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Abstract

There is currently a requirement for single-sex litters for many applications, including agricul-

ture, pest control, and reducing animal culling in line with the 3Rs principles: Reduction,

Replacement, and Refinement. The advent of CRISPR/Cas9 genome editing presents a

new opportunity with which to potentially generate all-female or all-male litters. We review

some of the historical nongenetic strategies employed to generate single-sex litters and

investigate how genetic and genome editing techniques are currently being used to produce

all-male or all-female progeny. Lastly, we speculate on future technologies for generating

single-sex litters and the possible associated challenges.

Introduction

Animal models remain indispensable experimental reagents for understanding fundamental

biology and translational research. Despite this utility, there is an ongoing issue with the pro-

duction of animals that are surplus to requirement. For example, in 2017, in Great Britain

alone, over 1.8 million laboratory animals were culled without ever being used for a scientific

procedure [1]. Globally, the Reduction, Replacement, and Refinement (3Rs) principles are

common factors that encourage the reduction of unnecessary animal use [2]. For example, in

the European Union, evidence of adhering to the 3Rs is a legal requirement, and in the USA,

the goal of the Animal Welfare Act is to encourage alternative experimental strategy to mini-

mise animal pain and distress. One factor contributing to excess production of animals is sex-

specific research; for example, studies of reproductive biology or sex-specific cancers in which

only one sex is required (Table 1). A genetic method of producing single-sex litters, in which

the unrequired sex is nonviable in utero and therefore is never born, would remove the need

for postnatal culling, in line with the 3Rs.

The requirements for all-female or all-male litters is not limited to laboratory models

(Table 1). For example, it would also be extremely advantageous for agriculture, with the layer

hen industry representing a prominent example. Approximately 6 to 7 billion male chicks are

culled worldwide per year, generating a well-known and highly controversial ethical issue [3].

Conversely, in pest control, reducing or controlling the female mosquito population, the vec-

tor for the malaria parasite, found in over 100 countries including large parts of Africa and

Asia, would be extremely advantageous, and similarly for the eradication of invasive pest spe-

cies such as rodents in island countries such as New Zealand [4]. In these examples, a genetic
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method of producing all-male litters in a controlled laboratory and factory environment for

sterilisation, prior to release in the wild, would eliminate or reduce the population size. One

alternative method of controlling malaria spread would be to repurpose engineered gene

drives in order to produce single-sex progeny.

The production of all-female or all-male litters by genetic methods is feasible because in

some species, males and females differ in their sex-chromosome complement (Table 1). Euthe-

rian female mammals, such as mice and humans, are homogametic, producing only X-chro-

mosome–carrying gametes. Eutherian male mammals are heterogametic, producing mature

sperm that, with rare exceptions (for example, [5–7]), carry either the X or Y chromosome.

Early studies on differences of sex determination (DSDs) showed that in eutherian mammals,

sex determination is not regulated by the number of X chromosomes [8,9]. Instead, it is driven

by the presence of the Y chromosome via a locus originally coined the Y-linked testis-deter-

mining factor (TDF; [10]). The TDF was later identified to be SRY/Sry (Sex-determining

region Y), which is expressed in Sertoli cell precursors [11–17]. It is important to note that the

SRY/Sry mode of sex determination is not the primary method of sex determination for all

mammals. For example, the platypus, a prototherian mammal, does not have an SRY gene

[18,19].

Conversely, in many bird species, including chickens, females are heterogametic and carry

a single Z and a single W chromosome. Males are homogametic and carry 2 Z chromosomes.

Avian sex determination is controlled by the dosage of a Z-linked gene called DMRT1 (Dou-

blesex and mab-3–related transcription factor 1; [20]). Female birds carry 1 copy of DMRT1,

whilst males have 2 copies. DMRT1 is an orthologue of doublesex that undergoes sex-specific

alternative splicing to regulate sex determination in many insect species, including Drosophila
melanogaster, reviewed in [21].

In this Review, we investigate some of the current requirements for single-sex litters in

research and in other industries such as agriculture and pest control. We describe some of the

historical methods for sexing-sorting and advantages and disadvantages associated with them.

Table 1. A summary of major examples of different species and the current requirements for single-sex litters.

Species Sex chromosomes Sex required Why are single sexes required

Mosquito XX female

XY male

Males Females carry the malaria parasite

Mouse XX female

XY male

Males Male-specific scientific research

Laboratory-controlled sterility of all-male litters for population control

Mouse Females Female-specific scientific research

Chicken (layers) ZW female

ZZ male

Females Egg-laying

Cows (dairy) XX female

XY male

Females� Milk production for dairy products

Cows (meat) Males Greater mass for meat

Silkworm ZW female

ZZ male

Males Greater quality of silk production

Fruit fly XX female

XY male

Males Laboratory-controlled sterility of all-male litters for pest population control

Insects Variable Males Laboratory-controlled sterility of all-male litters for pest population control

There is often a requirement for a single sex in food production because only one sex is able to produce an animal product: for example, eggs by female layer hens.

However, there is also a requirement to produce all-male litters that can be sterilised in controlled laboratory or factory conditions prior to release in the wild. In this

strategy, the overall population size can be reduced for pest-control measures, such as for insects and rodents. This strategy for pest control is called SIT. Abbreviations:

SIT, Sterile Insect Technique.

�In some countries—for example, the USA—male offspring produced in the dairy cow industry are repurposed for the meat supply chain.

https://doi.org/10.1371/journal.pgen.1008898.t001
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We then discuss current methods performed to generate single-sex progeny, including by

genome editing methods such as CRISPR/Cas9 [22–26]. Finally, we assess the challenges asso-

ciated with generating single-sex litters and future perspectives of the technologies.

Previously developed nongenetic methods for producing single-

sex litters

Historically, sex selection is performed by investigating sex-specific biological differences. For

example, male and female chick embryo allantoic fluid contains differential levels of estrone

sulfate [27]. However, such methods of determining sex by allantoic fluid extraction are inva-

sive and generally give the most reliable results at day 9 of development, which is close to the

onset of pain perception [3,27]. Furthermore, invasive procedures frequently result in reduced

viability [28,29]. Recently, Galli and colleagues performed fluorescence and Raman spectros-

copy to determine differential hormone levels in male and female chick embryonic blood at

day 3.5 [30]. Although this method does not require fluid extraction, it requires a window to

be made in the shell and therefore may still be considered invasive. Moreover, although accu-

rate, this and other methods still result in culling of chick embryos during late stages of devel-

opment. Therefore, the sex-selection field is now developing alternative approaches to

produce single-sex litters by genetic methods, whereby the unrequired sex is eliminated at an

earlier embryonic stage in utero without the need for mechanic or spectroscopic testing.

Physical separation of mammalian X- or Y-carrying sperm

Given the risk of embryonic nonviability and pain perception associated with invasive proce-

dures for sexing embryos, one superior method to selecting offspring sex is by separation of X-

or Y-carrying sperm. Prior selectivity of sex-specific gametes for in vitro fertilisation (IVF) or

artificial insemination (AI) ensures that the offspring sex is predictable, which may be more

economically viable and ethically justifiable than invasive sexing procedures.

Many techniques have been previously attempted to isolate X- and Y-sperm, including fluo-

rescence in situ hybridisation (FISH) and swim separation [31]. The most successful method

for selective separation of X- or Y-carrying sperm for IVF/AI is by flow cytometry [32]. Sperm

nuclei are stained using Hoechst 33342 and sorted based on DNA content. Bull X-carrying

sperm, for example, have approximately 3.8% greater DNA content compared to Y-sperm

[33]. The main caveat of this flow cytometric approach is that the sperm exhibit reduced fertili-

sation ability [34–37]. Increasing the quantity of sperm used for AI does not appear to signifi-

cantly rescue the conception rate [38], suggesting that the reduced fertility results from sorting

and postsorting procedures and may possibly be due to residual Hoechst dye [35,36].

Flow cytometry is associated with large economic and time costs in sperm sorting and post-

sort procedures (reviewed in [37]), leading to the investigation of alternative methods. One

such strategy is to separate X- and Y-carrying sperm by sex-chromosome–specific differential

gene expression. However, this strategy has remained extremely challenging because during

spermatogenesis, the X- and Y-sperm are connected via cytoplasmic bridges. The cytoplasmic

bridge connections are essential to ensure that the haploid X-carrying sperm receive Y-carry-

ing sperm products (and vice versa), as well as mRNAs [39,40] and organelles [41]. However,

an intriguing recent study by Umehara and colleagues highlighted that cell-surface marker

Toll-like receptor 7/8 (TLR7/8) was expressed on X-carrying, but not Y-carrying, sperm [42].

Ligand activation of the TLR7/8 receptor using Resiquimod or Imiquimod suppressed X-

sperm motility, allowing for X- and Y-carrying sperm separation prior to IVF procedures. Fol-

lowing IVF with the X-carrying ‘slow’ sperm, the proportion of female offspring was 81%,

whilst following IVF with Y-carrying ‘fast’ sperm, the proportion of male pups was 83% [42].
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Umehara and colleagues performed the work using mouse as a model but speculated that the

strategy was translatable to many agricultural species.

Another technique also utilising cell-surface markers for separating X- and Y-sperm, used

in bulls, is ‘WholeMom’ [43]. In this approach, a monoclonal antibody selectively binds an epi-

tope only present on the bull Y-chromosome–carrying sperm plasma membrane. Epitope

binding results in agglutination of the Y-carrying sperm heads, whilst the X-carrying sperm

are unaffected and fertilise oocytes [43].

In summary, current approaches rely on the differential DNA content or surface markers

of X- and Y-carrying sperm in order to physically separate the sperm. These strategies rely on

IVF of sex-sorted sperm to skew offspring sex ratios. Although these and other methods not

described in detail in this Review (listed in Table 2) are occasionally feasible approaches to sex

selection, many are expensive, time-consuming, and often inefficient or inaccurate. Genetic

approaches to sex selection are therefore being developed as alternative approaches.

Current genome editing methods to generate single-sex litters

The development of genetic methods to produce single-sex litters relies on sex-specific geno-

mic differences, such as a different sex-chromosome complement (Table 1). For example, in

many insect species and eutherian males, the Y chromosome is inherited by sons, and the

paternal X chromosome is inherited by the daughters. This sex-specific inheritance of the

father’s sex chromosomes can be exploited in order to control the inheritance of transgenes. In

many insect species, the sex-specific alternative splicing of genes such as doublesex can also be

harnessed to ensure sex-specific expression of transgenes.

Transgene-based sex-selection systems

Producing all-male litters would be advantageous for mosquito and insect population control.

Broods of all-male litters could be generated, sterilised in controlled laboratory conditions,

and then released into the wild to induce population collapse. This strategy is called the ‘Sterile

Insect Technique’ (SIT; [79]). To select for males, insect species carrying sex-chromosome–

specific or sex-specific fluorescent markers have been generated [80,81]. However, these strate-

gies require manual sorting of insects.

A refinement of SIT is called ‘Release of Insects carrying a Dominant Lethal’ (RIDL; [82]).

RIDL is a system of sex-specific transgene-induced lethality, thereby overcoming issues with

manual sex sorting. Early successful transgenic methods for sex-specific lethality were carried

out on a Lepidopteran species, Bombyx mori (Mulberry silkworm). Male silkworms are desir-

able over females because they produce higher-quality silk [83], but RIDL can also be used for

generating male-only broods prior to sterilisation and release. Tan and colleagues cloned a tet-

racycline-repressible transactivator (tTAV) construct into an orthologous doublesex minigene

from Pectinophora gossypiella (Pgdsx; pink bollworm) and inserted the transgene into the B.

mori genome [84]. Endogenous Pgdsx doublesex undergoes sex-specific alternative splicing;

therefore, in B. mori, tTAV expression was specific to females. The female-specific tTAV pro-

tein accumulation induced female-specific lethality, resulting in male-only cocoons surviving.

Moreover, the female-specific lethality could be largely repressed by the addition of dietary tet-

racycline [84], allowing for control of the sex-specific lethality system. Interestingly, however,

similar doublesex-regulated lethality constructs integrated into other pest insect genomes—for

example, the olive fly and Mediterranean fruit fly—did not have the same lethality effect

[85,86].

More recently, Kandul and colleagues generated an antibiotic-resistance–based sex-selec-

tion transgene system in D. melanogaster [87]. Two drug-resistance transgenes are expressed
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Table 2. Nongenetic methods for sex selection.

Method Advantages Disadvantages Species performed

in

References

Hormone quantification Accurate (in later developmental

stages)

Invasive (affects hatching and viability)

Can only be applied after day 9 (post onset of pain

perception)

chicken [27,44]

Egg shape Noninvasive Accuracy is variable [45]

Egg odour Noninvasive Accuracy is variable [46,47]

Raman and fluorescence

spectroscopy (optical

spectroscopy)

Accurate

Near-infrared excitation

prevents damage to cells

Invasive

High background fluorescence signal

[30,48–50]

Hyperspectral imaging Noninvasive Limited to species with sex-specific feather colour

Accuracy is variable

[51,52]

Fourier transform infrared

spectroscopy

Performed on nonincubated

eggs on the germinal disk

Invasive [53]

‘Hologic Invader’ Relatively quick molecular

sexing method

Accurate

Has only been established in laboratory conditions [54]

Sperm separation

(a) Flow cytometry High purity Requires detectable differences in DNA size between

sex chromosomes

Compromised fertilisation ability of sperm

High cost and time

cow, rabbit, sheep,

pig

[37,55,56]

(b) Swim separation by

agglutination of X- or Y-specific

epitopes

No mechanical damage to the

sperm

X- and Y-carrying sperm are connected by cytoplasmic

bridges, controversy as to whether there is sex-specific

expression

cow, buffalo, mouse [42,43,57]

(c) Immunological assays for

male-specific H-Y antigens

No mechanical damage to the

sperm

Controversy as to whether the H-Y antigen is uniquely

on Y-sperm

cow, mouse [58,59];

reviewed in

[60]

(d) FISH Accurate

Generally used for flow-

cytometry–sorted sperm purity

check

Sperm heads have to be decondensed cow, mouse, pig,

dog

[61–65]

(e) Raman spectroscopy Efficient

Noninvasive

cow [66]

(f) Labelling with nanoparticles Efficient for labelling Could be toxic for sperm cow Reviewed in

[67]

Embryo sexing

(a) Karyotyping Accurate

Inexpensive

Difficulty in producing high quality metaphase spreads

Time-consuming

Embryo biopsy may affect viability

[68]

(b) Metabolomic differences Accurate in cow embryos Limited by the amount of quantifiable enzyme

Assay may be toxic to embryos

cow [69]

(c) Analysis of sex chromatin Inexpensive

Simple method

May not be able to detect Barr body rabbit [70]

(d) FISH Low risk of contamination from

other cell types.

Confirmation of embryonic cell

type by visualisation of FISH

Highly accurate

Requires highly Y-specific probe

Embryo biopsy may affect viability

Time-consuming

cow [71]

(e) H-Y antigen Noninvasive

Fairly accurate

Assay may lower embryo viability cow, sheep, pig,

horse, goat, mouse

[72]

(f) ccffDNA Fairly accurate

Noninvasive

Requires a downstream PCR analysis for sex-specific

polymorphisms

sheep [73]

(Continued)
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in opposite sexes by integration of each transgene into a sex-specific intron of the transformer
or doublesex genes. Male and female flies have normal viability until the dietary addition of

either puromycin or geneticin, which selects for males or females, respectively, producing

progeny of 100% the required sex.

Although the use of fluorescence-transgene–based sexing systems were inefficient in insect

species, in chickens, they are currently the most promising genetic approach for chick sexing

prior to hatching. In Australia, the Commonwealth Scientific and Industrial Research Organi-

sation (CSIRO) is championing a chick-marker approach whereby a fluorescent marker is

integrated onto the male-determining Z chromosome so that male and female chicks can be

segregated prior to hatching [88].

Transgene-induced destruction of sex-specific sperm

A superior system of generating single-sex litters in the laboratory and agriculture would be to

produce a single type of sex-chromosome–carrying gamete, i.e., only X- or only Y-carrying

sperm, by selective destruction of the unrequired sperm. Evidence for the first genetic methods

to skew offspring sex ratios by destruction of the X-carrying sperm was demonstrated in the

Anopheles mosquito model [89]. Anopheles males are heterogametic, XY, whilst females are

XX. An I-PpoI (Physarum polycephalum intron-encoded endonuclease) cassette was geneti-

cally engineered onto the Y chromosome. The I-PpoI endonuclease selectively targeted the X

chromosome, resulting in endonuclease-driven shredding of the X [89,90]. The damage to the

X-carrying gametes meant that only Y-carrying gametes were able to fertilise oocytes, resulting

in a male-biased sex ratio skew [89–92]. Using CRISPR/Cas9, the strategy was refined to target

X-linked repetitive ribosomal DNA sequence by single guide RNA (sgRNA)-guided Cas9

endonuclease activity (Fig 1A). Again, the X-shredding resulted in the loss of X-carrying gam-

etes and a male-biased sex skew in offspring, ranging from 86.1% to 94.8% [93]. Most recently,

Simoni and colleagues described a successful male-biased distorter system that harnesses a

CRISPR-gene drive, inserted into the conserved doublesex intron 4–exon 5 boundary, driving

I-PpoI to induce X-shredding [94].

Faluso and colleagues expanded on the Galizi and colleagues [90,93] studies by modelling

X-shredding and a new strategy called X-meddling (Fig 1B) in Drosophila [95]. They produced

germline-expressed Cas9 endonuclease lines and bred them with engineered sgRNA-encoding

lines, targeting multiple repeat sequences on the X chromosome (for X-shredding) and puta-

tive haplo-insufficient genes on the X chromosome (for X-meddling). The authors noted that

the majority of X-shredding sgRNAs, bar one, did not substantially affect the progeny sex

ratio. Conversely, however, sgRNAs targeting the haplo-insufficiency genes RpS6 (Ribosomal

protein S6) and RpS5a (Ribosomal protein S5a) generated a male-biased offspring sex ratio

skew from 93.8% to 56.6%, respectively. This study highlighted that although the X-shredding

Table 2. (Continued)

Method Advantages Disadvantages Species performed

in

References

Pupal size Could be effective in small

laboratory settings

Requires manual sorting

Highly error-prone

Species variability

insects, including

mosquito

[74,75],

reviewed in

[76]

Behavioural differences [77,78]

Historically, there have been many methods to attempt to produce single-sex litters. We summarise some of the main methods utilised, with the major advantages and

disadvantages for each method. Abbreviations: ccffDNA, circulating cell free foetal DNA; FISH, fluorescence in situ hybridisation

https://doi.org/10.1371/journal.pgen.1008898.t002
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strategy was applicable to other species outside mosquitos, X-meddling proved to be a more

efficient method of producing sex-biased progeny and may be more greatly applicable to other

species.

Bicomponent CRISPR/Cas9 systems

Another CRISPR/Cas9-based method for generating single-sex litters is a bicomponent sys-

tem. A bicomponent CRISPR/Cas9 system refers to the genetic isolation of Cas9- and sgRNA-

encoding transgenes. The isolated Cas9 and sgRNA transgenes are coinherited independently

of each other from either parent. Integration of either the Cas9 or sgRNA transgene onto a sex

chromosome of a heterogametic parent allows for sex-specific inheritance of the transgene.

Monoinheritance of either the Cas9 or sgRNA transgene in isolation is predicted to have no

mutational effect and therefore is advantageous because monoallelic stocks can be bred nor-

mally. Furthermore, it is known that constitutive expression of transgenic Cas9 is not detri-

mental to mice [96–98]. Conversely, the coinheritance of both transgenes, i.e., one from each

parent, would generate loss-of-function mutations at the sgRNA target viability locus, thereby

resulting in embryonic lethality of the unrequired sex (Fig 1C and 1D).

The first implementation of a CRISPR/Cas9 bicomponent system to breed all-male off-

spring was in B. mori [99]. Similarly to birds, female silkworms are the heterogametic sex

(ZW) and males are the homogametic sex (ZZ). Zhang and colleagues generated a female-spe-

cific W-linked Cas9 transgenic line, and the transgene was therefore uniquely inherited by

daughters [99]. Second transgenic lines were produced carrying an autosomal sgRNA target-

ing the essential gene Bmtra2 (B. mori transformer 2). Coinheritance of the W-Cas9 and

sgRNA transgenes in daughters resulted in Bmtra2 CRISPR/Cas9-induced mutations, 50% of

the progeny did not hatch, and the surviving progeny were 100% male. This study was the first

to highlight that sex-specific coinheritance of CRISPR/Cas9 components targeting an essential

gene produces single-sex litters. Developments in generating single-sex offspring by genetic

methods has the potential to be extremely advantageous for the silkworm industry.

In the Zhang and colleagues silkworm study, the aim was to produce all-male progeny.

However, laboratories or agricultural applications may require all-female litters; for example,

female rodents to study female-specific biology or in producing layer hens (Table 1). In the

Zhang and colleagues study, the Cas9 transgene was W-linked and therefore inherited

uniquely by females, alongside the autosome-linked sgRNA, to induce Bmtra2 mutations and

female-specific lethality. The same principle is relevant to eutherian mammals; integration of a

Cas9 transgene onto the Y chromosome would ensure unique inheritance by sons. Coinheri-

tance of a Y-linked CRISPR/Cas9 component transgene and autosome-linked CRISPR-Cas9

Fig 1. Genetic methods of producing single-sex litters. (a,b) X-shredding and X-meddling techniques are engineered to utilise

CRISPR/Cas9 components to target specific regions on the X chromosome. During spermatogenesis, the CRISPR/Cas9

components are expressed and induce mutations on the X-chromosome–linked targets. X-shredding involves the sgRNA

targeting X-linked repeats, resulting in ‘shattering’ of the X chromosome. The sperm carrying the shattered X chromosome

cannot produce viable offspring after fertilisation, resulting in all-male offspring. X-meddling involves targeting X-linked haplo-

insufficient genes. Therefore, when the knock-out allele containing sperm fertilises the oocyte, the female is nonviable, resulting

in single-sex progeny. (c,d) CRISPR/Cas9 bicomponent systems have been generated in the mouse and silkworm. Offspring

coinheritance of a Cas9 and sgRNA-transgenic allele targeting an essential viability gene results in mutation and loss of function

of the target. Inheritance of a single transgene is predicted to have no effect. (e) Suppression gene drive has been generated in the

mouse and mosquito models, amongst others. The CRISPR/Cas9 transgene is targeted to an essential male/female-specific

fertility or viability gene in order to disrupt gene function. Expression of the CRISPR-Cas9 transgene converts the transgene

from hemizygosity to homozygosity. Loss of function of the target gene renders the target female or male population sterile or

nonviable. In order to generate single-sex litters, the CRISPR-Cas9 gene target is a sex determination gene such as doublesex,

which theoretically would skew sex offspring sex ratios. chr., chromosome; sgRNA, single guide RNA.

https://doi.org/10.1371/journal.pgen.1008898.g001
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component will induce mutations in the target gene uniquely in sons. If the target gene is an

essential viability gene, the sons will be embryonic lethal.

However, the Y chromosome has been extremely challenging to genetically modify because

of its highly heterochromatic and repetitive nature. The modern eutherian X and Y chromo-

somes diverged from a pair of ancestral autosomes [100] following the acquisition of the male-

determining gene SRY/Sry approximately 148–166 million years ago [101]. Recombination

was thereafter suppressed between the X and Y chromosomes, most likely through a series of

Y-chromosome inversions [102]. The Y chromosome became recombinationally inert, accu-

mulating deleterious mutations and losing most of its ancestral genes [103]. The clonal inheri-

tance of the Y chromosome through the male lineage contributed to the sexual conflict

between the X and Y, leading to further specialisation of Y-genes for male-function

[18,103,104] and testis-specific expression [105]. The loss of Y-chromosome genes led to the

male-specific Y chromosome being greatly reduced in size compared to the X chromosome.

Similarly, in many bird species, the female-specific W chromosome is also greatly reduced

compared to the Z chromosome. The comparative sizes of the X and Y or Z and W chromo-

somes are highly diverse amongst species.

Given the complexity associated with Y-gene targeting, the first study generating a targeted

mammalian Y-gene reporter was not published until 2013, using transcription activator-like

effector nucleases (TALENs; [106]). Previous attempts to mimic Y-linked transgene expression

have utilised Y-gene promoter-driven transgenic lines; however, transgenes are instead ran-

domly integrated into an autosome. For example, an enhanced green fluorescent protein

(eGFP) reporter, driven by the Sry promoter, was randomly integrated into the genome by

zygotic microinjection [107]. The main disadvantage of Sry-promoter–driven transgenic alleles,

however, is that mouse Sry expression is tightly regulated in the gonad, occurring between

embryonic day (E) 10.5 and E12.5 [14–16]. Therefore, Cas9 or sgRNA transgene expression

would also be limited to the gonad within these developmental time points, and expression

would be insufficient to drive sgRNA-guided mutations to produce single-sex litters.

Given that Sry-promoter–driven expression is restricted, a preferable choice would be a

promoter driving a Y-gene with ubiquitous expression. There are multiple Y-linked genes

ubiquitously expressed in the mouse, including Uty (Ubiquitously transcribed tetratricopep-

tide repeat containing, Y-linked) [108], Eif2s3y (Eukaryotic translation initiation factor 2 sub-

unit 3, Y-linked) [109], Ddx3y (DEAD-Box helicase 3, Y-linked) [110], and Kdm5d (Lysine

demethylase 5D) [111]. Of these, Uty is expressed during embryonic development and also in

embryonic stem cells (ESCs) [112]. Furthermore, previous studies have successfully generated

in-frame knock-in Uty-eGFP reporter ESC lines [106]. Moreover, Zhao and colleagues

recently generated a Y-linked reporter mouse line wherein eGFP expression was driven by a

constitutive promoter and shown to be expressed in preimplantation embryos [113]. The

transgene was inserted into an intergenic region between Uty and Ddx3y, thereby opening up

new possibilities of Y-chromosome knock-in targets.

In 2019, the first mammalian CRISPR/Cas9 bicomponent system was described, with the

intention of generating all-female litters by CRISPR/Cas9-induced knock-out of essential

genes in male embryos. Yosef and colleagues utilised the ubiquitous Y-linked Uty locus to inte-

grate a constitutively expressed sgRNA transgene into the second intron [114], which would

therefore be uniquely inherited by sons. Therefore, upon the male-specific coinheritance of

the Y-linked sgRNA transgene targeting essential genes Atp5b (ATP synthase, H+ transporting

mitochondrial F1 complex, beta subunit), Casp8 (Caspase 8), and Cdc20 (Cell division cycle

protein 20) and an autosomal constitutively expressing Cas9 transgene resulted in knock-out

of the target loci and significant male-biased offspring sex ratio [114]. Whether Uty expression

was affected in these sgRNA-transgenic males was not addressed.
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Bicomponent systems are advantageous because mono-transgenic stocks can be maintained

as separate lines and bred when necessary. The human control of using original stocks main-

tained independently ensures that genetic mutational resistance at the target loci is unlikely to

occur. Furthermore, if mutational resistance did arise in any offspring, the individuals can be

removed from the population without any negative impact on the breeding stocks. Refining

the technologies further, it may be possible to generate transgenic laboratory models wherein

the transgenes that induce the embryonic lethality effect are inherited by maternal deposition

of mRNAs. In an analysis of embryos derived from Gt(ROSA)26Sor (Rosa26)-Cas9 hemizy-

gous transgenic mothers, maternally loaded Cas9 was sufficient to induce mutations even in

non-transgenic offspring [96].

Gene drive

Gene drive refers to the process of a selfish genetic element transmitting through a population

at above-mendelian frequency [115–117]. Laboratory engineered gene drives can therefore be

harnessed to spread genetic traits quickly through a population, and moreover, they can be

adapted for producing single-sex progeny. Burt first postulated that endonuclease-driven gene

drives could be used for pest-control management [91]; however, the advent of CRISPR/Cas9

has enhanced the potential for synthetic gene drives to be transmitted highly effectively in wild

populations [118]. Engineered gene drives function by the insertion of an endonuclease trans-

gene into a target locus. The transgene-encoded endonuclease then copies itself into the other

wild-type allele, thereby converting from hemizygosity to homozygosity, and ensuring inheri-

tance by all offspring [91]. ‘Suppression drive’ is a refined engineered gene-drive system,

whereby the endonuclease-encoding transgene is inserted into an essential fertility or viability

gene [91,118]. Upon active drive and transgene conversion to homozygosity, the individual

becomes infertile or nonviable. In CRISPR/Cas9-engineered gene drives, a transgene encoding

an sgRNA and Cas9 is integrated into a target viability or sex-specific fertility locus. Transgene

expression converts the transgenic allele to homozygosity, thereby rendering individuals non-

viable or infertile. These gene-drive methods could be highly efficient for reducing population

size. Moreover, the engineered gene drive could be modified to target genes for sex determina-

tion. In this strategy, gene-drive–induced modifications of the target locus could produce sin-

gle-sex progeny (Fig 1E).

In 2018, Kyrou and colleagues generated a gene-drive system in mosquitos, targeting the

doublesex gene [119]. In this strategy, a gene-drive construct was engineered targeting the

female-specific exon of doublesex, leaving the male doublesex splice variant unaffected, aiming

to produce male-biased progeny. Heterozygous targeted females were unaffected, confirming

that doublesex is functional with a single copy (haplo-sufficient). Interestingly, homozygous

targeted females were not sex reversed but instead showed an intersex phenotype and were

infertile [119]. This study highlights that currently gene drives cannot be used for generating

sex-biased litters but instead could be used to cause a population collapse by sex-specific

sterility.

To examine whether the synthetic suppressive drive systems could also be applied to mam-

mals, Grunwald and colleagues performed the first proof-of-principle gene-drive system in

mice [120]. To assess success, they utilised the Tyrosinase (Tyr) gene, which generates white-

coated mice upon homozygous knock-out. An sgRNA transgene targeting Tyr and also encod-

ing an mCherry reporter was inserted into the Tyr locus to produce a Tyr-heterozygous

knock-out and hemizygous transgenic mouse line. When bred with Cas9-expressing mice,

functional gene-drive systems would transmit to offspring at above-mendelian frequency. A

successful gene drive should produce Tyr loss-of-function white mice that also express
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mCherry. In this approach, gene-drive success varied from 0% to 72%. Often, the mice were

white-coated but did not express mCherry, suggesting that transmission of the sgRNA and

Cas9 transgenes produced mutations at Tyr but without copying the sgRNA/mCherry trans-

gene [120]. The repair pathway after CRISPR/Cas9-induced mutations at Tyr was likely non-

homologous end-joining (NHEJ), consistent with previous reports that NHEJ is the dominant

mode of repair over homology-directed repair [121,122]. Therefore, although relatively effi-

cient in mosquitos [123], mammalian synthetic gene drives require further optimisation.

Disadvantages of genetic methods

Genetic or genome editing systems have the potential to effectively generate single-sex litters;

however, they currently have some disadvantages. The superior method of generating single-

sex litters is by selective destruction of the nonrequired sperm. One method to selectively

destroy X-carrying sperm is by X-shredding or X-meddling. Although this technique was

shown to be highly efficient in mosquitos [90,93], it was variable in Drosophila [95]. An impor-

tant consideration of harnessing X-shredding in other nonmosquito species is the availability

of X-targets because this is likely to strongly influence the success rate. One alternative method

is by targeting the X-shredding transgene to the Y chromosome for germline expression. The

question of whether the Y chromosome could be used for Drosophila CRISPR/Cas9 transgene

expression for X-meddling or X-shredding is still open; however, great strides have been made

in determining possible transgene integration sites [124].

Although CRISPR/Cas9 bicomponent systems are advantageous in that the mono-transgenic

stocks can be easily maintained independently, current bicomponent systems are not 100% effi-

cient. In the Yosef and colleagues study [114], the sex skew was imperfect; i.e., some males were

born despite mutations in the target housekeeping genes. Furthermore, these males were often

born with severe developmental abnormalities, which raises further ethical questions in line

with the 3Rs. Another interesting question regarding bicomponent systems is that of the num-

ber of offspring born. The bicomponent CRISPR/Cas9 system selectively induces nonviability

in a target sex by CRISPR/Cas9-induced mutations in a target gene. Therefore, by estimates of

mendelian frequency, approximately half of the offspring are embryonic lethal. Although the

unrequired sex is not born, the number of pups of the required sex remains unchanged. More-

over, there is potentially a risk that the in utero embryonic lethality of the unrequired sex could

also stimulate abortion of the required sex. As earlier described, a superior method to generat-

ing single-sex litters would be via selective destruction of the unrequired sex-chromosome–car-

rying sperm, such as by X-shredding. In this strategy, the surviving sperm are free to fertilise all

available oocytes, and therefore, all of the offspring that are born are of the required sex.

One possible disadvantage of a released gene-drive genetic system is through mutational

resistance arising at the sgRNA target site. If a nucleotide variant arises at the sgRNA target or

the neighbouring protospacer-adjacent motif (PAM), then the CRISPR/Cas9 system becomes

immediately dysfunctional. Mutational resistance to an embryonic-lethal gene drive could

potentially spread efficiently through the population because of conferring a fitness advantage.

Indeed, evidence for rapidly arising resistance alleles has been shown recently in flies [125]

and mosquitos [126]. Current studies suggest that prevention of newly arising resistance muta-

tions at gene-drive target loci would therefore require continuous intervention [91,127,128].

However, in laboratory or factory-maintained stocks, the issue of mutational resistance would

not occur because these individuals could be simply removed from the population. One possi-

ble circumvention of the mutational resistance risk is to engineer many sgRNA transgenes tar-

geting multiple loci. Therefore, even if mutational resistance occurs at one locus, the

remainder are intact.
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A second disadvantage associated with CRISPR/Cas9 gene drive is the risk that the above-

mendelian frequency of inheritance spreads so rapidly through the population that the original

wild-type allele is completely lost. The complete loss of the wild-type allele may cause appre-

hension against gene drive. Adaptations to gene-drive methods have been developed in order

to prevent the uncontrolled spread of synthetic gene drives, called ‘self-exhausting’ gene drives,

for example, the killer-rescue [129] or daisy-chain [130] models.

Summary and future outlook

Overall, there are many challenges still associated with producing transgenic mouse lines in

order to produce single-sex litters. However, with careful consideration of which genes are tar-

geted to induce embryonic lethality or sterility, bicomponent CRISPR/Cas9 methods could be

widely employed to skew sex ratios. For example, targeting genes that are essential in postim-

plantation development may not result in a complete loss of the unrequired sex. Instead, an

alternative approach may be to target essential housekeeping genes with roles in preimplanta-

tion development at embryonic genome activation. Embryonic lethality can then be induced

very early, before the onset of organogenesis. Inducing embryonic lethality at preimplantation

ensures firstly that embryos are nonviable prior to the onset of pain perception. Secondly, it

would be interesting to determine whether embryo loss due to nonviability prior to implanta-

tion may allow extra viable embryos to implant, thereby compensating the litter size.

Even if all of the necessary optimisations are made and the technology for generating sin-

gle-sex litters is consistent, there may be some apprehension regarding using genetically modi-

fied animal produce in agricultural industries. Utilising maternally loaded mRNAs such as the

earlier described Rosa26-Cas9 may circumvent issues with genetically modified offspring for

agricultural produce. Moreover, it may be that some consumers consider the use of transgenic

animals in agriculture ethically preferable to the widespread culling of the unrequired sex.

Indeed, there are some examples of genetically modified produce currently in the food indus-

try, for example, a modified salmon species with increased growth rate [131], although it

should be made clear that many regulatory limitations remain in place regarding the sale and

consumption of genetically modified animal produce. It is important to continue the global

conversation regarding the role of genetic modification in the agricultural industries. How-

ever, in the short term, it is more likely that the sex-selection strategies could be quickly and

easily implemented for immediate reduction of postnatal animal culling in laboratory animals

such as mice in line with the 3Rs.
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