en.wikipedia.org/wiki/URI_normalization
https://en.wikipedia.org/wiki/URI_normalization
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In the same spirit, we are interested about the support of a specific domain
dom to a biased concept BCA, denoted by sup(BCA, dom). The basic intuition is
that we need a metric that shows the relatedness and support to all or any of the
aspects in A, which can be interpreted as the relevance of this domain with any
of the aspects of the biased concept BCA. A straightforward way to measure it, is
the norm of the sdomdA

vector that holds the support scores of dom for each AB in A,
normalized by the norm of the 1|A| vector. This vector holds the support scores
of a ‘virtual’ domain that fully supports all bias aspects in BCA. Specifically,

sup(BCA, dom) =

∥
∥sdomdA

∥
∥

∥
∥1|A|

∥
∥

=

√

|A|∑

i=1

sdomdA
[i]2

√|A| =

√ ∑

ABsign(S)∈A

sup(ABsign(S), dom)2

√|A|
(1)

The sup(BCA, dom) value ranges in [0, 1]. By using the above formula two
domains might have similar support scores for a specific BC, while the support
scores for the respective aspects might differ greatly. For example, consider two
domains dom and dom′, with dom fully supporting only one aspect in A and dom′

fully supporting another aspect in A. Then sup(BCA, dom) ∼ sup(BCA, dom′).
Below we introduce the bias score of a domain regarding a specific BC, as a way
to capture the leaning of a domain to specific ABs of a BC.

3.3 Bias Score of Domain Regarding a Biased Concept

The bias score of a domain regarding a BC tries to capture how biased the domain
is over any of its ABs, and results from the support scores that the domain has
for each aspect of the BC. For example, consider a domain dom that has a rather
high support for a specific AB, but rather weak ones for the rest ABs of a specific
BC. This domain is expected to have a high bias score. On the other hand, the
domain dom′ that has similar support for all the available ABs of a BC can be
considered to be unbiased regarding this specific BC.

We define the bias score of a domain dom for BCA as the distance of the sdomdA

vector from the 1|A| vector, multiplied by its support sup(BCA, dom). The bias
score takes values in [0, 1]. Specifically,

bias(sdomdA
) = dist(sdomdA

,1|A|) ∗ sup(BCA, dom) (2)

We use the cosine similarity to define the distance metric, as shown below:

dist(sdomdA
,1|A|) = 1 − cosSim(sdomdA

,1|A|) = 1 − sdomdA
· 1|A|

∥
∥sdomdA

∥
∥

∥
∥1|A|

∥
∥

(3)
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4 Graph-Based Computation of Aspects of Bias Support

In this section, we discuss the graph-based algorithms that we use for computing
the support score of a domain regarding a specific AB. We focus on the popular
Independence Cascade (IC) and Linear Threshold (LT) propagation models,
along with the newly introduced Biased-PageRank (Biased-PR) algorithm.

Let W be the set of crawled web pages, doms(W) the set of normal-
ized SLDs in W, links(W) the set of crawled links between the domains
in doms(W), and G(W) the corresponding graph with doms(W) as nodes and
links(W) as edges. With linkdom,dom′ we denote a link from domain dom to
dom′ | dom, dom′ ∈ doms(W), while inv(linkdom,dom′) inverses the direction of a
link and inv(links(W)) is the set of inverse links in W. Furthermore, for the
links we assume that:

Assumption 3. Equally Supportive Links.Any link linkdom,dom′ from the
domain dom to the domain dom′ in the set of crawled domains W, is consid-
ered to be of supportive nature (i.e., dom has the same support stance as dom′

for any AB). All links in a domain are equally supportive and independent of the
importance of the page they appear in.

Although the above assumption might not be precise, since links from a web
page to another are not always of supportive nature (e.g., a web page critizing
another linked one), or of the same importance (e.g., links in the homepage versus
links deeply nested in a site), it suffices for the purposes of this first study of the
model. Identification of the nature of links and the importance of the pages they
appear is left as future work. Given that the assumption holds, part or whole of
the support of dom′ regarding any AB can flow to dom through inv(linkdom,dom′).
Specifically, we define the Support Flow Graph as:

Support Flow Graph (SFG) Definition. The SFG of a set of web pages W

is the weighted graph that is created by inversing the links in G(W) (i.e., the
graph with doms(W) as nodes and inv(links(W)) as edges). The weight of each
edge is wdom,dom′ = outInvLinks(dom,dom′)

outInvLinks(dom) (i.e., the number of outgoing inverse links
of pages in the domain dom that link to pages in the domain dom′, divided by the
total outgoing inverse links of pages in the domain dom), and takes a value in
[0, 1].

So, given an SFG(W) and the seeds(ABsign(S)) of an AB we can now describe
how the support flows in the nodes of the SFG(W) graph. All algorithms described
below return a map M holding sup(ABsign(S), dom) ∀ dom ∈ doms(W).
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4.1 Independence Cascade (IC) Model

The IC propagation model was introduced by Kempe et al. [17], and a number of
variations have been proposed in the bibliography. Below, we describe the basic
form of the model as adapted to our needs. In the IC propagation model, we
run n experiments. Each run starts with a set of activated nodes, in our case
the seeds(ABsign(S)), that fully support the ABsign(S). In each iteration there is a
history independent and non-symmetric probability of activating the neighbors
of the activated nodes associated with each edge, flowing the support to the
neighbors of the activated nodes in the SFG(W). This probability is represented
by the weights of the links of an activated node to its neighbors, and each node,
once activated, can then activate its neighbors. The nodes and their neighbors
are selected in arbitrary order. Each experiment stops when there are no new
activated nodes. After n runs we compute the average support score of nodes,
i.e., sup(ABsign(S), dom) ∀ dom ∈ doms(W). The algorithm is given in Algorithm1.

Algorithm 1: IC Support Computation
input : SFG(W) : the Support Flow Graph of W

seeds(ABsign(S)) : the set of seeds of ABsign(S)
n : the number of experiments

output: a map M holding sup(ABsign(S), dom) ∀ dom ∈ doms(W)

1 L ← ∅ // list holding the support maps of each experiment
2 for i ← 1 to n do // for each experiment
3 A ← seeds(ABsign(S)) // set of active nodes for next iteration

4 I ← doms(W) \ A // set of inactive nodes
5 M ← mapWithZeros(doms(W)) // map with 0 support for domains
6 while A �= ∅ do
7 C ← A // active nodes in this iteration
8 A ← ∅ // active nodes in next iteration
9 foreach dom ∈ C do // for each current active domain

10 N ← invNeigh(dom) ∩ I // get all inactive inverse neighbors

11 foreach dom′ ∈ N do // for each neighbor
12 r ← random(0, 1)) // get a random value in [0,1]
13 if r ≤ wdom,dom′ then // successful experiment

14 A ← A ∪ {dom′} // activate node for next iteration

15 M ← setOne(M, dom′) // set dom’ support to 1

16 I ← I \ {dom′} // remove dom’ from inactive

17 L ← L ∪ {M} // hold support values map to list

18 return average(L) // map with average support values

4.2 Linear Threshold (LT) Model

The LT model is another widely used propagation model. The basic difference
from the IC model is that for a node to become active we have to consider
the support of all neighbors, which must be greater than a threshold θ ∈ [0, 1],
serving as the resistance of a node to its neighbors joint support. Again, we use
the support probabilities represented by the weights of the SFG links. The full
algorithm, which is based on the static model introduced by Goyal et al. [10], is
given in Algorithm 2. In each experiment the thresholds θ get a random value.
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Algorithm 2: LT Support Computation
input : SFG(W) : the Support Flow Graph of W

seeds(ABsign(S)) : the set of seeds of ABsign(S)
n : the number of experiments

output: a map M holding sup(ABsign(S), dom) ∀ dom ∈ doms(W)

1 L ← ∅ // list holding the support maps of each experiment
2 for i ← 1 to n do // for each experiment
3 N ← seeds(ABsign(S)) // set of active nodes for next iteration

4 A ← ∅ // set of all active nodes
5 I ← doms(W) \ N // set of inactive nodes
6 M ← mapWithZeros(doms(W)) // map with 0 support for domains
7 T ← mapWithRandom(doms(W) // random value θ in [0,1] for each node
8 while N �= ∅ do
9 C ← N // active nodes in this iteration

10 N ← ∅ // active nodes in next iteration
11 A ← A ∪ C // add to all nodes
12 foreach dom ∈ (

⋃
c∈C invNeigh(c) ∩ I) do // for inactive invNeigh of active

13 N ← neigh(dom) ∩ N // get all active neighbors
14 jointSup ← 1 − ∏

dom′∈N (1 − wdom,dom′ ) // compute joint support value in [0, 1]

15 if jointSup ≥ getValue(T, dom) then // joint support bigger than threshold
16 N ← N ∪ {dom} // activate node for next iteration
17 M ← setOne(M, dom) // set dom support to 1
18 I ← I \ {dom} // remove node from inactive

19 L ← L ∪ {M} // hold support values map to list

20 return average(L) // map with average support values

4.3 Biased-PageRank (Biased-PR) Model

We introduce the Biased-PR variation of PageRank [9] that models a biased
surfer. The biased surfer always starts from the biased domains (i.e., the seeds
of an AB), and either visits a domain linked by the selected seeds or one of
the biased domains again, with some probability that depends on the modeled
behaviour. The same process is followed in the next iterations. The Biased-PR
differs to the original PageRank in two ways. The first one is how the score
(support in our case) of the seeds is computed at any step. The support of all
domains is initially 0, except from the support of the seeds that have the value
initseeds = 1. At any step, the support of each seed is the original PageRank
value, increased by a number that depends on the behaviour of the biased surfer.
We have considered three behaviours: (a) the Strongly Supportive (SS) one,
where the support is increased by initseeds and models a constantly strongly
biased surfer, (b) the Decreasingly Supportive (DS) one, where the support is
increased by initseeds/iter, modeling a surfer that becomes less biased the more
pages he/she visits, and (c) the Non-Supportive (NS) one, with no increment,
modeling a surfer that is biased only on the initial visiting pages, and afterwards
the support score is computed as in the original PageRank. Biased-PR differs also
on how the biased surfer is teleported to another domain when he/she reaches a
sink (i.e., a domain that has no outgoing links). The surfer randomly teleports
with the same probability to a domain in any distance from the seeds. If a path
from a node to any of the seeds does not exist, the distance of the node is
the maximum distance of a connected node increased by one. Since the number
of nodes at a certain distance from the seeds increase as we move away from
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the seeds, the teleporting probability for a node is greater the closer the node
is to the seeds. We expect slower convergence for Biased-PR than the original
PageRank, due to the initial zero scores of non-seed nodes. The algorithm is
given in Algorithm 3.

Algorithm 3: Biased-PR Support Computation
input : SFG(W) : the Support Flow Graph of W

seeds(ABsign(S)) : the set of seeds of ABsign(S)
behaviour : bias user behaviour. One of SS, DS, NS
θconv : converge threshold
d : damping factor

output: a map M holding sup(ABsign(S), dom) ∀ dom ∈ doms(W)

// ----- INIT PART -----
1 inits = 1 // initial support of seeds
2 iter ← 0 // counts iterations
3 conv ← false // holds if the algorithm has converged

4 M ← mapWithZeros(doms(W)) // map with 0 support for domains
5 foreach dom ∈ seeds(ABsign(S)) do // initialize support for each seed

6 M ← addSupport(M, dom, inits) // add inits support value for domain dom in map M

// D is a map with keys the distinct minimum distances of nodes from seeds in SFG,
// and values the number of nodes with this minimum distance

7 D ← distinctMinDistancesAndCounts(doms(W), seeds(ABsign(S)))

8 E ← mapWithZeros(doms(W)) // map that holds the teleportation probabilities
9 foreach dom ∈ doms(W)) do // find teleportation probability for each node

10 minDist = findMinDistanceFromSeeds(dom, seeds(ABsign(S))

11 E ← addProbability(E, dom, 1/(minDist ∗ getValue(D, minDist)) // compute probability

// ----- MAIN PART -----
12 while !conv do // alg has not finished

13 M′ ← mapWithZeros(doms(W)) // new map with ranks (0 support for domains)
14 foreach dom ∈ doms(W) do // for each node
15 tele ← getValue(D, dom) // find teleport probability of node

16 sup ← ∑

dom′∈neigh(dom)
(getValue(M, dom′)/wdom,dom′ ) // compute joint support

17 if dom ∈ seeds(ABsign(S)) && behaviour == SS then // support to seeds - SS

18 sup ← sup + inits
19 if dom ∈ seeds(ABsign(S)) && behaviour == DS then // support to seeds - DS

20 sup ← sup + inits/(iter + 1)
21 final = (1 − d) ∗ tele + d ∗ sup // final support score

22 M′ ← addSupport(M, dom, final) // add support to map

23 M′ ← normalize(M′) // normalize values

24 conv ← checkConvergence(M, M′, θconv) // all supports changed less than θconv?

25 M ← M′ // prepare map for next iteration
26 iter ← iter + 1 // increase counter

27 return M // map with support values

5 Perfomance and Implementation Discussion

Due to size restrictions we provide a rather limited discussion about the com-
plexities and the cost of tuning the parameters of each algorithm. The huge
scale of the web graph has the biggest performance implication to the the
graph-based computation of the ABs support. What is encouraging though, is
that the algorithms are applied over the compact SFG graph, that contains the
SLDs of the pages and their corresponding links. The complexity of IC is in
O(n ∗ |domsW| ∗ |dom(links(W)|), where n is the number of experiments. LT is
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much slower though since we have to additionally consider the joint support of
the neighbors of a node. Finally, the Biased-PR converges slower than the orig-
inal PageRank, since the algorithm begins only with the seeds, spreading the
support to the rest nodes. Also, we must consider the added cost of computing
the shortest paths of the nodes from the seeds. For the relatively small SFG used
in our study (see Sect. 6), the SS converges much faster than the DS and NS,
which need ten times more iterations.

For newly introduced ABs though, the computation of the support scores of
the domains can be considered an offline process. Users can submit ABs and
BCs into the bias goggles system and get notified when they are ready for use.
However, what is important is to let users explore in real-time the domains space
for any precomputed and commonly used BCs. This can be easily supported by
providing efficient ways to store and retrieve the signatures of already known BCs,
along with the computed support scores of domains of available ABs. Inverted files
and trie-based data structures (e.g., the space efficient burst-tries [15] and the
cache-consious hybrid or pure HAT-tries [2]) over the SLDs and the signatures
of the ABs and BCs, can allow the fast retrieval of offsets in files where the support
scores and the related metadata are stored. Given the above, the computation
of the bias score and the support of a BC for a domain is lightning fast. We have
implemented a prototype7 that allows the exploration of predefined BCs over a
set of mainly greek domains. The prototype offers a REST API for retrieving
the bias scores of the domains, and exploits the open-source project crawler4j8.
We plan to improve the prototype, by allowing users to search and ingest BCs,
ABs and domains of interest, and develop a user-friendly browser plugin on top
of it.

6 Experimental Evaluation Discussion

Evaluating such a system is a rather difficult task, since there are no formal
definitions of what bias in the web is, and there are no available datasets for
evaluation. As a result, we based our evaluation over BCs for which it is easy to
find biased sites. We used two BCs for our experiments, the greek politics (BC1)
with 9 ABs, and the greek football (BC2) with 6 ABs. For these BCs, we gathered well
known domains, generally considered as fully supportive of only one of the ABs,
without inspecting though their link coverage to the respective seeds, to avoid
any bias towards our graph based approach. Furthermore, we did not include
the original seeds to this collection. In total, we collected 50 domains for BC1 and
65 domains for BC2, including newspapers, radio and television channels, blogs,
pages of politicians, etc. This collection of domains is our gold standard.

We crawled a subset of the greek web by running four instances of the crawler:
one with 383 sites related to the greek political life, one with 89 sport related
greek sites, one with the top-300 popular greek sites according to Alexa, and
a final one containing 127 seeds related to big greek industries. We black-listed
7 http://pangaia.ics.forth.gr/bias-goggles.
8 https://github.com/yasserg/crawler4j.

http://pangaia.ics.forth.gr/bias-goggles
https://github.com/yasserg/crawler4j
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Table 2. Experimental results over two BCs.
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R SS (40, 31) 34.8 227.999 0.5569 17.9 261.788 0.4745

DSS (319, 391) 260.5 129.829 0.3730 219.4 163.165 0.4344

NSS (306, 458) 231.4 32.602 0.3041 207.6 34.905 0.4052

popular sites like facebook and twitter to control the size of our data and avoid
crawling non-greek domains. The crawlers were restricted to depth seven for each
domain, and free to follow any link to external domains. In total we downloaded
893,095 pages including 531,296,739 links, which lead to the non-connected SFG
graph with 90,419 domains, 288,740 links (on average 3.1 links per domain) and
a diameter k = 7, 944. More data about the crawled pages, the gold standard,
and the SFG graph itself are available in the prototype’s site.

Below we report the results of our experiments over an i7-5820K 3.3GHz
system, with 6 cores, 15MB cache and 16GB RAM memory, and a 6TB disk.
For each of the two BCs and for each algorithm, we run experiments for various
iterations n and Biased-PR variations, for the singleton ABs of the 9 political
parties and 6 sports teams. For Biased-PR we evaluate all possible behaviours
of the surfer using the parameters θconv = 0.001 and d = 0.85. We also provide
the average number of iterations for convergence over all ABs for Biased-PR. We
report the run times in seconds, along with the metrics Average Golden Bias
Ratio (AGBR) and Average Golden Similarity (AGS), that we introduce in
this work. The AGBR is the ratio of the average bias score of the golden domains,
as computed by the algorithms for a specific BC, divided by the average bias
score of all domains for this BC. The higher the value, the more easily we can
discriminate the golden domains from the rest. On the other hand, the AGS is the
average similarity of the golden domains to their corresponding ABs. The higher
the similarity value, the more biased the golden domains are found to be by our
algorithms towards their aspects. A high similarity score though, does not imply
high support for the golden domains or high disimilarity for the rest. The perfect
algorithm will have high values for all metrics. The results are shown in Table 2.

The difference in BC1 and BC2 results implies a less connected graph for BC2
(higher AGBR values for BC2), where the support flows to less domains, but with
a greater interaction between domains supporting different aspects (smaller AGS
values). What is remarkable is the striking time performance of IC, suggesting
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that it can be used in real-time and with excellent results (at least for AGBR).
On the other hand, the LT is a poor choice, being the slowest of all and dom-
inated in any aspect by IC. Regarding the Biased-PR only the SS variation
offers exceptional performance, especially for AGS. The DS and NS variations are
more expensive and have the worst results regarding AGBR, especially the NSS
that avoids bias. In most cases, algorithms benefit from more iterations. The
SS variation of Biased-PR needs only 40 iterations for BC1 and 31 for BC2 to
converge, proving that less nodes are affected by the seeds in BC2. Generally, the
IC and the SS variation of Biased-PR are the best options, with the IC allowing
the real-time ingestion of ABs. But, we need to evaluate the algorithms in larger
graphs and for more BCs.

We also manually inspected the top domains according to the bias and sup-
port scores for each algorithm and each BC. Generally the support scores of the
domains were rather low, showcasing the value of other support cues, like the
content and the importance of pages that links appear in. In the case of BC1,
except from the political parties, we found various blogs, politicians homepages,
news sites, and also the national greek tv channel, being biased to a specific
political party. In the case of BC2 we found the sport teams, sport related blogs,
news sites, and a political party being highly biased towards a specific team,
which is an interesting observation. In both cases we also found various domains
with high support to all ABs, suggesting that these domains are good unbiased
candidates. Currently, the bias goggles system is not able to pinpoint false
positives (i.e pages with non supportive links) and false negatives (i.e., pages
with content that supports a seed without linking to it), since there is no con-
tent analysis. We are certain that such results can exist, although we were not
able to find such an example in the top results of our study. Furthermore, we are
not able to distinguish links that can frequently appear in users’ content, like in
the signatures of forum members.

7 Conclusion and Future Work

In this work, we introduce the bias goggles model that facilitates the impor-
tant task of exploring the bias characteristics of web domains to user-defined
biased concepts. We focus only on graph-based approaches, using popular prop-
agation models and the new Biased-PR PageRank variation that models biased
surfers behaviours. We propose ways for the fast retrieval and ingestion of aspects
of bias, and offer access to a developed prototype. The results show the efficiency
of the approach, even in real-time. A preliminary evaluation over a subset of
the greek web and a manually constructed gold standard of biased concepts
and domains, shows promising results and interesting insights that need futher
research.

In the future, we plan to explore variations of the proposed approach where
our assumptions do not hold. For example, we plan to exploit the supportive, neu-
tral or oppositive nature of the available links, as identified by sentiment analysis
methods, along with the importance of the web pages they appear in. Content-
based and hybrid approaches for computing the support scores of domains are
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also in our focus, as well as the exploitation of other available graphs, like the
graph of friends, retweets, etc. In addition interesting aspects include how the
support and bias scores of multiple BCs can be composed, providing interesting
insights about possible correlations of different BCs, as well as how the bias scores
of domains change over time. Finally, our vision is to integrate the approach in
a large scale WSE/social platform/browser, in order to study how users define
bias, create a globally accepted gold standard of BCs, and explore how such
tools can affect the consumption of biased information. In this way, we will be
able to evaluate and tune our approach in real-life scenarios, and mitigate any
performance issues.
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