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Abstract

Linguistic category learning has been shown to be highly sensitive to linear order, and depending on
the task, differentially sensitive to the information provided by preceding category markers (premark-
ers, e.g., gendered articles) or succeeding category markers (postmarkers, e.g., gendered suffixes).
Given that numerous systems for marking grammatical categories exist in natural languages, it follows
that a better understanding of these findings can shed light on the factors underlying this diversity. In
two discriminative learning simulations and an artificial language learning experiment, we identify two
factors that modulate linear order effects in linguistic category learning: category structure and the level
of abstraction in a category hierarchy. Regarding category structure, we find that postmarking brings an
advantage for learning category diagnostic stimulus dimensions, an effect not present when categories
are non-confusable. Regarding levels of abstraction, we find that premarking of super-ordinate cate-
gories (e.g., noun class) facilitates learning of subordinate categories (e.g., nouns). We present detailed
simulations using a plausible candidate mechanism for the observed effects, along with a comprehen-
sive analysis of linear order effects within an expectation-based account of learning. Our findings indi-
cate that linguistic category learning is differentially guided by pre- and postmarking, and that the
influence of each is modulated by the specific characteristics of a given category system.
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1. Introduction

Natural languages abound with regularities, patterns, and conventions. Indeed, philoso-
phers have long noted that to say language is ruled by convention is something of a plati-
tude (Lewis, 2008). Accordingly, in attempting to understand the conventionalized nature
of human communication, linguists have expended a great deal of effort on taxonomizing
the regularities and patterns observable in the world’s languages into various lexical and
grammatical categories (such as word class, case, gender, tense, aspect, mood, etc.) based
on their form features, or their distributional characteristics, for example their combina-
tion with grammatical markers. Interestingly, the case of grammatical markers highlights
a dimension highly important for the analysis of regularities in language: linear order. In
the case of noun gender, for example, gender markers can either precede the noun (pre-
marking, e.g., gendered articles in German: das Kind, or noun class prefixes in Swahili:
mtoto), follow the noun (postmarking, e.g., noun suffixes in Russian: kartina), or even
occupy both positions (e.g., gendered articles and relative pronouns in German: das Kind,
das hier ist). According to typological analyses, postmarking is the most frequent gram-
matical marking pattern in languages across the world (irrespective of whether the mark-
ers are bound morphemes, e.g., Hawkins & Gilligan, 1988, or free morphemes, Bybee,
Pagliuca, & Perkins, 1990). This observation has triggered a considerable debate about
whether and how the linear order in which categories are marked makes a difference to
language processing, to language production, or—as we will investigate here—to lan-
guage learning.

Previous work on marking order and learning has mainly focused on the advantage of
postmarkers for learning grammatical categories. One suggested explanation for this post-
marking advantage is that postmarkers are perceptually more salient than premarkers
(based, e.g., on the observation of final syllable lengthening in French, English, and Rus-
sian, Vaissiére, 1983; and the rare omission of word-final unstressed syllables by children,
Slobin, 1973; Snow, 1998), and that this promotes learning in general. However, a recent
theoretical account suggests that premarkers and postmarkers serve different functions
regarding learning and informativity within category systems in language (Ramscar,
2013).

This proposal of separate functions of pre- and postmarking stems from the assumption
that language learning is based on a mechanism of adjusting learners’ expectations (i.e.,
that learning is expectation-based). Upon hearing the noun stem kartin- (painting) a
speaker of Russian will, for example, expect a specific postmarker, the feminine noun
ending -a. However, while words can be used to predict a following postmarker, the rela-
tion is reversed with premarkers: They predict the words following them. Upon hearing
the German neuter article das, for example, a listener will expect to hear a neuter noun,
as opposed to expecting any noun. These two examples illustrate that due to their differ-
ing linear order relations, premarkers and postmarkers stand in different predictive rela-
tions to the words that they are associated with in the grammar. From this expectation-
based learning perspective, it has thus been proposed that premarkers and postmarkers
may have different influences on language processing and learning.
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The current study investigates how linear order interacts with the structure and level
of abstraction of categories in language learning. Although previous work has investi-
gated the different functions of premarking and postmarking, offering evidence in sup-
port of an expectation-based learning account, the vast diversity and intricate
hierarchies of categories in natural languages call for further exploration of this phe-
nomenon. Our aim here is to provide a more complete picture of the effects of linear
order on language learning by testing the generalizability of linear order effects to dif-
ferent kinds of category systems, and to clarify the kind of processes that lead to these
effects. In the remainder of this section, we begin by reviewing expectation-based
learning theory and evidence addressing how linear order affects learning categories in
language, in both first and second language learning situations, before explaining the
rationale behind the present study, which was specifically set in a second language
learning context.

1.1. An expectation-based learning explanation of the postmarking advantage

The expectation-based learning account largely accords with accounts based on sal-
ience in predicting a postmarking advantage in category learning. A crucial difference,
however, is the wider scope of the expectation-based learning account as it can poten-
tially provide an explanation for the general function of categories in language and for
the processes that underlie category learning.

From an expectation-based learning perspective, category learning is best characterized
as a discrimination problem, simply because computationally, learning from prediction is
a discriminative learning process based on prediction-error minimization (Ng & Jordan,
2002; Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010). Seen from this perspective, the
aim of category learning is to find out which item features are most relevant to discrimi-
nate one category from another rather than clustering items into categories according to
similarity. Support for this idea comes from observations showing that many common
categories cannot be defined in terms of shared definitive features, which contradicts the
idea of clustering by similarity. For example, people easily learn semantic categories such
as “fish” that include category members that do not share seemingly defining features
(e.g., mud skippers are fish that can live outside of water) and exclude items that do share
common features (e.g., dolphins are mammals but look like fish). Another observation
that mitigates against the idea of similarity within categories is that there are many cate-
gories, including those typically associated by grammatical gender, which comprise items
that do not share any features. German gender, for example, has initially been thought to
be a mere evolutionary artifact, because its structure has appeared to be so random to
many observers. Furthermore, evidence suggests that seemingly unrelated items can be
learned to be members of common categories (Ramscar, 2013). Accordingly, it has been
suggested that these various findings do not support the idea that categories cluster
together things with somehow inherently similar characteristics, but rather that categories
are sets of items that share a common label (Ramscar & Port, 2019). This view proposes
that learning to associate a set of items with a category label is not merely a process of
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recognizing similarities, but rather is a process of increasing discrimination between items
that share a given label and those that do not (see also Rescorla, 1988).

Expectation-based (or error-driven) learning models have been both influential and
widely employed in psycholinguistic research and in psychology in general (e.g., Aizen-
berg, Aizenberg, & Vandewalle, 2013; Dayan & Daw, 2008; Hannun et al., 2014;
Rescorla & Wagner, 1972; Rumelhart & McClelland, 1987). Critically, all error-driven
learning models implement discriminative learning algorithms (Ng & Jordan, 2002; Ram-
scar et al., 2010). A first, basic assumption of a discriminative account of category learn-
ing is that this kind of learning does not simply involve the tracking of contingencies
between stimuli (e.g., between animal features and a species label, or between noun fea-
tures and a gender marker) but that it estimates how much information one item or event,
a cue, can provide about another item or event, an outcome (Rescorla, 1988). The aim is
to produce an estimate of how informative a cue is for an outcome, and this is achieved
by a learning mechanism that uses the informativity of cues to gradually reduce its uncer-
tainty about the likelihood of an outcome. This process not only associates informative
cues with an outcome but it also dissociates uninformative cues from that outcome. A
second, basic assumption at the core of error-driven learning rules is that cues are com-
peting with each other for informativity, which is a demising resource as learning pro-
gresses. The interplay of association, dissociation, and cue competition yields a process
that is guided by the informativity rather than the frequency of cues. A critical function
of this mechanism is to dissociate irrelevant features which are nevertheless shared
between many items in a category, for example that fish live in water but are still not
most relevant for discriminating the category from other categories on the same level of
abstraction, for example, fish from mammals.

Third, because the discriminative form of learning implemented in expectation-based
models is ultimately determined by prediction-error, it is asymmetric. Accordingly, learn-
ing is not assumed to determine the association between cues and outcomes («>) but
rather the association of a cue with an outcome (—). Crucially, there is evidence that the
asymmetry of learning results in a cue—outcome order effect of learning (or feature-label
order effect, Ramscar et al., 2010): Learning potentially differs whenever the order of
two items or events, for example, first seeing a fish and then hearing someone say “fish”,
is reversed. In a task in which learners had to learn the names of novel object categories,
Ramscar et al. (2010) found that learning was facilitated whenever object images pre-
ceded category labels during training, as compared to when object images were shown
after the category labels. This suggests that we need to consider two possible learning sit-
uations for a categorization task: Either the category labels follow the items' that have to
be categorized, or the category labels precede the items.

If we transfer these expectation-based learning principles to grammatical category
learning, which is the focus of this article, we can differentiate between two kinds of
learning situations: premarking and postmarking situations. In a premarking situation, the
grammatical marker can be operationalized as cue to the features of the following word.
In a postmarking situation, the grammatical marker can be interpreted as an outcome
cued by preceding word features.



D. B. Hoppe et al./Cognitive Science 44 (2020) 5 of 43

Fig. 1 illustrates how marking order could affect learning of noun class categories
depending on their specific form and semantic features. An analysis of the contrasting
premarking and postmarking situations from a discriminative learning perspective sug-
gests that they can give rise to different learning dynamics (and learning outcomes),
although the basic mechanisms—association, dissociation, and cue competition—are
active in both marking orders. In a postmarking situation, cue sets are larger and poten-
tially overlapping, and cues and outcomes are in a convergent relation (Osgood, 1949,
see Fig. 1b). Therefore, more cues compete for an outcome which makes cue competition
more effective in postmarking. This leads to a process which is driven mainly by the
informativity of features for a category marker (e.g., Ramscar et al., 2010). In contrast, in
premarking situations cues and outcomes are usually in a divergent relation with more
outcomes than cues (see Fig. 1a). In such a situation, noun features do not compete for
the labels as cues but as outcomes. Outcome competition is more driven by frequency
than by informativity, and this leads to the learning of conditional probabilities of fea-
tures given a category marker (Hoppe, Hendriks, Ramscar, & van Rij, 2020; Ramscar,
2013).
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Fig. 1. Illustration of the difference between learning in (a) a premarking situation and (b) a postmarking sit-
uation. In this example, based on the materials used in the simulations and behavioral experiment (see
Table 2), a learner either needs to associate noun class markers (e.g., ima) with a noun and its form features
(e.g., stress or phones) and semantic features (e.g., animal) or the other way around. In the divergent pre-
marking situation (a), there is little cue competition (dashed black box). In the postmarking situation (b), the
relation between cues and outcomes is convergent, which leads to many cues competing with each other
(dashed black box). Moreover, the pattern of association (black dashed lines) and dissociation (red dashed
lines) is not mirrored between (a) and (b), which shows the asymmetry of the discriminative learning mecha-
nism. Note that capitals mark syllable stress.
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A number of findings in linguistics show indeed an advantage of postmarking over pre-
marking in category learning. Evidence from language acquisition suggests that children
learn suffixes faster than prefixes (Clark, 2001; Kuczaj, 1979) and in particular, that inflec-
tional systems are learned earlier when they are encoded by suffixes than when they are
encoded by preceding markers (Slobin, 1973). Further support for a postmarking advantage
is provided by a number of recent artificial language learning studies. For example, St Clair,
Monaghan, and Ramscar (2009) demonstrated that participants were significantly better at
recognizing previously trained compatible and incompatible affix—word combinations when
those affixes were suffixes rather than prefixes; Ramscar (2013) found that words that shared
a suffix were rated more similar to each other than words that shared a prefix; and Nixon
(2020) showed that English learners were better at learning to discriminate tonal syllables
from Southern Min Chinese when category markers (in this case, geometrical shapes) fol-
lowed the training syllables than when they preceded them.

Thus, in the context of an expectation-based learning account, the postmarking advan-
tage follows from the cue competition in a convergent learning situation. Next, we will
explore whether and how this postmarking advantage extends to differently structured cat-
egories and categories at different levels of abstraction in a category hierarchy, an investi-
gation which will bring us also to the function of premarking in category learning.

1.2. Category structure and the postmarking advantage

The first aim of the present study is to investigate whether the postmarking advantage
generalizes to differently structured categories. Regularities in language differ highly in
their structural characteristics, for example, how informative item features are for a cate-
gory (cue validity, Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976; feature diagnos-
ticity, Minda & Smith, 2001), the ratio of within-category similarity and between-
category similarity (structural ratio, Minda & Smith, 2001), or the number of bits that are
needed to code a category (entropy, Shannon, 1948). Not surprisingly, these factors have
been found to affect how easy it is to learn a specific category system (e.g., Lafond,
Lacouture, & Mineau, 2007; Reeder, Newport, & Aslin, 2013).

We suggest that in expectation-based learning theory, the amount of overlap between
categories determines the need for postmarking in contrast to premarking: The postmark-
ing advantage for category discrimination might be reduced when categories share fewer
overlapping features. In experiments in which a postmarking advantage has been
observed, category systems showed a high amount of overlap, for example, highly fre-
quent features that are shared across categories and that are therefore uninformative for
category discrimination (Nixon, 2020; Ramscar, Dye, Gustafson, & Klein, 2013; Ram-
scar, Dye, Popick, & O’Donnell-McCarthy, 2011; Ramscar et al., 2010). In these cases,
cue competition during postmarking helps to dissociate such frequent uninformative fea-
tures. In contrast, more distinct categories elicit less cue competition and, as a conse-
quence, the dissociation of uninformative cues is reduced. In such situations, the resulting
learning relation with a marker should be more symmetric than in Fig. 1, leading to a less
pronounced asymmetry effect between marking orders.
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It is important to note here that defining the amount of overlap between categories is not
a trivial task given that categories are not inherently grounded in objective properties of the
world (Ramscar & Port, 2019). Assuming that categories are rather functional units in a
communication system, a specific category representation is more likely determined by the
whole system of category contrasts acquired by a specific learner. This can, for example, be
illustrated with the learning of new phonological categories in a second language: While to
a native speaker of a tone language phonemes differing only in tone appear completely dis-
tinct, native speakers of English can only master the discrimination of tones by relearning
acoustic cues as informative which have been unlearned under a predominant exposure to
English (as in Nixon, 2020). Indeed, direct evidence suggests that which cues learners rely
on to discriminate categories is determined by learning history (Arnon & Ramscar, 2012;
Culbertson, Gagliardi, & Smith, 2017; Ramscar et al., 2013). Hence, with “overlap”
between categories we, here, refer to the perceived amount of overlapping (i.e., confusable)
features between previously learned category representations.

From an expectation-based learning perspective, we do not expect that the postmarking
advantage generalizes to any and every type of category learning situation. In particular, we
hypothesize that the more categories overlap (such that members of different categories are
more confusable), the stronger the advantage that postmarking brings for category discrimi-
nation. As a consequence, we predict that categories already learned to be distinct will sub-
sequently not profit more from postmarking than from premarking. Concerning the
underlying learning mechanism, such a finding would corroborate the idea that category dis-
crimination is mainly a process of dissociating overlapping and therefore confusable fea-
tures in search for the features that are most informative for the discrimination.

1.3. The premarking advantage

In mastering a language, learners are not only confronted with different category struc-
tures, they are simultaneously required to learn category contrasts at various levels of
abstraction. These levels of abstraction in a category hierarchy can be characterized in
terms of their inclusiveness (meaning how many specific entities a category includes,
Rosch et al., 1976). To examine linear order effects across the full diversity of category
systems, we will further investigate how marking order affects category learning at differ-
ent levels of abstraction.

Thus far, we have seen that dissociation of features that are uninformative for a cate-
gory contrast clearly facilitates categorization. However, for other tasks, this kind of
information loss can become detrimental: For example, while in learning to discriminate
fish from mammals, living in water is not always an informative feature, it is in fact use-
ful to discriminate a sardine from a mud skipper. Note that in this example, the contrast
between the type of fish is on a lower, more fine-grained level of abstraction than the
contrast between types of species. Similarly, we might expect that the features that are
relevant to discriminate feminine from masculine German nouns (in this case, the super-
ordinate category contrast) differ from the features that are relevant to discriminate single
feminine nouns from each other (the subordinate category contrast). This suggests that
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there is a trade-off between optimally discriminating super-ordinate and subordinate cate-
gories, due to the information loss which is necessary for the discrimination process (Dye
& Ramscar, 2009).

This trade-off suggests further that knowledge gained on one level of abstraction does not
always generalize to other levels of abstraction. In particular the facilitation of postmarking
on super-ordinate category levels cannot be transferred to subordinate levels. This idea is
supported by the findings of Ramscar (2013), who performed an artificial language learning
task comparing noun learning and noun category learning. In this study, participants were
first trained to associate invented nouns with random known objects, the subordinate cate-
gory contrast. After that, they heard sentences consisting of phrases containing the noun
labels paired with different markers signaling a super-ordinate category contrast. A subse-
quent similarity test confirmed that postmarkers helped super-ordinate category discrimina-
tion: Participants rated objects to be more similar to each other when their corresponding
nouns shared a postmarker than when they shared a premarker. However, a grammaticality
judgment task showed that participants were better at learning the nouns’ meanings—here
the subordinate category contrast—when nouns were marked on the super-ordinate category
contrast by a premarker and not a postmarker during training.

Results from a study by Arnon and Ramscar (2012) suggest that this effect of improved
noun learning after a noun class premarker is indeed due to the presence of premarking and
not merely the absence of postmarking. This study investigated a different question, namely,
whether the learning of article-noun associations in a second language could be blocked by
previous learning of the nouns’ meanings, a hypothesis which their findings corroborate.
They also observed that learners were significantly better at learning to associate objects
with invented nouns when the nouns were preceded by previously learned noun class arti-
cles than when they had to learn the object—noun associations without article support.
Hence, the previous knowledge of the super-ordinate noun classes in combination with the
articles seemed to have facilitated noun meaning discrimination.

Here, we aim to investigate in detail what processes underlie this premarking advantage
that super-ordinate premarkers seem to have on learning subordinate categories. An expla-
nation for the premarking advantage put forward in Ramscar (2013) and Arnon and Ramscar
(2012) is that premarkers serve a communicative function in that they reduce uncertainty
about following words, by eliminating words that do not belong to the marked category
from the set of possibly following words (Dye, Milin, Futrell, & Ramscar, 2017). A basic
assumption of the expectation-based learning account is that communication has the general
aim of reducing uncertainty, such as for example, a listener’s uncertainty about the intention
of a speaker. Seen from this perspective, different levels of abstraction in a category hierar-
chy would coincide with different levels of uncertainty reduction: On the level of noun
classes, for example, uncertainty is reduced from all possible nouns to the subset of nouns
from one class. Learning nouns in such a reduced set seems to be advantageous as compared
to learning them in the full set of possible nouns. However, why this is the case is not clear,
yet. To investigate this question, we will therefore simulate noun learning within and across
noun classes with a discriminative learning model using error-driven learning and then seek
to confirm this effect in a behavioral experiment.
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1.4. The present study

The present study investigates how linear order interacts with the structure and level of
abstraction of categories in language learning. While there is evidence that the various
factors introduced so far—Ilinear order, category structure, and levels of abstraction—all
influence learning of linguistic categories, thus far these effects have been studied in iso-
lation. In what follows, we will seek to examine the degree to which these factors interact
and/or complement one another in a second language learning situation.

By investigating category structure and level of abstraction, we want to link the discus-
sion about linear order effects with the discussion about the functional role of category
markers and hope to contribute also, indirectly, to a better understanding of the functional
role of categories in language. In particular, we assume that categories in language serve
their function as part of a system of communication. From this perspective, postmarkers
serve to help in the discrimination of relevant category contrasts, whereas premarkers
serve to guide the process of uncertainty reduction about an intended message and at the
same time focus the discrimination problem to subordinate levels of abstraction in a cate-
gory hierarchy.

In Section 2, we will first discuss two simulations of discriminative learning that we
implemented to examine how linear marking order affects learning categories with differ-
ent structures and at different levels of abstraction in an artificial category system. In Sec-
tion 3, we present the results of an experiment in which adult participants were trained
on the same artificial language to test the predictions of the simulations.

2. Modeling linear order effects in category learning

To examine how linear marking order affects learning categories with different struc-
tures and at different levels of abstraction, we designed an artificial language built around
a noun class system that varied in both of these factors. In this section, we present two
computational models that simulate how a language learner would acquire this noun class
system, from an expectation-based perspective using error-driven learning. The first
model simulates how premarking and postmarking of noun class affect noun class learn-
ing (the super-ordinate category contrast), whereas the second model simulates how pre-
marking and postmarking of noun class influence noun learning (the subordinate category
contrast) within the same artificial language. We will start with presenting the structure
of the artificial language.

2.1. Artificial language

The artificial language consisted of a differentially structured and hierarchical artificial
noun class system. This system was built around two- and three-syllabic imaginary nouns
(see Table 1) describing different visualizable real-life concepts (see Tables 2 and 4).
These nouns were then systematically assigned to different noun classes which were
either all marked by a specific premarker or by a specific postmarker.
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Table 1

The training nouns for the simulations and the behavioral experiment
Noun Class 1 Noun Class 2 Noun Class 3 Noun Class 4 Frequency

Premarker ima imo ime imi

Noun oksham kanjur anveal jajosan 32
luobar ennovis psondew serim 23
anhatar ruis hatrumir erkefal 16
simad lopranik kilal vimeros 11
nechran aftong repis burbad 8
kekunam palneng tokran ksoster 6
kitsogis tivitkal istefur natrul 4
magril meromer merkatim rutonak 3

Postmarker ove/ovu ira/ire agi/ago epo/epa

Note. The vowel alternation of the postmarkers was dependent on the carrier phrases unta boltohe (appear-
ing with ove, ira, agi, and epo) and ena dikanhe (appearing with ovu, ire, ago, and epa).

We manipulated marking order in that a noun always followed a premarker and pre-
ceded a postmarker. Two different marking variants determined whether the premarker or
the postmarker aligned with the four noun classes or not. In the premarking variant, four
premarkers, ima, imo, ime, and imi, were consistent with their noun class and one unspeci-
fic postmarker, agi, was used for all nouns. In the postmarking variant, one premarker,
imo, appeared with all nouns and four postmarkers, ovu, ira, agi, and epo, were consistent
with their noun class. The combinations of markers and nouns were then embedded into a
context by a sentence-initial carrier phrase (ena dikanhe, which could mean “he is talking
about ...”, or unta boltohe, which could mean ‘“he is dreaming of ...”).

In both variants, the last vowel of each postmarker was dependent on the carrier
phrase, for example, ovu would turn into ove for carrier phrase two. An example sentence
of the premarking variant is given in (1).

(1) Unta boltohe ima OKsham-  agi.
Carrier phrasel premarkerl “dog/dogs” unspecific postmarker
He is dreaming of dogs.

To address our first question of how category structure interacts with linear marking
order, the nouns and their associated images were manipulated on two dimensions; on
their form by assigning them to one of three syllable stress categories (form categories:
stress on first, second, or last® syllable), and on their meaning by assigning them to one
of three different semantic categories (meaning categories: animals, plants, or random
objects). The noun oksham in Example sentence (1) from Noun class 1 was, for example,
stressed on the first syllable (capitals mark the stressed syllable) and used to refer to dogs
(the artificial language was not specific about number). Note that during the recording of
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Table 2
The four noun classes of the artificial language and their combination of meaning and form category features

Form Categories

Unambiguous Ambiguous
Stress on 1 Stress on 2 Stress on 3/4
Meaning Unambiguous Animal Noun class 1 — —
categories > ima X agi
or
imo X ove

— — Noun class 2

imo X agi
or
imo X ira
Ambiguous — Noun class 3 Noun class 4
ime X agi imi X agi
or or
imo X agi imo X epa

Note. In the premarking variant, the unspecific postmarker agi was added to all nouns, in the postmarking
variant, the unspecific premarker imo. Moreover, ambiguous categories are shared with another noun class,
while unambiguous categories only appear in one noun class.

stimuli for the behavioral experiment, postmarkers were read as suffixes attached to the
nouns. For nouns from Noun class 2 and 4, stress therefore fell on the postmarker.

We assumed that the form categories were perceived as more overlapping than the
semantic categories based on the differing learning context and an adult learner’s previ-
ous knowledge about the two category types. Both the meaning and form categories we
used are contrastive—thus, already learned—categories in the L1 of the Dutch learners.’
However, the meaning features were integrated in images showing already familiar
objects in a familiar context, whereas the stress features were part of a very complex
speech stream that consisted of many unknown sound combinations. Thus, the familiar
context in the images should facilitate the transfer of the meaning category knowledge,
but the unfamiliar language context should hinder such a transfer of category knowl-
edge for the form categories. We therefore assumed that the meaning categories were
perceived as already learned and therefore distinct categories, while the form categories
still had to be formed in this new context and should be perceived as overlapping
categories.
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The form and meaning categories were then combined pairwise to form three noun
classes. To increase the complexity of our artificial noun class paradigm and to make it
more comparable to real noun class paradigms, we induced marking ambiguity by adding
a fourth marked noun class category that shared the stress category from one and the
meaning category from another noun class. In this way, we simulated ambiguity of some
of the linguistic features, for example, as in marking syncretisms in the German case and
gender system. Overall, this yielded four noun classes with all levels of ambiguity (1:
completely unambiguous, 2: ambiguous in distinct feature set, 3: ambiguous in overlap-
ping feature set, 4: completely ambiguous) as illustrated in Table 2. In addition, the fre-
quency of nouns within each noun class followed an exponential (or strictly speaking a
geometric) distribution to provide a distribution of words within categories which matches
natural word distributions (Guo, Chen, & Wang, 2011; Kim & Park, 2005; Linke &
Ramscar, 2020; Ramscar, 2020).

To address our second question of how linear marking order interacts with different
levels of abstraction, the category system of this artificial language has two levels of
abstraction. On the noun level (subordinate category), nouns categorize specific meanings
(e.g., the set of dogs or the set of cats) and on the noun class level (super-ordinate cate-
gory), the noun classes categorize nouns. This structure allows us to compare the effects
of linear order on learning the noun classes and the specific noun meanings. Crucially,
only the order of the noun class marking was manipulated while the order of nouns and
images (meanings) was kept constant (in the behavioral experiment nouns and images
were presented at the same time). Another important point is that the meaning categories
(i.e., plants and animals) are familiar and therefore non-confusable categories for adult
learners. Therefore, we assume that noun class premarking reduces the uncertainty about
the possible meanings of a noun. For example, we assume that after hearing ima (i.e., the
premarker for the animal noun class, see Table 2), the listener will learn to expect an ani-
mal as possible outcome for the upcoming noun. Furthermore, it is important to note that
features discriminating nouns within a noun class are potentially overlapping between cat-
egories, because the nouns were pseudorandomly assigned to noun classes, leaving nouns
with similar characteristics, as, for example, identical starting sounds, distributed over the
noun classes (see Table 1).

This artificial noun class system offers two different category structures, the distinct
meaning categories and the overlapping form categories, and two levels of abstraction,
noun categories on the subordinate level and noun class categories on the super-ordinate
level. Both computational models (and later our participants in the behavioral experiment
in Section 3) were trained and tested with either noun class premarking or noun class
postmarking on the different category contrasts implemented in the artificial category sys-
tem.

2.2. Simulation 1: Linear order and category structure

We begin this investigation of order effects with a simulation of discriminative learn-
ing using an error-driven learning rule to investigate the effect of linear marking order
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and its interaction with category structure, our first main question. We implemented two
variants of the simulation, one in which noun class was marked by premarkers and one in
which it was marked by postmarkers. The task of the model was to categorize the artificial
nouns into the noun classes that were defined by the distinct meaning categories and the
overlapping form categories. During training, the respective marking variant of the model
was simultaneously presented with both noun class dimensions, form and meaning. During
testing, we separated the feature dimensions, to analyze how these features contributed to
the categorization. We hypothesized that both premarking and postmarking use the distinct
meaning features to determine the noun class, but that postmarking is more successful than
premarking at categorizing nouns using the overlapping form features.

2.2.1. Error-driven learning

The error-driven learning rule we use in our simulations is the delta rule originally
defined by Widrow and Hoff (1960; which is also a simplified version of the learning rule
by Rescorla & Wagner, 1972, see, e.g., Stone, 1987). This simple form of error-driven
learning assumes that cues and outcomes are connected in a fully connected two-layer
network. The association strength or weight from cues to outcomes is computed over dis-
crete training trials, saving a weight matrix for every point in time. The weight matrix V
between cues i and outcomes j at time ¢ + 1 is updated as follows:

t+1 _ st t
Vij —V,-j+AVij (D)

The weight difference AV;. at every time step ¢ is thereby calculated depending on one of
three possible learning situations:

0, cue i absent
AVj = ¢ n(1 —act'(j)), cueiandoutcomejpresent )
n(0—act’(j)), cueipresent but outcomejabsent

In this discriminative learning process, both positive and negative evidence is considered.
In the case of positive evidence (second case of Eq. 2), when a cue appears with an out-
come, the weight will be increased relative to the difference of the activation act’(j) of
outcome j given the currently present cues and the maximally possible outcome activation
of 1. The outcome activation is calculated as follows with v(i, j) determining the weight
between a cue i and outcome j at time ¢:

act'(j)= Y V(x)j) (3)

x€Ecues(t)

In the case of negative evidence (third case of Eq. 2), when an outcome does not
appear after a cue, the outcome activation will be subtracted from O so that the summed
cue values in the outcome activation act’(j) will have a negative impact. For all absent
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cues, there will be no change in weight to any outcome. The learning parameter # deter-
mines the learning rate and is typically set to the value 0.01.

The characteristic behavior of discriminative learning arises in this error-driven learn-
ing network due to three factors. First, the processing of negative evidence leads to disso-
ciation of cues with a high background rate, which means that these cues occur
frequently in general, but do not reliably predict a specific outcome. Second, weights are
always updated relative to the sum of the weights of all present cues to an outcome (i.e.,
the activation act'(j)); if an outcome is already highly predicted by other cues, a new pre-
dictive cue will have more difficulties to approach a high weight and will only do so if it
proves to be more predictive over a period of time. Third, the possible increase in
weights is restricted by the maximal cue value of 1, and it is inversely related to the acti-
vation, which makes the network very flexible. For example, a set of low-frequency cues
can quickly become highly predictive, because their low activation value results in a large
increase in weight. Overall, the combination of these three factors results in cues compet-
ing for specific outcomes such that weights will approach the predictive value of a cue
for an outcome irrespective of cue frequency. Crucially, this mechanism is asymmetric
and outcomes compete differently than cues: When outcomes compete for cues, weights
will mirror the conditional probabilities of the outcomes given a cue (see Ramscar, 2013;
Ramscar et al., 2010, for empirical support of these model predictions).

Both simulations employ a version of the learning rule specified in Eqgs. 1-3 imple-
mented in R (R Core Team, 2019) using the edl package (van Rij & Hoppe, 2020) and the
ndl package (Arppe et al., 2018). The scripts are available in the Supporting Information.*

2.2.2. Training

The premarking and postmarking models were both trained on the same representa-
tions, which were created to capture all of the features of the artificial language. The rep-
resentations consisted of the artificial nouns (see Table 1) to which we added
representations of the meaning and form features as well as the specific noun meanings.
Given that in the behavioral experiment (presented in Section 3), nouns were presented
acoustically, the nouns were split up into uniphones that were marked for word beginning
and ending (e.g., #o0, k, [, a, m#). Our assumption was that the meaning categories
would be perceived as distinct. Therefore, we represented the meaning features as three
distinct feature sets consisting of a single feature each (Dlmeaning, D2meaning,
D3meaning) which corresponded to the three semantic categories in the artificial lan-
guage (animal, plant, or random). On the other hand, we assumed the form features to be
perceived as overlapping. Therefore, we represented these as three partly overlapping fea-
ture sets, consisting each of one category-distinct feature (D1form, D2form, D3-
form) and two features that were shared with one of the other categories (Olform,
02form, O3form) as shown in Table 3. Although these features were abstract repre-
sentations, the category-distinct features could be interpreted to correspond to the position
of the stressed syllable in a stress pattern and the non-distinct features to the positions of
the unstressed syllables, which are partly shared between different stress patterns. For
example, the abstract form feature set {D1form, Olform, O2form} of noun class 1
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Table 3
The category system of Simulations 1 and 2 and its combination of distinct feature sets (meaning categories)
and partly overlapping feature sets (form categories)

Partly Overlapping Feature Sets

Unambiguous Ambiguous
{D1lform, {D2form, {D3form,
Olform, O2form, Olform,
O2form } O3form} O3form}
Distinct Unambiguous {Dlmeaning} Noun class I — —
Feature markerl X
Sets or

X markerl
{D2meaning} — — Noun class 2
marker2 X

or

X marker2

Ambiguous {D3meaning} — Noun class 3 Noun class 4
marker3 X markerd X
or or

X marker3 X marker4d

then corresponds to the features { /st syllable stressed, 2nd syllable unstressed, 3rd sylla-
ble unstressed}. Note that this translation of abstract features into stress features of the
artificial language does not consider the variation in word stem length (i.e., that stems
could have two or three syllables) in the artificial language but only considers the short
two-syllable word stems with a postmarker suffix. Every noun instance was then defined
by a combination of a distinct meaning feature set, a partly overlapping form feature set,
noun uniphones, and noun meaning (e.g., {Dlmeaning, D1form, Olform, 0O2-
form, #o, k, [, a, m#, dog}).

The two models were then trained on these feature sets in combination with a noun
class marker (markerl, marker2, marker3) according to the noun category para-
digm of the artificial language.’ In the premarking model, noun class markers were given
as cues to the model and the noun features were given as outcomes such that the model’s
task was to predict a noun from a marker, for example:

{markerl, constant} - {Dlmeaning, Diform, Olform, O2form, #o,
k, [, a, m#, dog}

In the postmarking model, noun features were given as cues to the model and noun
class markers as outcomes such that the model’s task was to predict a marker from a
noun, for example:
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{Dlmeaning, D1form, Olform, O2form, #o0, k, [, a, m#, dog, con-
stant} - {markerl}

We, furthermore, added a constant cue (constant) to every training trial, which
accounts for additional constant background information that, for example, a learner
brings to a learning situation. Typically, weights in an error-driven learning model
asymptote at a level that minimizes the sum-of-squares prediction error for a set of out-
comes over a set of observed cue sets. The presence of the constant cue serves a function
that can be linked to that of the intercept term in a regression model, in that it serves to
ensure that the mean of these errors is zero. In addition, this cue ensures a minimal
amount of cue competition in the premarking condition, as learning situations entirely
lacking cue competition are highly unrealistic.

2.2.3. Model evaluation

First, we inspected the weight development over time to get a closer understanding of
the dynamics during premarking and postmarking learning. After the model had been
trained to asymptote, we inspected the model’s ability to discriminate between the cate-
gories based only on the distinct or the overlapping dimensions, depending on whether it
had been trained with premarking or postmarking.

Second, to be able to make predictions about the categorization performance of a lear-
ner after premarking and postmarking training, we calculated the probability with which
the model would predict the correct postmarker from a feature set or the correct feature
set from a premarker. Probability of making a correct choice was calculated based on the
models’ outcome activations (see Eq. 3).

One problematic point in comparing categorization performance after premarking and
after postmarking is in our case that the choice baselines differ between the training con-
ditions. While in the premarking model, the premarker cue makes predictions about three
possible outcomes (noun feature sets), resulting in a baseline of 1/3, in the postmarking
model, a cue set consisting of the noun features makes predictions about four possible
outcomes (postmarkers), resulting in a baseline of 1/4. To circumvent this issue, we cal-
culated the probabilities of choosing the correct outcome set in the premarking and the
postmarking model compared to each of the other possible outcome sets and then defined
the accuracy of choosing this outcome set as the mean over the probabilities of these bin-
ary choices. This resulted in a baseline of 1/2 over all conditions. Probabilities were then
calculated according to Luce’s choice axiom (Luce, 1959) after applying a rectified linear
activation unit (ReLLU) to the activation data which set all negative activations to zero. In
sum, the probability P, of choosing the correct outcome (set) x in a set of choice alterna-
tives O, including competitor outcomes y € C C O, was calculated as follows:

Pu(x) = mean| ¥ ReLU(act(x))

yecReLU(act(x)) +ReLU(act(y)) @
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For postmarking predictions, the probability of a correct choice was calculated over
the activations of a postmarker given a feature set and the constant cue. As due to the
ambiguity manipulation, some feature sets correctly predicted two postmarkers (e.g., the
overlapping feature set {D3form, Olform, O3form} appeared in category 2 and cat-
egory 4), we excluded these binary choices from the choice probability calculation. For
premarking predictions, the probability of a correct choice was calculated over the
summed activations of all features from a feature set given a premarker and the constant
cue.

2.2.4. Results and discussion

The results of our simulation suggest that linear order of marking affects only cate-
gories that share overlapping features. Fig. 2 summarizes the probabilities of correct cate-
gorization for all categories and by premarking and postmarking training. Categorization
performance for overlapping feature sets (e.g., for Noun class 1, {D1form, Olform,
O2form}) was higher after postmarking than after premarking (Fig. 2b). In turn, for dis-
tinct feature sets (i.e., for Noun class 1, {D1lmeaning}), we observed a small premark-
ing advantage (Fig. 2a).

An inspection of the learned weights of both models offers insight into the learning
processes leading to these results. Weight development clearly differed between premark-
ing and postmarking training (see Fig. 3) and shows that while postmarking seems to rely
mainly on informativity, premarking seems to rely more on frequency. Before reaching
asymptote, the premarking weights are ordered by frequency, with the least frequent,

(a) distinct dimension (meaning) (b) partly overlapping dimension (form)
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[ postmarking
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Probability of correct choice

0.0
0.0

noun noun noun noun noun noun noun noun
class 1 class 2 class 3 class 4 class 1 class 2 class 3 class 4
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Fig. 2. Probabilities of correct categorization (a) on the distinct dimension and (b) on the partly overlapping
dimension after premarking training and after postmarking training to asymptote (1,600 trials) in Simulation
1. Blue bars show the probability of correctly choosing a feature set given a premarker and the constant cue.
Orange bars show the probability of correctly choosing a postmarker given a feature set and the constant cue.
Baseline performance, which assumes a completely naive model making a random choice, is marked by the
horizontal line. The dashed lines show probabilities of correct choice after the same amount of training trials
as in the behavioral experiment (412 trials). See Table 3 for all possible feature combinations.
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Fig. 3. Learned weights of Noun class 1 in Simulation 1 (a) between premarkers (i.e., marker 1) and item features
(ie., {D1form, Olform, O2form, Dlmeaning}) and (b) item features and postmarkers (i.e., also
marker 1). Orange lines show the weight between a distinct feature (i.e., D1formor Dlmeaning)and a
marker, blue lines the weight between a low-frequency (LF) overlapping feature (i.e., O2f orm; LF because
occurring in two noun classes) and a marker, and violet lines the weight between a high-frequency (HF) overlap-
ping feature (i.e., O1f o xrm; HF because occurring in three noun classes) and a marker. Solid lines mark the cor-
rect features and dotted lines the features of the wrong Noun class 2. The vertical dashed lines show 412 training
trials, as administered in the behavioral experiment.

distinct features being learned slowest, the lower-frequency overlapping features (that
appear in less categories) being learned at medium speed, and the higher-frequency over-
lapping features (that appear in more categories) being learned fastest (see Fig. 3a). This
is in line with the idea that learning in a divergent learning relation is mainly driven by
frequency (Ramscar, 2013). In our premarking model, the noun features compete with
each other as outcomes for the small set of marker cues and learning does indeed seem to
be driven by the frequency of the noun features. During postmarking training, the weights
are arranged in the reverse order, with the least frequent but most informative distinct
features being learned fastest (see Fig. 3b). In this case, the noun features are competing
as cues for the marker outcomes in a convergent learning relation. Cue competition is
therefore helping to dissociate the less informative overlapping features and concentrate
on the more informative distinct features. As a consequence, less misclassification of fea-
ture sets with overlapping features (e.g., {D3form, Olform, O3form}) occurred in
the postmarking model as compared to the premarking model, which was advantageous
in the partly overlapping dimension but not in the distinct dimension (e.g., feature set
{Dlmeaning}).

Note that the prominent difference in overall magnitude of premarking and postmark-
ing weights emerges due to the restriction of the possible outcome activation in the learn-
ing algorithm to 1. As the outcome activation equals the summed weights of cues in a set
to an outcome and as cue sets are larger in postmarking (e.g., {Dlmeaning, D1form,
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Olform, O2form, #o0, k, [, a, m#, dog, constant}) than in premarking (e.g.,
{markerl, constant}), single weights in postmarking are much lower.

To be able to observe the complete learning process over time, we trained the models
until weights between markers and noun features had reached asymptote. Clearly, in sim-
ple models like these, simulated learning time cannot be taken to predict actual learning
in our participants. However, since the learning rates were held constant in the models,
these training times can still play an informative role for the purpose of model compari-
son. Accordingly, we inspected the models’ performance at an earlier stage in which the
number of simulated training trials equaled the number of empirical training trials in the
behavioral experiment. This revealed that the probabilities of correct choice in both mod-
els and both category dimensions were already relatively constant at this earlier stage of
training (see Figs. 2 and 3).

Finally, the ambiguity manipulation did almost have no effect on the models’ catego-
rization performance. While premarking was not at all affected, the postmarking models
showed a very small effect with a slightly higher probability to choose the correct post-
marker for items of ambiguous categories. This effect probably originates in the higher
frequency of ambiguous features, which therefore get dissociated more strongly from
competing category markers.

To assess the significance of the observed results, we performed two randomization
tests comparing mean differences between the premarking and postmarking models in the
reported simulation and in 1,000 random baseline simulations (see, e.g., Edgington &
Onghena, 2007, and Appendix A). The first randomization test performed on the overlap-
ping category evaluation showed that the difference between the means of the postmark-
ing and premarking model significantly differed between the reported simulation and the
random baseline simulations, with a postmarking advantage only appearing in the
reported simulation but not in the random simulations (0.226 vs. —0.019, p = .001). The
second randomization test performed on the distinct category evaluation showed that the
result of the reported simulation was not significantly different from the baseline models,
confirming the absence of a difference between premarking and postmarking regarding
the evaluation of distinct category learning (—0.019 vs. —0.040, p < .192).

In sum, on top of a postmarking advantage in line with previous findings (Nixon,
2020; Ramscar, 2013; Ramscar et al., 2010; St Clair et al., 2009), this simulation suggests
an interaction effect with category structure: Whenever frequency and informativity coin-
cide, such as in learning of the distinct feature sets, premarking and postmarking training
lead to similar categorization performance; only if informativity does not parallel fre-
quency, postmarking training leads to an advantage for categorization supported by the
mechanism of cue competition. The outcome of our simulation supports our first hypothe-
sis that the postmarking advantage for learning categories does not generalize to cate-
gories which are perceived as distinct from each other. Besides this direct influence of
linear marking order on discriminating the marked categories (noun class), we assume
that it also has an indirect influence on learning subordinate category contrasts (noun
meaning), which we explore in the following, second simulation.
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2.3. Simulation 2: Linear order and levels of abstraction

Simulation 2 investigates the influence that linear marking order has beyond the
directly marked level, in this case, noun class. In particular, it simulates the way that lin-
ear order at a super-ordinate level (noun class) influences learning of subordinate cate-
gories (noun meanings).

Learning categories at different levels of abstraction, in this case, noun class and noun
meaning, are clearly distinct tasks: While noun class learning involves associating a
grammatical marker with a noun and its associated features, noun meaning learning
involves associating a noun with items or events in the world. Although noun class mark-
ers are hence not directly involved in noun meaning learning, super-ordinate category
markers may have an indirect influence on subordinate category learning via their hierar-
chical connection. Specifically, premarkers, such as gendered articles, might lead to a
facilitation of subordinate category discrimination by reducing uncertainty about items
that follow them, such as nouns (Arnon & Ramscar, 2012; Ramscar, 2013) and their
associated features. Accordingly, the noun class markers in our artificial language can be
expected to serve to reduce uncertainty about the nouns and noun meaning pictures that
will follow them in the behavioral experiment (see Section 3) in the same way, a process
that this simulation seeks to model explicitly.

Technically, uncertainty reduction can be seen as a gradual reduction of the size of a
set of expected outcomes that progresses as new information is received, with the set of
expected outcomes itself being a function of prior learning. Accordingly, learners that
have already acquired some form of hierarchical category structure might already expect
a specific noun class—and thus a specific subset of nouns and noun meanings—after
hearing a noun class premarker. This (implicit) set size reduction is important for the dis-
crimination process because the updating mechanism of the error-driven learning rule
considers positive and negative evidence: After every learning event not only weights to
present outcomes are adjusted but also weights to absent outcomes (third case of Eq. 2 in
Section 2.2.1). This mechanism can therefore differentiate between cues that appear only
with specific outcomes—informative cues—and cues that appear with many different out-
comes—Iless informative cues. As the size of learning networks increases, it becomes
more likely that cues occur with many different outcomes. Therefore, in larger networks,
individual cues are less likely to be informative about specific outcomes. The size of the
set in which the discrimination problem needs to be solved can thus be expected to
directly influence how cue sets are associated with outcomes.

Accordingly, if noun discrimination was only performed within and not across noun
classes in our artificial language, the discrimination process would not be influenced by
the nouns from other noun classes. The example in Fig. 4 illustrates this idea. In our arti-
ficial category system, nouns with similar features occur in different noun classes. For
example, some animal and plant nouns start with the sound [ or k£.° When trying to solve
the noun discrimination problem across noun classes (i.e., in the set of all nouns of all
noun classes), features that discriminate nouns within a noun class would be dissociated
as cues to specific objects of one noun class, when these features are shared with nouns
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Fig. 4. Illustration of the difference between learning to discriminate subordinate categories, here artificial
nouns, with (b) postmarking or (c) premarking. (a) shows example nouns from two noun classes, with their
associated premarkers and postmarkers (see Table 2). In postmarking (b) discrimination is performed across
noun classes, which can lead to dissociation (red dashed line in black dashed box) of features relevant for the
noun discrimination but overlapping between classes, for example, the first sound of a noun #. Noun class
premarkers (c) can reduce uncertainty about following items such that discrimination sis performed within a
noun class.
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from other noun classes, as depicted in Fig. 4b. However, if the set size is reduced (e.g.,
by premarking), as shown in Fig. 4c, also features that might be shared with other noun
classes will be informative for the noun discrimination within a noun class and will not
be dissociated.

The second simulation thus modeled the learning of noun—object associations in two
ways: (a) the postmarking model was trained on the full set of nouns in one run and (b)
the premarking model was trained separately on each noun class including only the
respective subset of nouns; after training, we then merged the results of the separate pre-
marking runs. This manipulation was based on the assumption that the perceived set size
on the subordinate level is only reduced in the premarking condition but not in the post-
marking condition.

After training, both models were tested on how well they could discriminate nouns
within noun classes. Crucially, besides the set size difference during training, all other
variables were kept the same between the premarking and the postmarking models: the
number of noun—object events, the employed cue and outcome representations, and the
linear order of noun and object representations. Regarding linear order of the noun and
object representations, we considered the perceived order in the behavioral experiment
(see Section 3). There, nouns and images of objects were presented at the same time (i.e.,
both follow immediately after the premarker, see Fig. 6). However, under the assumption
that acoustic noun processing generally precedes visual object processing (e.g., Jaskowski,
Jaroszyk, & Hojan-Jezierska, 1990), we coded noun features as cues and noun meanings
as outcomes in both models.

2.3.1. Training

The noun stimuli used in this simulation were the same as used in the category learn-
ing simulation (Simulation 1, see Table 1). Both the premarking and the postmarking
models were trained with noun form features as cues and objects as outcomes, for exam-
ple:

{Dlform, Olform, O2form, #o, k, [, a, m#, constant} - dog

While the postmarking model was trained on all nouns at the same time, the premark-
ing model was trained separately on the nouns of every noun class, assuming that only a
premarker can reduce uncertainty about possibly following nouns and objects. However,
during the first quarter of training also the premarking model was trained on the full set
of nouns because we assumed that premarker—object and premarker—noun associations
first had to be learned to perform uncertainty reduction.

Note that we assume in this simulation that premarkers reduce the size of the set of
nouns and objects associated with their meaning, thus cues and outcomes in the noun
learning task. However, theoretically, only the reduction of the outcome set, thus of the
objects, matters for the learning process because the discriminative learning algorithm in
Eq. 2 updates weights to absent outcomes but not weights from absent cues.
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Finally, as defined in the artificial language, also in this simulation noun frequencies
within every noun class followed an exponential distribution. Learning parameters were
set equally to the category learning simulation, and also here, a constant cue was added
to every cue set.

2.3.2. Model evaluation

To test the noun learning performance of the premarking and postmarking model, a
noun feature set was shown to the model and the activation of the target object and com-
petitor objects was calculated after the model had been trained to asymptote. In the post-
marking model, all other objects were counted as competitors and in the premarking
model only competitors within a noun class were considered. These activations were then
normalized first with a rectified linear unit to correct for negative activations and then
with the Luce choice rule to estimate the probability of a correct choice as in the cate-
gory learning simulation. In the noun learning simulation, there was no problem of differ-
ing baselines between the premarking and postmarking models. Therefore, the probability
P, of choosing the correct outcome x was calculated directly over the whole set of choice
alternatives O and was not averaged over all possible pairs of target and competitors:

ReLU(act(x))

P(x)= Y, co(ReLU(act())

&)

2.3.3. Results and discussion

In the noun learning simulation, nouns in the premarking model were associated stron-
ger to their target object than in the postmarking model, as illustrated in Fig. 5. This sug-
gests that optimization within smaller sets of nouns performs better than optimization in
larger sets, which seems reasonable as in larger sets more random variation will lead to
more noise during the learning process.

To reach asymptote, these models needed to be trained longer than in Simulation 1,
due to the larger number of outcomes in this simulation. For the same reason, the pre-
marking advantage also took longer to arise than the postmarking advantage in Simula-
tion 1. We also inspected learning after the same number of trials as in the behavioral
experiment. At this earlier point in training, the premarking advantage was still absent
and overall the probability of correct choice was significantly lower in both the premark-
ing and postmarking models.

To assess the significance of the observed premarking advantage, we performed a ran-
domization test comparing mean differences between the premarking and postmarking
models in the reported simulation and 1,000 random baseline simulations in which the
outcomes in the training data were randomly shuffled (see Appendix A). The results of
this randomization test indicated that the premarking advantage was significantly higher
than in the baseline simulations with randomized outcomes (0.088 vs. —0.001; p < .001).
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Fig. 5. Median probability of choosing the target object in the noun learning simulation (Simulation 2) after
weights of frequent noun features to objects have reached asymptote. Error bars show the interquartile ranges
(i.e., 25%—75% of data). Dashed lines show median probability of choosing the target after the same amount
of training trials as in the behavioral experiment (412 trials).

This suggests that our reported simulation results were not due to random associations
between single cues and outcomes.

Simulations 1 and 2 explored the generalizability of the postmarking advantage for
learning categories using an error-driven, discriminative learning mechanism. Simulation
1 showed that the postmarking advantage may not generalize to distinctly structured cate-
gories, and Simulation 2 showed that the postmarking advantage may not generalize to
levels of abstraction subordinate to the marked category contrast. In addition, Simulation
2 suggests that premarking can facilitate discrimination by focusing the optimization
problem on a smaller set of items. Regarding the underlying mechanisms, we found that
cue competition determines when postmarking has an advantage in the marked domain
(when item features overlap), and the global nature of the error-driven learning process
results in an advantage of super-ordinate premarking for subordinate categories (because
premarking can reduce the set size for the discrimination process). These findings form
concrete and testable predictions for human learners when presented with the same artifi-
cial language. In the following section, we present the results of an artificial language
learning study which tested these predictions on human learners.

3. Behavioral experiment

In an artificial language learning task using the same artificial language as in the simu-
lations, we tested also linear order effects in differently structured categories and at dif-
ferent levels of abstraction. Participants were asked to listen to sentences in an artificial
language, which was the same as the one presented in Section 2.1. In the sentences, the
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type of noun class marking was manipulated, a participant was either presented with only
the premarking or only the postmarking variant of the artificial language. After the train-
ing phase, we tested to what extent participants had implicitly learned to categorize nouns
into different noun classes along two dimensions (one distinct and one overlapping) and
to associate nouns with object images. In this way, we could address both of our main
questions in the behavioral experiment: First, we could test how category structure and
linear order interact in learning by comparing the effect of linear order in learning the
overlapping and distinct noun categories (which were combined to form four noun
classes, see Table 2). Second, we could test the interaction of linear order with level of
abstraction by investigating how marking order affected the learning of the noun mean-
ings, a learning process which is subordinate to the noun class categorization.

The behavioral experiment was designed as a multi-modal artificial language learning
task in which we tested participants’ ability to generalize implicitly learned category
knowledge to new items (as in, e.g., Mirkovi¢ & Gaskell, 2016). Participants were trained
by listening to sentences while seeing corresponding images on the screen. To ensure that
participants watched the screen, we tracked their gaze during the whole experiment. A
training and test trial would only start when the participant had fixated the fixation cross
for 500 ms without interruption.

We expected to observe an effect of linear marking order on how well noun classes
were learned, in line with previous studies (e.g., Ramscar, 2013; St Clair et al., 2009).
Moreover, based on our two simulations, we expected two interaction effects: First, a
postmarking advantage is only for the overlapping form categories, but not for the distinct
meaning categories; second, a premarking advantage is for noun learning, because the
discriminability of subordinate categories (noun meanings) will increase by premarking of
super-ordinate categories (noun class).

3.1. Participants

After excluding two participants because their gaze behavior indicated that they did
not look at the pictures on the screen, we analyzed data of 30 participants from the
Groningen area (22 females and 10 males) who had participated for 8 Euro in this 1-hr
experiment (M,e.: 22.5, range: 18—28). All participants were Dutch native speakers. Eight
of the participants were raised bilingually: six with Frisian, one with German, and one
with Spanish.

3.2. Training stimuli

For training, the 32 imaginary nouns (50% two-syllabic and 50% three-syllabic) sum-
marized in Table 1 were used. They were built into sentences according to the rules of
the artificial language and recorded by a female speaker, who read them according to
German orthographic rules and following the stress patterns specified for each noun class.
A participant was either trained on the premarking or on the postmarking variant. The
presentation frequency was modulated across items in each noun class fitting an exponen-
tial distribution (frequencies: 32, 23, 16, 11, 8, 6, 4, and 3).
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For every presentation instance of a noun, a different photograph of the denoted object
was shown (farm animals, flower plants, or random objects), integrated in a context
image matching the carrier phrase (see Fig. 6). The images were chosen to produce high
variation in background, color, image section, and number of items. Two context images
matching the two carrier phrases (one version shown in Fig. 6) were combined evenly
with instances of every noun and frequency subcategory. To eliminate bias for objects or
categories, a different mapping between images and nouns was used for half of the partic-
ipants. This yielded four experimental conditions: premarking Version 1, premarking Ver-
sion 2, postmarking Version 1, and postmarking Version 2.

The order of the sentence stimuli was pseudo-randomized: To assure that low-fre-
quency items would not appear too early, at first, 28 items were randomly picked from
the four higher-frequency categories of every noun class (112 items in total) and shuffled.
The remaining 300 items were then randomized and appended. This order of sentences
was maintained for all participants and conditions.

3.3. Test stimuli

We tested learning of the distinct and overlapping categories as well as learning of the
noun items in three two-alternative forced-choice tasks with two auditorily presented full
sentences as choice alternatives. Fig. 7 illustrates the three tas