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Abstract: Application of microfluidics to Positron Emission Tomography (PET) tracer 

synthesis has attracted increasing interest within the last decade. The technical advantages 

of microfluidics, in particular the high surface to volume ratio and resulting fast thermal 

heating and cooling rates of reagents can lead to reduced reaction times, increased 

synthesis yields and reduced by-products. In addition automated reaction optimization, 

reduced consumption of expensive reagents and a path towards a reduced system footprint 

have been successfully demonstrated. The processing of radioactivity levels required for 

routine production, use of microfluidic-produced PET tracer doses in preclinical and 

clinical imaging as well as feasibility studies on autoradiolytic decomposition have all 

given promising results. However, the number of microfluidic synthesizers utilized for 

commercial routine production of PET tracers is very limited. This study reviews the state 
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of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, 

strengths, weaknesses and presenting several characteristics of the diverse PET market 

space which are thought to have a significant impact on research, development and 

engineering of microfluidic devices in this field. Furthermore, the topics of batch- and 

single-dose production, cyclotron to quality control integration as well as centralized 

versus de-centralized market distribution models are addressed. 

Keywords: microfluidics; PET; molecular imaging; PET probes; PET tracers; PET 

biomarkers; radiolabelling; synthetic chemistry; lab on a chip; radiochemistry; probe discovery 

 

1. Introduction 

Microfluidic Positron Emission Tomography (PET) [1] tracer synthesizer development has been 

pursued for several years [2–8]. Numerous microfluidic devices have been described, including 

commercially available capillary-based microfluidic synthesis platforms [9–11], as well as lab-on-chip 

devices [12]. Both approaches have demonstrated significant improvements to PET tracer synthesis 

such as reduced reaction times, lowered consumption of expensive reagents and processing of radioactivity 

levels sufficient for practical use [13]. Results published by our group suggest that adverse side-effects 

resulting from high radioactivity concentrations due to reagent volume down-scaling towards 

microfluidic dimensions can be circumvented by appropriate micro-reactor design [14]. From the 

literature it can be concluded that the application of microfluidics to the synthesis of PET tracers as 

well as its scientific and economic value have been successfully demonstrated. However, future 

commercial microfluidic PET tracer synthesis systems must deliver the advantages of microfluidics 

while competing against automated chemistry modules already established in the field. These 

conventional systems have overcome practical challenges such as regulatory compliance with 

operation under Good Manufacturing Practice (GMP) guidelines, high operational efficiency and 

reliability, ease of use and low cost of consumables. In this context, the overall system design and the 

choice of materials utilized for cassette, chip and reagent kit manufacturing are of fundamental 

importance. This review takes an engineering perspective on the field of microfluidic PET tracer 

synthesis and sheds light on achievements and remaining challenges, as well as different perspectives 

towards making microfluidics for PET radiochemistry a success story worldwide. 

2. PET Tracer Supply Chain and Synthesis Workflow 

2.1. PET Tracer Production Workflow 

An overview on the PET tracer production process is schematically illustrated in the upper half of 

Figure 1. 
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Figure 1. PET tracer production and synthesis workflow and resulting functional elements 

to be integrated into a microfluidic synthesis system. Synthesizer process description based 

on [18F]FDG synthesis, several functional elements may not be required for the synthesis of 

other PET tracers. 

 

The workflow focuses on the fluoride-18 based radiochemistry. In the first step (1) “Cyclotron or 

Generator”, the short-lived (t = 109.8 min) radioisotope fluoride-18 is produced via proton 

bombardment of enriched [18O]H2O water by the 18O(p, n)18F nuclear reaction. The cyclotron 

bombardment targets usually facilitate a [18O]H2O target volume of about 1 to 3 mL. A few medical 

radionuclides can be produced by an activity generator which utilizes a long-lived parent isotope that 

decays to the medical isotope of interest, omitting the need for a cyclotron. For the example of Ga-68, 

the parent isotope is Ge-68, with a half-life of 271 days. Upon completion of step (1), this volume is 

partially or entirely transferred to the PET tracer synthesizer. This transfer can be executed directly via 

tubing connecting the cyclotron and the synthesizer or by means of an intermediate transport vessel 

which can be shipped from the cyclotron facility to the location of the synthesizer. In step (2) 

“Synthesizer”, the radioisotope is directly or via intermediate steps reacted with the precursor. The 

output of this process is the PET tracer, usually formulated with a saline buffer solution to a total 

volume of 6 to 14 mL. Depending on the amount of radioactive isotopes utilized during the synthesis, 

the output dose can serve from one (single dose) to multiple (batch mode) patients.  

In step (3) “Dispenser”, the batch mode produced PET tracer solution is split into aliquots serving 

multiple patients. However, additional aliquots have to be provided for the quality control process. In 
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step (4) “Quality Control”, the PET tracer is validated to be suitable for injection to a human patient. 

Usually, Pharmacopoeia monographs are used to determine the required specifications, including tests 

on pH, chemical purity, residual solvent, radionuclide purity, radiochemical purity, radioactive 

concentration, specific activity, sterility, bacterial endotoxins and filter membrane integrity [15]. These 

quality control tests are often carried out in a dedicated quality control (QC) laboratory.  

Step (5) “Transfer to animal or patient” describes the logistics of delivering each PET tracer dose to 

the respective animal subject (research and clinical studies) or to the human patient (clinical practice) 

in order to execute process step (6), the “PET scan”. In the case of in-house, also referred as to 

“decentralized” PET tracer production (within a single facility or site), this transfer can be fast and 

effective. For centralized PET tracer production at a radiopharmaceutical facility and subsequent 

shipping to hospitals within e.g. two hours driving distance, technical, economic and practical 

challenges arise concerning activity loss and decrease in specific activity due to transfer time. The 

geographical distance between the PET tracer production facility and the customer hospitals in low 

versus high density populated areas, as well as patient scheduling at point of use, all need to be 

considered. For the radioisotope carbon-11 with a half-life of only 20.3 min, the time associated with 

PET tracer distribution from a central production site to surrounding hospitals renders a centralized 

production approach infeasible [16]. In the future, the variety of PET tracers targeting specific disease 

patterns will grow since academic and commercial entities worldwide are developing new compounds 

today. This will apply pressure to existing PET tracer production sites to expand their capabilities. 

2.2. PET Tracer Synthesis Process 

The PET tracer synthesis process is executed during step (2) “Synthesizer” of the PET imaging 

workflow (Figure 1). It is displayed exemplarily following the routine for fluoride-18 labeled PET 

tracers via direct one-step labeling using a nucleophilic substitution such as [18F]fluoro-2-deoxy-D-

glucose ([18F]FDG) [17] or [18F]fluorothymidine ([18F]FLT) [18]. The process can be separated into 

four steps: (1) concentration and phase transfer of fluoride-18 activity from the cyclotron target water 

into dry conditions, (2) radiolabeling of the precursor, (3) deprotection of the radiolabeled precursor 

via e.g. hydrolysis and subsequent (4) purification & reformulation into a single or multi patient batch 

dose. Each process step results in elements required for physical implementation into a synthesizer 

device, herewith referred as to “functional elements” (Figure 1). 

2.3. Continuous-Flow & Batch Microfluidics 

Microfluidic systems can be separated into continuous-flow and stop-flow (batch mode) 

architectures [19–21]. This definition is driven by a perspective towards chemical processing. 

Continuous-flow architectures perform all processing steps such as mixing, heating and cooling along 

a pre-defined fluid path whereby all reagents progress continuously through the system. Parameters 

such as exposure time to reaction temperatures are defined by the reagent flow rate with respect to the 

fluid path geometry. Design advantages are the straightforward architecture and the large flexibility in 

processing small or large product quantities on the same device. Not surprisingly, many early studies 

on microfluidic labeling of PET tracers were carried out on fluoride-18 chemistries following the 

continuous flow approach [22–25]. Comparable examples can be found for the microfluidic synthesis 
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of iodine-124, copper-64, nitrogen-13, technetium-99m and carbon-11 labeled compounds [26–32]. 

Disadvantages of continuous-flow microfluidics are the strong dependency on precise reagent flow 

control, long flow paths with a high accumulated contact area between reagents and the fluid path 

material resulting in high system pressures and increased reagent to fluid path material interactions 

(residual activity), the risk of channel clogging and limited functionality integration of multiple 

reaction steps. Pressures in continuous-flow systems depend on reagent viscosities, applied flow rates, 

dimensions and system architecture. Although high pressures are advantageous for certain reactions, 

pressures in excess of 100 bar can occur and this places additional demands on components to avoid 

leakages and syringe pump stalls. A recent review on microfluidics in radiochemistry proposes the 

term “micro-channel systems” (MCSs) which unites capillary-based and chip-based continuous flow 

architectures [33]. 

Batch-mode or stop-flow microfluidics employs discontinuous flow rates of reagents, usually due to 

mixing or reaction of starting compounds or intermediates within one or multiple functional elements. 

Another description proposed by Pascali et al. describes this category as “micro-vessel systems” 

(MVSs), implying a straightforward downscaling approach from conventional, vessel-based 

synthesizers [33]. In this particular architecture, e.g., temperature exposure intervals are usually driven 

by residence time at stopped flow. There are several examples of batch-mode PET tracer synthesis 

devices [34,35]. A high level of functionality integration is often seen as an important advantage of 

batch-mode microfluidics over continuous-flow architectures [21]. Consequently, the hardware 

structure of batch-mode microfluidic systems is rather complex with challenges on functional element 

integration, manufacturing, hardware assembly and system control. 

2.4. Capillary-Based, Hybrid and Integrated Lab-on-Chip Systems 

Another angle from which to look at microfluidic architectures is from the perspective of hardware 

engineering, categorizing state of the art microfluidic systems into: (1) capillary-based microfluidic 

systems, (2) hybrid assemblies and (3) chip-based integrated devices. Commercial examples for 

capillary-based microfluidic PET tracer synthesizers are the Advion Biosciences NanoTek (Advion 

Biosciences, Inc., Ithaca, NY, USA) and the Scintomics “μ-ICR” (SCINTOMICS GmbH, 

Fuerstenfeldbruck, Germany). Both solutions and modifications thereof are often associated to 

continuous-flow operation and show a comparably simple hardware structure utilizing conventional 

syringe pumps and rotary motor valves as well as established fluid connectors and capillaries. 

Presenting a low development risk, these systems were consequently the first to enter the commercial 

space. Capillary-based synthesizers have demonstrated numerous microfluidic benefits to PET tracer 

syntheses such as low reaction volume processing, reduced reaction times, high radiolabeling yields 

and efficient screening of multiple reaction conditions [36–52]. A summary on chemistry results 

accomplished utilizing the Advion Biosciences, Inc. NanoTek capillary-based synthesis system has 

recently been published [33]. 

The second category, hybrid assemblies, describes a transient state of technology development 

bridging conventional hardware concepts and highly integrated microfluidic “lab-on-chip” systems. 

There are several example systems which combine conventional aspects such as macroscopic valves, 

syringe pumps and turbulent mixing of reagents with new monolithic microfluidic chip devices or 
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chip-like assemblies including the respective manufacturing technology [34,53–59]. The third category, 

chip-based integrated devices, can be described by a high level of functionality integration into a 

microfluidic core component. Examples are a highly integrated PDMS-based [18F]FDG processing 

system and a “electrowetting-on-dielectric” (EWOD) chip applied to PET tracer synthesis [60–62]. 

The high level of innovation and the associated development risk of this third hardware category  

is driven by the need for new technologies for functional elements and materials, as well as 

manufacturing processes, whilst a path towards regulatory compliance has not been defined yet. 

2.5. Reusable and Disposable Fluid Paths 

PET tracer synthesizers use either a reusable or a disposable fluid path (reaction vessels, tubes, 

valves, etc.). Utilization of a disposable fluid path (“cassette”) that is replaced after each synthesis run 

avoids the need for fluid path cleaning and validation of the cleaning process itself. The cleaning 

procedure may depend on the specific PET tracer produced in the synthesis run of concern, as well as 

previous synthesis runs. Therefore, replaceable cassette based synthesizers have become widely used 

for routine production of clinically used tracers, while reusable fluid path synthesizers that have less 

restrictions on fluid path material and lay-out are mainly used for research. The latest development in 

the field of cassette based synthesizers is the integration of reagents into the disposable cassette itself 

(e.g., FASTlab, GE Healthcare, Liège, Belgium) significantly reducing the work required to prepare a 

synthesis run. This concept also allows for quality-critical manufacturing operations like cassette and 

reagent assembly to be performed within a central facility. For microfluidic synthesizers all three of 

the concepts described above may apply: (1) using a reusable fluid path (comparable to e.g., the 

Advion Biosciences, Inc., Nanotek) (2) using a disposable fluid path (comparable to e.g., the Modular-

Lab PharmTracer, Eckert & Ziegler Strahlen-und Medizintechnik AG, Berlin, Germany) and (3) using 

a disposable fluid path with reagents stored attached to or inside the disposable device (comparable to 

e.g. the GE FASTlab). 

3. Functional Elements 

Each functional element is designed to realize one or multiple aspects of the PET tracer synthesis 

process as illustrated in Figure 1. For future microfluidic PET tracer synthesizers, the engineering 

required to implement all required functional elements into an integral and cost effective solution has 

proven to be a challenge. 

3.1. Materials and Manufacturability 

Defining the fundamentals of most functional elements, the selection of microfluidic device or 

component materials has far-reaching consequences on design opportunities, system performance, 

manufacturing complexity and cost [63]. The severity of this challenge can be exemplarily illustrated 

by the shift from polydimethylsiloxane (PDMS)-based microfluidic PET tracer synthesizers [34,60] 

towards assemblies of polyether ether ketone (PEEK) with polydicyclopentadiene (pDCPD) [35,53] 

and a resulting fundamental redesign of functional hardware elements such as valves and reactors. 
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On-chip radiochemistry requires material compatibility to commonly used aggressive media such as 

hydrochloric acid (HCl), sodium hydroxide (NaOH), or solvents like dimethyl sulfoxide (DMSO), 

acetonitrile (MeCN), dimethylformamide (DMF) and ethanol (EtOH), for example. Depending on the 

specific PET tracer to be synthesized, required process temperatures range from –20 °C for e.g., 

carbon-11 chemistries [64], 20 °C for e.g., fluoride-18 radiolabeling of peptides [65], 110 °C for 

common PET tracers such as [18F]FDG [17] or [18F]fluoromisonidazol ([18F]FMISO) [66] and 160 °C 

for compounds such as [18F]FLT [18]. Recent results on microfluidic [18F]FLT synthesis suggest that 

the use of decreased reaction temperatures due to improved heat transfer in micro-scale systems is 

possible [67]. 

The levels of radioactivity processed in a practical routine range from 20 mCi (equal to 740 MBq, 

single patient dose) to 10 Ci (370 GBq) or more (in multi-patient dose batch production) and can lead 

to radiation-induced material decomposition. Resulting impurities can contaminate the product, affect 

the chemical process or lead to fatigue of hardware components. Due to the handling of small volumes 

in microfluidic systems, local activity concentrations can be significant [68]. However, an appropriate 

system design in terms of materials, system geometries [14] and use of a disposable fluid path may 

reduce the impact of radiation-induced material degradation effects. 

Some glass materials may offer sufficient chemical robustness but present a cost challenge for 

disposable microfluidics at economy of scale [69]. Polymer materials containing fluorine-19 such as 

fluorinated ethylene propylene (FEP), polyvinylidene fluoride (PVDF), perfluoropolyether (PFPE) and 

polytetrafluoroethylene (PTFE) carry the risk of fluorine-19 contamination of fluoride-18 based 

radiochemistry which is widely used for radiolabeling of PET tracers worldwide today. It has been 

demonstrated that due to carrier addition of non-radioactive fluorine-19 from PTFE, ethylene 

chlorotrifluoroethylene (ECTFE, Halar®) and FEP, the specific activity of fluoride-18 labeled 

compounds is reduced [70–73]. A high specific activity is not essential for all fluorine-18 labelled 

tracers, for instance [18F]FDG, but can be an issue for tracers intended to target receptors or other 

saturable molecular targets. 

Polydimethylsiloxane (PDMS) is widely used for the production of microfluidic devices and  

offers highly integrated functional components such as micro-valves [74]. However, PDMS lacks 

compatibility with alcohols and organic solvents as well as aqueous potassium carbonate at elevated 

temperatures [34,75,76]. Another disadvantage reported in literature is the diffusion of fluoride-18 into 

the PDMS material matrix resulting in up to 95% fluoride-18 trapping [34,77]. Additionally, it is 

challenging to achieve economy of scale with PDMS-based designs due to their comparably long 

manufacturing cycle times ranging from several minutes to hours per layer [78]. This also appears to 

be a road block for solvent resistant PFPE devices reported in the literature, in addition to the issue of 

reduced specific activity [79,80]. There are examples of microfluidic PDMS designs that have been 

transferred to injection moldable polymers, such as the HeatWaveTM TS microfluidic chip (RainDance 

Technologies, Inc., Billerica, MA, USA). However, such design transfers place several constraints on 

the functional elements of the microfluidic system and as a consequence may turn a PDMS-based 

prototype development into a dead end towards developing a commercial product [81]. 

Due to the high surface to volume ratio in microfluidic systems, positive characteristics such as 

improved heat transfer but also negative effects such as chemical surface impurities and the impact of 

residuals or dead volumes are amplified. One option to reduce material interference effects are 
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coatings, such as poly(p-xylylene) polymers [82]. Whereas coatings may benefit multi-use systems, 

single-use architectures may show increased manufacturing complexity and cost. 

With the option of material coatings excluded, Table 1 displays a short summary of polymers that 

could be utilized for microfluidic chip design. The illustration includes manufacturing parameters such 

as manufacturing method, molding cycle time and raw material cost which must be considered early in 

the development in order to enable a viable transfer towards commercial large scale mass production. 

Table 1. Comparison of polymers utilized for microfluidic chip manufacturing with a view 

on applications in radiochemistry.  

 
COC  

Cyclic Olefin  
Co-Polymer 

pDCPD  
Polydicyclopentadiene 

PEEK  
Polyether ether ketone

Manufacturing method  
(single layer) 

Injection molding 1) Reaction injection molding 2) Injection molding 7) 

Molding cycle time 
(approximated) 

<1 min 1) >5 min 2) <1 min 7) 

Compatibility to acids Good 1) Medium 3) [53] Good 8) 
Compatibility to bases Good 1) Good 3) Good 8) 

Compatibility to alcohols Good 1) Good 3) Good 9) 
Compatibility to acetonitrile Good 1) Good [53] Good 10) 

Compatibility to DMSO  Good 1) Good 4) Good 10) 
Temperature Capability 150 °C 1) 140 °C 5) 134 °C 5) 

Raw material cost  
(in US ¢ per gram)  

~1.2 ¢/g1) ~1.3 ¢/g6) ~26.1 ¢/g 5) 

Compiled with the friendly help of: 1) TOPAS® Advanced Polymers GmbH, Frankfurt-Höchst, 
Germany; 2) Artekno Oy, Kangasala, Finland; 3) Telene S.A.S., Bondues, France; 4) GE Global 
Research, Niskayuna, NY, USA; 5) MatWeb LLC, Blacksburg, VA, USA; 6) Osborne Industries, 
Inc., Osborne, KS, USA; 7) Drake Plastics LTD Co., Cypress, TX, USA; 8) Tech Line Coatings, 
Inc., Murrieta, CA, USA; 9) Zeus Inc., Orangeburg, SC, USA; 10) Entegris, Inc., Billerica, MA, 
USA. Financial statements are not legally binding and are subject to change. 

Polyether ether ketone (PEEK) has been successfully utilized for non-disposable or multiple-use 

systems or components in radiochemistry [53]. However, its high raw material cost is disadvantageous 

for single use disposable microfluidic kits. The recently reported incompatibility of polydicyclopentadiene 

(pDCPD) to acids as well as the long manufacturing cycle time for reaction injection molding  

(Figure 2) renders this particular material questionable [53]. A promising material is cyclic olefin  

co-polymers (COC). COC can be injection molded at economy of scale with high structure accuracy 

and reproducibility while maintaining cycle times below one minute [83,84]. The material is compatible 

to most acids, bases and solvents as well as temperatures of up to 150 °C, depending on the additives 

utilized (COC 6017, TOPAS® Advanced Polymers GmbH, Frankfurt-Höchst, Germany). Several 

functional elements of today’s conventional PET tracer synthesizers such as the drying and reaction 

vessel of the GE FASTlab (GE Healthcare), for example, are manufactured from COC and have 

proven suitability for many common reagents, process conditions and regulatory requirements 

associated to routine PET chemistry. COC foils are available in various material grades and 
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thicknesses that may enable the realization of on-chip membranes or contact areas for efficient heat 

transfer into cavities and reactors on-chip. 

3.2. Radiation Shielding 

Currently there are two basic concepts for radiation shielding of PET tracer synthesizers: The 

conventional “hot-cell” approach and the recently introduced “split-box” or “self-shielded” 

architecture [53]. Hot cells are well established installations with a weight of 4 to 8 tons providing a 

lead shielded work space sufficient to house one or more complete conventional PET tracer 

synthesizer units. The development towards more compact microfluidic synthesizers aims to 

accommodate an increased number of synthesis modules within one hot cell, targeting to upgrade the 

production capacities of existing and future PET facilities. Usually all hardware components except the 

control computer are located inside the hot cell, driving a high need for very compact solutions.  

“Split-box” or “self-shielded” architectures have recently been put into commercial practice in the 

Eckert & Ziegler Eurotope GmbH Modular-Lab MicroCell. In this design, the shielding is an integral 

part of the synthesizer system. Only hardware which is in contact with radioactive material is shielded, 

whereas non-contaminated elements including control electronics or pneumatic actuators are external 

to the shielding. This has a first advantage of significant overall system weight reduction due to 

elimination of the hot cell of up to 90%. The saving in weight directly translates into infrastructure cost 

reduction, one very important need in the field. The second advantage is the shielding of radiation 

sensitive hardware such as control electronics. Radiation induced hardware degradation is a common 

source for PET tracer synthesizer electronics failures. It limits the choice of usable electronics towards 

more robust and expensive components during system design and increases the need for maintenance 

during routine operation, especially for high activity multi-dose batch production. The challenge of 

“split-box” designs is the complex overall system design and, more important, the interface between 

shielded and non-shielded hardware elements. Every wire, cable, pneumatic or fluidic tubing and 

mechanical mechanism that is required at the interface must not create any radiation shine paths or 

leaks. On the other hand, every hardware component integrated inside the shielded compartment 

increases its size and weight, leading to a reduced benefit of the split-box architecture. With this 

challenge in mind, microfluidic systems such as EWOD chips or centrifugal microfluidics show an 

advantage due to their fluid transport and control technology which could eliminate the need for bulky 

syringe pumps and associated fluid transfer lines. 

3.3. Fluid Transport and Control 

Various liquid transport regimes have been described in literature and can be separated into: (1) 

capillary force driven lateral flow, (2) pressure driven platforms utilizing external or internal pressure 

sources such as syringe pumps, micropumps, gas expansion principles, pneumatic displacement or 

deformation of membranes, (3) centrifugal microfluidics actuated by rotation induced centrifugal forces, 

(4) electrokinetic principles utilizing electric fields gradients and forces between electric (di)poles and 

(5) electrowetting on dielectrics (EWOD) using electric fields to control the wetting behavior of 

confined droplets enabling fluid transport across a chess-board type electrode array [85,86]. 
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Microfluidic prototypes for PET radiochemistry have been reported for the categories (2) pressure 

driven and (5) EWOD actuated fluid transport. For pressure driven systems, syringe pumps are often 

employed to transport liquids with accurate volumes and flows between functional elements in a 

microfluidic system. The main disadvantages of syringe pumps are their physical size, leading to an 

increase in shielding weight and their need for syringes connected to the microfluidic system across a 

connector interface. The latter is disadvantageous in the context of split-box shielding architectures 

and GMP requirements on sterility and cross contamination. Today, all contaminated syringes are 

either replaced or automatically cleaned between synthesis runs. As an alternative to syringe pumps, a 

pressure driven microfluidic [18F]FDG synthesis chip has been reported by Voccia et al. (Trasis SA, 

Ans, Belgium) utilizing on-chip membrane displacement for liquid mixing and transport [87]. This 

embodiment utilizes compact actuators for membrane displacement, whereas the membrane itself is 

integrated into the disposable fluid path. 

The technically most elaborated system has been an EWOD chip for PET tracer production reported 

by Chen et al. [67]. The technology offers parallel handling of single droplets across a two dimensional 

plane, originally thought to be beneficial for the combination of multiple reagents for e.g., assays and 

multiplexing applications. Such a system could enable very compact shielding designs with the control 

electronics being located outside the shielding. Another benefit is the free re-programmability of on-chip 

processes potentially reducing the need for varying device architectures tailored to specific syntheses 

requirements. However, overall this technology is at an early stage of development [88]. 

In addition to fluid transport, appropriate fluid control may be required for steering and metering of 

reagents inside the microfluidic fluid path, usually requiring valve mechanisms integrated into the 

system. The general challenges associated to valves are reliable performance, physical size, dead 

volumes and the macro-to-micro interface to actuators. Conventionally, valving is facilitated by rotary 

motor-, stop-cock or pinch valves with limited opportunities for functional element and, sometimes 

more important, valve actuator miniaturization. Pneumatically or hydraulically driven, highly 

integrated microfluidic valves have been a big motivator for polydimethylsiloxane (PDMS)-based 

microfluidic systems [74]. However, after PDMS showed severe material incompatibilities to PET 

chemistry as explained, alternative approaches such as membrane valves utilizing chemically robust 

polymers gained increasing attention [89]. In contrast, EWOD and centrifugal microfluidics do not 

require actively driven valves and are therefore known as “valveless” architectures which may be an 

advantage for compact shielding architectures [90]. Nevertheless, all of the above reagent transport and 

control systems must go hand in hand with a corresponding reagent storage solution. 

3.4. Reagent Storage & Release 

In conventional synthesizers, PET tracer specific reagent reservoirs or kits are utilized and attached 

to the fluid path by means of a connector interface. The shelf-life of reagent kits is determined by the 

encapsulated chemicals as well as the packaging materials and architecture employed. The preferred 

storage vessels today are septa capped glass vials interfaced to the reactor system via needles, tubing 

and liquid manifold structures. Glass vials show good chemical resistance to aggressive media at low 

material cost while being available in various standardized sizes and shapes. However, the storage of 

reagents in conventional glass vials for subsequent use with microfluidic systems carries some inherent 
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challenges: (1) Dimensions: glass vials utilized in PET chemistry contain reagent volumes in the range 

of 100 μL to 10 mL including a reagent excess in order to compensate for dead volumes caused by the 

connecting interface. In contrast, microfluidic synthesizers could process volumes below 5 μL, 

theoretically providing reduced consumption of potentially expensive reagents. However, this 

particular advantage would need to be made accessible by a corresponding reagent storage and release 

solution. (2) Packaging cost: apart from the pure reagent cost itself, complete kits incur high 

manufacturing expenses associated with filling, sealing, quality control and potential assembly of vials 

into carriers connected to the microfluidic reactor system. The cost per reagent vial is increasingly 

dominated by the cost of packaging of low reagent volumes. For the most expensive reagent in the 

process, the precursor, the benefit of low reagent consumption appears to be of high value in the arena 

of novel research compounds. However, the minimum amount of precursor packaged economically for 

a broad customer base may ultimately become limited by dosing accuracies and an economic 

minimum threshold for a yearly precursor material production at the supplier end. (3) Reliability and 

regulatory compliance: if the reagent dosing or vial assembly is carried out manually at point of use, it 

requires trained personnel and this reduces system reliability due to an increased risk of human error. 

Since glass vial-based reagent storage is simple, reliable and has therefore been the gold standard in 

radiochemistry to date, alternative approaches are rare. From a fundamental architectural point of 

view, expensive reagents such as the precursor could be integrated in low quantities on the 

microfluidic fluid path by e.g. immobilization in dedicated cavities, on channel walls or resins. The 

resulting reduction of transfer losses would enable “true” low reagent consumption. However, regulatory 

compliant packaging and associated overall system and disposable cost would need to be addressed. A 

reagent metering and delivery system has been reported by the van Dam group for the EWOD based 

PET tracer synthesizer chip, utilizing a syringe pump external to the shielding or alternatively 

controlled gas pressure for reagent delivery from a conventional vial to a capacitive metering element 

on-chip for accurate quantification and transfer of the liquids delivered across a needle interface [91]. 

Another approach has been reported outside the field of radiochemistry utilizing small glass ampules 

integrated into the microfluidic system [92]. This method enables a two-step assembly of the reagent 

storage solution, with the first step of filling and encapsulation of glass ampules and the second step of 

ampule integration into the microfluidic system. Fluids are released upon crushing of the ampules 

inside the microfluidic fluid path. This approach has the potential to reduce reagent transfer losses and 

the macro-to-micro interface complexity. However, costs associated to ampule filling, closing, 

microfluidic packaging and quality control would need to be commercially competitive. 

A new trend in pharmaceutical packaging utilizes blister technologies and this has been reported in 

research as well as commercial microfluidic development projects such as the Daktari CD4 chip 

(Daktari Diagnostics, Inc., Cambridge, MA, USA) developed by thinXXS (thinXXS Microtechnology 

AG, Zweibrücken, Germany) [93]. Liquid filled blisters can be manufactured from multiple layers of 

metal and polymer films with tuned capabilities on chemical resistivity and moisture barriers. 

Challenges in the context of PET chemistry arise around reagent compatibility for strong acids and 

solvents across the full shelf-life time of several months as well as blister manufacturing, filling, 

closing and reagent release mechanisms interfaced to the microfluidic reaction system. 
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3.5. Macro-to-Micro Interface 

The macro-to-micro interface is a well-known fundamental issue in microfluidics [94]. Considering 

chip-based microfluidic architectures for example, connections between the “lab-on-chip” and the 

control hardware tend to increase the risk of e.g., leaks and dead volumes causing system failures. 

Hence, there should be a constant design effort towards reduced macro-to-micro interface complexity. 

This accounts for all types of fluidic connectors, gas pressure lines, the interface to reagent storage as 

well as temperature control, actuators and sensors. However, the challenge is amplified by the 

introduction of the disposable fluid path concept requiring coupling and de-coupling of a disposable 

component between each synthesis run, whereas re-coupled fluid interfaces would need to meet 

regulatory requirements such low bioburden and low risk of cross-contamination. Comparable to 

existing synthesizers utilizing disposable fluid paths, integral reagent storage and preassembled fluid 

interfaces established within a cleanroom environment during manufacturing and packaging may 

become a valid route for microfluidics as well. This aspect loops back into the reagent storage question 

that has been discussed previously. Another approach could be the sterilization of re-coupled interfaces 

between each synthesis run, e.g. by means of disposable pipetting robotics. Gas lines could be sealed 

to the outside air by filters integrated into the disposable components, for example. 

3.6. Mixers, Reactors and Temperature Control 

PET radiochemistry utilizes short-lived radioisotopes such as 18F (t = 109.8 min), 68Ga (t = 68.3 min), 
11C (t = 20.3 min), 13N (t = 9.9 min) and 15O (t = 2.0 min). Consequently, process times in general and 

chemical reaction times in particular are critical parameters for PET tracer production, depending on 

the specific radionuclide and PET tracer synthesis procedure of concern. 

Microfluidics is dominated by laminar flow at low Reynolds numbers which results in diffusion 

limited mixing under the absence of specific mixing techniques. Microfluidic mixers can be 

categorized as “active” under the influence of an external excitation or “passive”, where contact area 

and contact time between two media is increased through tailored microfluidic structures [95]. In the 

context of PET chemistry, the most detailed study has been reported by Elizarov et al. on a  

coin-shaped microfluidic reactor for the synthesis of [18F]FDG [34]. Phase transfer, reagent mixing, 

radiolabeling and hydrolysis were carried out within a single reaction chamber. Parameters that 

reduced non-reacted residuals were identified as: (a) vacuum assisted turbulent-like mixing inside the 

reaction chamber, (b) chemically assisted mixing through a carbon dioxide yielding acid/base reaction 

resulting in fluid turbulence and (c) pressure assisted mixing to increase diffusion rates between highly 

viscous reagents. 

Apart from mixing, multiple reactor structures have been reported for PET chemistry such as  

micro-channel or capillary-based reactors [96], highly integrated ring-shaped reactors [60] and  

coin-shaped reaction chambers [34]. Overall, the reactor structure should enable rapid heat transfer 

either through direct or capacitive heating from pre-heated reactor components [97]. Precise and rapid 

heating of low reaction volumes is a significant advantage of microfluidics in this field, and has 

demonstrated improved synthesis time and yield on some PET tracer syntheses. Heating can be carried 

out via resistive heaters, radiator heating and laser methods, for example, with respective design 
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impacts on the macro-to-micro interface as well as the shielding surrounding the hardware. Microwave 

assisted radiochemical syntheses have been reported for over two decades yielding increased 

radiochemical reaction yields, better selectivity than the corresponding thermal methods and reduced 

reaction times [98–104]. However, to date this technique has found very limited application to 

microfluidic PET chemistry, potentially due to hardware and macro-to-micro interface integration 

issues as well as the lack of precise and repeatable process control. Reports on microwave transmission 

lines applied to polymer microfluidic reactor chips may solve the macro-to-micro interface challenge, 

implying constraints on the reactor geometry design for defined microwave propagation [105]. On the 

other hand, rapid and effective cooling may also be desired for PET tracer synthesis applications such 

as microfluidic carbon-11 labeling [64]. Whereas the advantage of microfluidics regarding fast heat 

transfer rates and low thermal capacities of small reagent volumes processed remain valid, the hardware 

interface must change to methods such as Peltier, gas, liquid or liquid-gas cooling, for example. 

Apart from thermal energy transfer, the reactor should allow for full product recovery utilizing 

appropriate flow design and washing techniques [34]. Recent results by our group suggest that the 

reactor geometry, especially with dimensions significantly below the average positron interaction 

range of ~2 mm, has an impact on radiation induced radical formation and subsequent autoradiolytic 

product decomposition during synthesis [14]. 

3.7. Phase Transfer and Activity Concentration 

Radioactive isotopes such as fluorine-18 are delivered as [18F]fluoride to the synthesizer in 

approximately 1 to 3 mL of cyclotron target water. However, commonly utilized radiolabeling 

approaches via nucleophilic substitution are carried out in an aprotic polar organic solvent. Hence, the 

radioisotopes have to undergo a phase transfer from the aqueous cyclotron target solution into a dry 

organic solvent. In all current generation synthesizers, this process is carried out by: (1) fluoride 

trapping on a silica-based resin, (2) drying of the cartridge utilizing gas and dry solvents such as 

acetonitrile, dimethyl sulfoxide or dimethylformamide, (3) elution of the activity utilizing an eluent 

containing a major fraction of an aprotic solvent (e.g., 90%), a minor fraction of water (e.g., 10%) and 

a phase transfer catalyst such as Kryptofix [K2.2.2] in combination with a weak base such as 

potassium carbonate in order to enable elution of [18F]fluoride into a reaction vessel [17]. The water 

content of the elution mixture leads often to the requirement of (4) further drying procedures such as 

azeotropic distillation under reduced pressure and/or elevated temperatures with gas flow or venting 

mechanisms for the removal of water, sometimes with repeated injections of e.g. acetonitrile.  

Apart from providing [18F]fluoride in an organic soluble form, this functional element provides activity 

concentration and a bridge between the macro-scale cyclotron target volume and the microfluidic 

processing volumes below 100 µL. A third functionality is the removal of unwanted trace level cyclotron 

target impurities. Several efforts have targeted to adapt this process to the micro-scale, leading to 

hardware challenges associated to the process control of boiling, material requirements for semi-permeable 

membranes or repeatability of controlled gas flows on a micro-scale. Modified and alternative phase 

transfer methods have been reported which can be categorized into: (1) change of chemistry, for 

example on the elution composition, exchange resin material and the subsequent radiolabeling  

method [106–115] or (2) change of hardware structures towards microfluidic dimensions [116–119], or 
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(3) entirely new designs such as continuous flow solvent evaporation [120] or electrochemical trapping 

and release of radioactive species [121–128]. Recently, an increased moisture tolerance has been 

reported for a few microfluidic radiolabeling reactions, potentially relaxing the requirements on the 

drying process for several chemistries [129,130]. A combined adaptation of all methods described or a 

subset thereof towards new microfluidic designs may resolve the current shortcomings associated to 

repeatability, reproducibility, manufacturability and application to a large variety of PET tracer 

syntheses, turning this particular functional element into a very interdisciplinary challenge. 

Whereas several of the concepts mentioned are viable within a laboratory environment, cost 

effective integration and mass manufacturability into potentially disposable microfluidic systems 

remains to be addressed. Critical topics towards mass manufacturing are cost of goods and raw 

material, manufacturing process complexity and its potential for automation, the resulting total chip 

manufacturing time (“manufacturing cycle time”) as well as low scrap rates implying a need for well 

controlled and reliable manufacturing methods. For example, the electrochemical method requires the 

integration of electrodes into the system. In early studies, only very costly materials such as glassy 

carbon and platinum have been used as electrode material making the approach hard to justify from a 

cost perspective. However, more recent work of Sadeghi et al. successfully employs electrode 

materials such as brass that may be integrated into re-usable or disposable fluid paths at reasonable 

manufacturing costs [128]. For resin based methods, casting processes, manual filling of cartridges and 

subsequent closure as well as emulsion introduction and UV curing on-chip remain questionable 

processes from an economy of scale perspective. 

3.8. Intermediate and Final Purification 

The majority of PET tracer syntheses use high performance liquid chromatography (HPLC) 

purification methods for removal of radioactive and non-radioactive impurities according to 

specifications stipulated by Good Manufacturing Practice (GMP) and Federal Drug Administration 

(FDA) regulations. New interface technologies between microfluidic PET tracer synthesis devices and 

HPLC equipment have been reported in literature [131], however, for routine PET tracer production 

there are increasing efforts to replace the footprint and complexity of HPLC equipment by simple, 

disposable and low cost solid phase extraction (SPE) cartridges. For [18F]FDG purification, the steps 

performed by the according SPE method are (1) removal of cationic impurities (via e.g., PS-H+, 

Macherey-Nagel GmbH & Co. KG, Düren, Germany), (2) removal of anionic impurities (via PS-HCO 
-, Macherey-Nagel GmbH & Co. KG), (3) removal of polar impurities (via ALOX N, Macherey-Nagel 

GmbH & Co. KG) and (4) removal of hydrophobic impurities (via HR-P, Macherey-Nagel GmbH & 

Co. KG). There are growing efforts to extend SPE-based purification methods towards new tracers 

beyond [18F]FDG for a rapid transfer from a research state towards efficient production on commercial 

synthesizers. Successful examples are [18F]FLT [132], 1-α-D-(5′-deoxy-5′fluoro-(1S,2R,3S,4S)-

arabinofuranosyl)-2-nitroimidazole ([18F]FAZA) [133], [18F]fluoroethyltyrosine ([18F]FET) [134] and 

[18F]FMISO [135]. Another approach is the application of medium pressure liquid chromatography 

(MPLC) utilizing medium-sized resin particles in disposable columns as a trade-off between the HPLC 

and SPE [136]. 
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All of the above methods require a solid phase or resin for product trapping or retardation. 

Fundamentally, the small amount of reagents and reagent volumes in microfluidic systems are 

beneficial to the purification step since a reduced amount of solid phase material is required compared 

to conventional techniques. However, in addition to chemical functionality, sufficient capacity, low 

levels of irreversible intermediate and final product adsorption, acceptable pressure drops, tailored 

elution chemistries and the physical integration into microfluidic hardware imposes a challenge. 

Strategies for on-chip trapping of beads [60], filling of cavities [137], manual filling of tubing [61], 

planar alumina structures [138], UV curing of functional monoliths [119] or realization of periodic 

microstructures [139] have been described in literature and partially applied to PET chemistry. 

However, to date all of the listed resin integration methods seem to lack the compatibility to cost 

effective, reliable mass production, either due to specific manufacturing techniques employed  

(e.g., manual filling, lithography processes or liquid suspensions), limited choice of materials for 

hardware integration or time intensive manufacturing steps (e.g., UV curing). Hence, a purification 

integration technique which is compatible to microfluidic PET tracer synthesis in terms of 

functionality, cost effective mass production and flexibility to various purification processes required 

by an increasing variety of PET tracers has to be identified. 

4. PET Tracer Production Workflow Optimization 

4.1. Cyclotron to Quality Control Hardware Miniaturization 

Taking a step back to the initial discussion on the PET tracer synthesis workflow (Figure 1), 

improved flow and integration between the main steps (boundary conditions) in PET tracer synthesis 

are important drivers of new market models such as de-centralized PET tracer production. There is a 

direct impact on the commercial development of microfluidic PET tracer synthesizers. In particular, 

these boundary conditions are the cyclotron and the quality control hardware as well as improvements 

on infrastructural requirements surrounding the whole workflow such as clean room and radiation 

shielding bunker installations. There are recent efforts towards self-shielded, miniaturized cyclotron 

architectures, omitting the requirement for bunkers such as the Biomarker Generator (ABT Molecular 

Imaging, Inc., Louisville, TN, USA) and the PETtrace 600 (prototype, GE Healthcare, Uppsala, 

Sweden) with an anticipated cyclotron footprint reduction of up to 50%. In addition, several 

commercial activities focus on the integration of PET tracer quality control (QC) from a dedicated QC 

laboratory setup down to a single table top device, significantly reducing the QC laboratory 

infrastructure burden and cost [140–142]. 

A future microfluidic synthesizer could connect the miniature cyclotron efforts with a reduced 

quality control setup, creating a compact, integral PET tracer production workflow that could  

reduce PET site cost of ownership dramatically and present a significant step towards cost effective  

de-centralized PET tracer production. Whereas the major commercial players in this field are capable 

of uniting all these efforts under one umbrella from a product portfolio perspective, the associated 

overall development costs are substantial and a detailed assessment on PET market needs, size and 

growth including reimbursement becomes a big part of the overall picture. 
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4.2. Evolution of Microfluidic Synthesizers for PET Tracer Production 

Microfluidic synthesizers for PET radiopharmaceuticals are currently predominantly applied to 

research and development applications and will remain in this field until an acceptable level of 

reliability, repeatability, usability, GMP compliance and cost of ownership has been achieved (Figure 2). 

Whereas capillary-based systems are already approaching good utilization for PET tracer research as 

early systems (Figure 2), supported by a growing number of scientific publications associated to this 

particular architecture, hybrid or lab-on-chip microfluidic devices are currently in the stage of basic 

functionality development (Figure 2), due to the functional element integration challenges discussed in 

this review. The advantages of lab-on-chip based architectures versus capillary-based microfluidic 

systems are thought to impact commercial competitiveness in terms of disposable PET tracer kit 

production, increased usability, reduced requirements on qualified operators, GMP compliance under 

the benchmark of existing disposable PET tracer kit-based synthesis systems as well as potentially 

very compact shielding designs which relate to infrastructural costs and production flexibility. 

Figure 2. Evolution of microfluidic PET tracer synthesis systems and application to 

existing and new markets. 

 

5. Market Drivers for Next Generation PET Radiochemistry Platforms 

A minaturized radiochemistry platform with combinations of some or all of the elements as 

described will achieve utility with a range of end users. 

Firstly, centers involved in the research and development of novel PET tracers have demands for 

systems that allow radiosynthesis to take place quickly. It has been demonstrated that efficient heat 

transfer in microfluidic systems can give higher percentage incorporation of fluorine-18 in 
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radiolabelling chemistries. However, as discussed in this review, complete integration with other 

functional elements is required for this to translate to higher isolated radiochemical yield. Furthermore, 

the potential for reduced consumption of radiolabelling precursors is attractive. A PET tracer with 

diagnostic and commercial value that can only be produced efficiently on a microfluidic scale due to 

inherent process synthesis requirements such as fast and precise heating, reagent concentrations or 

reaction kinetics would present a milestone for microfluidics in radiochemistry but has not been 

identified yet. 

Another significant advantage will be a reduced footprint and infrastructure cost for the PET tracer 

manufacturing equipment and facility. The smaller physical footprint may allow a greater number of 

synthesis modules to be installed in current hot cells offering greater flexibility. Alternatively,  

self-shielded or split box designs offer more space and flexible ways to add capacity. As new PET 

agents will achieve regulatory approval in the future, the pressure on large scale manufacturers of PET 

radiopharmaceuticals will grow and urge them to include an increasing variety of new PET tracers as 

an offering in order to maintain commercial competitiveness. This can be eased by the introduction of 

new technology. Furthermore, microfluidic systems have no inherent restriction on PET tracer batch 

size compared to current radiochemistry modules. Indeed, advantages have been demonstrated for 

handling high activity levels in microfluidic geometries [14]. For PET tracers that address a large 

patient group size, have regulatory approval and market authorization, centralized PET tracer 

production is likely to remain the preferred supply chain model since the de-centralized approach  

will struggle to compete with the cost per dose achievable with high activity multi-dose batches 

produced centrally. 

However, if the current PET manufacturing sites reach their maximum capacity, the cost of 

introducing a new tracer into the supply chain will be high, since investment in new infrastructure will 

be needed. Additional constraints will apply to the centralized distribution model due to the more 

specialized tracer diagnostics addressing decreasing patient group sizes. Hence, whereas the overall 

PET market may grow, the addressed patient group size for a specific tracer per hospital will decrease. 

This is in conflict with today’s mode of operation on “one-fits-all” tracer batch production with e.g., 

[18F]FDG, which addresses a less diversified population of patients and earns a lot of the profit based 

on the multi-patient per run batch production capability. 

Another aspect is the potential for systems that integrate PET tracer synthesis from cyclotron to QC. 

It is technically feasible for this level of system integration to be realized and the aim is a reduced total 

cost of ownership for PET tracer manufacturing sites. If this can be accomplished, the de-centralized 

model may become accessible to a greater number of sites, opening the way for new markets in areas 

where there is no centralized PET tracer distribution network which can be low dense populated areas 

in developed countries as well as new markets in developing countries with infrastructural restrictions. 

6. Conclusions 

The first section of this review has illustrated the evident strengths of microfluidics for PET tracer 

synthesis such as reduced precursor consumption, increased synthesis efficiency and reduced system 

footprint. These points are supported by a steadily growing number of research publications and 

development projects as well as first commercial systems being available in this space. Most of the 
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remaining risks associated to microfluidic PET technology circle around engineering challenges such 

as system materials, manufacturability and the integration of all functional elements required for PET 

tracer synthesis process execution into one, compact device. Whereas future progress towards a 

widespread commercial application will require substantial research and development efforts as 

identified by the technological needs for the separate functional system elements, the scientific and 

technological foundation appears to be valid and the engineering challenges generally addressable. 

We propose that next generation microfluidic PET radiochemistry platforms offer more effective 

laboratory space utilization and synthesis flexibility for an increasing number of PET tracers. This 

ultimately translates into cost advantages for established manufacturing centers (centralized model) 

and may allow the expansion of centers manufacturing their own PET radiopharmaceuticals for 

approved and investigational PET agents (de-centralized production). If a high level of system 

integration from cyclotron to quality controlled release of PET tracers can be realized and combined 

with the reduced infrastructure cost of future microfluidic synthesizers, new markets in in low dense 

populated areas and developing countries may become commercially attractive. 

Specialist centers involved in the discovery and development of new PET agents will also benefit 

from next generation microfluidic systems for the reasons described above and because the consumption 

of expensive reagents can be reduced making tracer development less expensive. Ultimately, which 

model grows the most will depend on total cost of ownership to run a PET tracer facility from 

cyclotron to quality control, the number and timeline of regulatory approvals on new PET tracers and 

how reimbursement in PET develops in the future. 
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