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ACP-DL: A Deep Learning Long Short-Term
Memory Model to Predict Anticancer Peptides
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Cancer is a well-known killer of human beings, which has led to
countless deaths andmisery. Anticancer peptides open a prom-
ising perspective for cancer treatment, and they have various
attractive advantages. Conventional wet experiments are
expensive and inefficient for finding and identifying novel anti-
cancer peptides. There is an urgent need to develop a novel
computational method to predict novel anticancer peptides.
In this study, we propose a deep learning long short-termmem-
ory (LSTM) neural network model, ACP-DL, to effectively pre-
dict novel anticancer peptides. More specifically, to fully exploit
peptide sequence information, we developed an efficient
feature representation approach by integrating binary profile
feature and k-mer sparse matrix of the reduced amino acid
alphabet. Then we implemented a deep LSTM model to auto-
matically learn how to identify anticancer peptides and non-
anticancer peptides. To our knowledge, this is the first time
that the deep LSTM model has been applied to predict anti-
cancer peptides. It was demonstrated by cross-validation exper-
iments that the proposed ACP-DL remarkably outperformed
other comparison methods with high accuracy and satisfied
specificity on benchmark datasets. In addition, we also contrib-
uted two new anticancer peptides benchmark datasets, ACP740
and ACP240, in this work. The source code and datasets are
available at https://github.com/haichengyi/ACP-DL.
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INTRODUCTION
Cancer is one of the most devastating killers of human beings, ac-
counting for millions of deaths around the world each year.1,2 Con-
ventional physical and chemical methods, including targeted ther-
apy, chemotherapy, and radiation therapy, remain the principle
modes to treat cancer, which focus on killing the diseased cells,
but normal cells are also adversely affected.3,4 More obviously, these
treatments are expensive and inefficient, which means there is an ur-
gent need to develop novel efficient measures to solve this deadly dis-
ease.5 The discovery of anticancer peptides (ACPs), a kind of short
peptide generally with a length less than 50 amino acids and most
of which are derived from antimicrobial peptides (AMPs), often
cationic in nature, has led to the emergence of a novel alternative
therapy to treat cancer.
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ACPs open a promising perspective for cancer treatment, and they have
various attractive advantages,6,7 including high specificity, ease of syn-
thesis and modification, low production cost, and so on.8 ACPs could
interact with the anionic cell membrane components of only cancer
cells, and, for this reason, they can selectively kill cancer cells with
almost no harmful effect on normal cells.4,9 In addition, few ACPs,
e.g., cell-penetrating peptides or peptide drugs, inhibit the cell cycle
or any other functionality. Thus, they are safer than traditional
broad-spectrumdrugs,whichhave become themost competitive choice
as therapeutics compared to small molecules and antibodies. In recent
years, ACP therapeutics have been extensively explored and used to
fight various tumor types across different phases of preclinical and clin-
ical trials.10–14However, only a few of them can eventually be employed
for clinical treatment. Furthermore, it’s time-consuming, expensive,
and lab-limited to identify potential new ACPs by experiment.

With the huge therapeutic importance of ACPs, there is an urgent
need to develop highly efficient prediction techniques. Some notable
research has been reported in the prediction of ACPs.15 Tyagi et al.16

developed a support vector machine (SVM) model using amino acid
composition (AAC) and dipeptide composition as input features on
experimentally confirmed anticancer peptides and random peptides
derived from the Swiss-Prot database. Hajisharifi et al.17 also reported
an SVM model using Chou’s18,19 pseudo AAC (PseAAC) and the
local alignment kernel-based method. Vijayakumar and Ptv20 pro-
posed that, between ACPs and non-ACPs, there was no significant
difference in AAC observed. Also, they presented a novel encoding
measure, which achieved better predictive performance than AAC-
based features, considering both compositional information and cen-
troidal, distributional measures of amino acids. Shortly afterward,
based on the optimal g-gap dipeptide components, by exploring the
correlation between long-range residues and sequence-order effects,
Chen et al.21 described iACP, which exhibited the best predictive
rapy: Nucleic Acids Vol. 17 September 2019 ª 2019 The Authors. 1
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Figure 1. The Flowchat of Our ACP-DL Method

We used the k-mer sparse matrix and binary profile feature to represent peptide

sequences, and the deep LSTM model is trained to predict anticancer peptides.

Figure 2. Comparison of Amino Acid Composition of Anticancer, Non-

anticancer, and Total Peptides in Dataset ACP740
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performance at that time. More recently, Wei et al.22 developed a
sequence-based predictor called ACPred-FL, which uses two-step
feature selection and seven different feature representation methods.

According to the cognition of the short length of ACPs, it’s difficult to
exploit the efficient features of many mature feature representation
methods, which are widely used on protein sequences.23With the rapid
growth of the number of ACPs that has been identified experimentally,
by machine learning, and by bioinformatics research,24–40 the compu-
tational prediction methods of ACPs still need further development.

In this study, we proposed a deep learning long short-term memory
(LSTM) neural network model to predict anticancer peptides, which
we named ACP-DL. The efficient features exploited from peptides
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sequences are fed as input to train the LSTMmodel. More specifically,
peptide sequences are transformed by k-mer sparse matrix of the
reduced amino acid alphabet,41,42 which is a 2D matrix, and retained
almost complete sequence order and amino acid component details.
Meanwhile, peptide sequence are also converted by a binary profile
feature,43 which can be regarded as one-hot encoding of categorical
variables and has been suggested to be an efficient feature extraction
technique.16,22 Finally, these features are fed into our LSTMmodel to
predict new anticancer peptides.

To further evaluate the performance of our model, we evaluated the
ACP-DL on two novel benchmark datasets. We also compared the
purposed ACP-DL with existing state-of-the-art machine-learning
models, e.g., SVM,44,45 Random Forest (RF),46and Naive Bayes
(NB).47 The 5-fold cross-validation experimental results showed
that our method is suitable for the anticancer prediction mission
with notable prediction performance. The workflow of ACP-DL is
show in Figure 1.

RESULTS AND DISCUSSION
Above all, we compared the different distributions of amino acids in
anticancer peptides, non-anticancer peptides, and all peptides in da-
tasets ACP740 and ACP240. The results for ACP740 are shown in
Figure 2, the composition of all 20 amino acids in these peptides
were counted and compared. Certain residues, including Cys, Phe,
Gly, His, Ile, Asn, Ser, and Tyr, were found to be abundant in anti-
cancer peptides compared to non-anticancer peptides, while Glu,
Leu, Met, Gln, Arg, and Trp were abundant in non-anticancer pep-
tides compared to anticancer peptides. Similarly, as shown in Figure 3,
in dataset ACP240, the Phe, His, Ile, and Lys were abundant in anti-
cancer peptides. Since terminal residues play essential roles in biolog-
ical functions of peptides.

Evaluation of ACP-DL’s Capability to Predict Anticancer

Peptides

First, we executed our model ACP-DL on the ACP740 and ACP240
datasets to evaluate its ability of predicting anticancer peptides. The
5-fold cross-validation details are offered in Tables 1 and 2.



Figure 3. Comparison of Amino Acid Composition of Anticancer, Non-

anticancer, and Total Peptides in Dataset ACP240

Table 1. The 5-Fold Cross-Validation Details in the ACP740 Dataset

Fold Set Acc (%) Sens (%) Spec (%) Prec (%) MCC (%)

1 79.73 81.94 77.63 81.94 59.58

2 83.11 85.71 80.00 86.30 66.39

3 81.08 79.75 84.00 78.08 62.22

4 85.81 86.49 85.33 86.30 71.63

5 77.70 79.17 76.00 79.45 55.47

Average 81.48 ± 3.12 82.61 ± 3.36 80.59 ± 4.01 82.41 ± 3.81 63.05 ± 6.23

www.moleculartherapy.org
The average accuracy of 5-fold cross-validation on ACP740 was
81.48% with 3.12% SD, the average sensitivity (Sens) was 82.61%
with 3.36% SD, the average specificity (Spec) was 80.59% with
4.01% SD, the mean precision (Prec) was 82.41% with 3.81% SD,
and the Matthews correlation coefficient (MCC) was 63.05% with
6.23% SD. ACP-DL showed an outstanding capability to identify anti-
cancer peptides, performed an area under the receiver operating char-
acteristic (ROC) curve (AUC) of 0.894, as shown in Figure 4A, and
has achieved the best performance on the ACP740 dataset among
all comparison methods.

The mean accuracy of 5-fold cross-validation on ACP240 was
85.42%, the average Sens was 84.62%, the average Spec was
89.94%, the mean Prec was 80.28%, and the MCC was 71.44%;
and, the AUC of ACP-DL was 0.906, as shown in Figure 4C.
In general, the performance of the deep learning model will
become better with the increase in the scale of data, and the
model that can achieve good results on smaller datasets will
also achieve good results on huger data. Actually, the data scale
of anticancer peptides is not very large, so we didn’t implement
a neural network model with very complex architecture; and, to
a certain extent, the 5-fold cross-validation is not conducive to
the neural network model, because it further reduces the amount
of training data. It is noteworthy that, although the dataset
ACP240 was smaller than ACP740, our model ACP-DL still per-
formed very well. The experimental results of rigorous cross-vali-
dation on benchmark dataset ACP740 and dataset ACP240
confirmed that our model has a good capability to predict anti-
cancer peptides.

Comparison with Three Widely Used Machine-Learning Models

To evaluate the ability of the purposed method, we further compared
ACP-DL with other widely used machine-learning models on the
same benchmark datasets, including ACP740 and ACP240. Here
we have selected the SVM, RF, and NB models, and we built them us-
ing the same cross-validation datasets. The implementation of these
three machine-learning models comes from Scikit-learn,48 and they
were tested with default parameters. Since these methods were evalu-
ated using the same evaluation criteria, the comparison model and
deep learning model ACP-DL results are shown in Table 3 and Fig-
ures 4 and 5. ACP-DL obtained the most significant performance
among the contrasted methods.

Table 3 shows the details of the comparison. In the ACP740 dataset,
our method ACP-DL significantly outperformed other methods with
an accuracy of 81.48%, a Sens of 82.61%, a Spec of 80.59%, a Prec of
82.41%, anMCC of 63.05%, and an AUC of 0.894. ACP-DL increased
the accuracy by over 5%, theMCC by over 10%, and the AUC bymore
than 5%, respectively. In the dataset ACP240, ACP-DL also per-
formed remarkably with an accuracy of 85.42%, a Sens of 84.62%, a
Spec of 89.94%, a Prec of 80.28%, an MCC of 71.44%, and an AUC
of 0.906. ACP-DL improved the accuracy by over 8%, the Spec by
over 10%, the MCC by over 14%, and the AUC by more than 5%,
respectively. Obviously, the deep learning model shows its power,
and our model is suitable for anticancer peptide identification and
prediction. ACP-DL is a competitive model used to predict anticancer
peptides and accelerate related research. The comparison experiment
results proved our assumption.
Conclusions

In this study, we proposed a deep learning LSTMmodel to predict po-
tential anticancer peptides using high-efficiency feature representa-
tion. More specifically, we developed an efficient feature representa-
tion approach by integrating binary profile feature and k-mer
sparse matrix of reduced amino acid alphabet feature to fully exploit
peptide sequence information. Then we implemented a deep LSTM
model to automatically learn how to identify anticancer peptides
and non-anticancer peptides. To the best of our knowledge, this is
the first time that the deep LSTM model has been applied to predict
anticancer peptides.

Meanwhile, to evaluate the capability of the proposed method, we
further compared ACP-DL with widely used machine-learning
models in the same benchmark datasets, including ACP740 and
ACP240; experimental results on the 5-fold cross-validation show
that the proposed method achieved outstanding performance
compared with existing methods, on benchmark dataset ACP740
with 81.48% accuracy at the AUC of 0.894 and on dataset ACP240
with an accuracy of 85.42% at the Spec of 89.94 and the AUC of
0.906, respectively. The improvement is mainly from the deep
Molecular Therapy: Nucleic Acids Vol. 17 September 2019 3
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Table 2. The 5-Fold Cross-Validation Details in the ACP240 Dataset

Fold Set Acc (%) Sens (%) Spec (%) Prec (%) MCC (%)

1 93.75 89.66 99.99 86.36 87.99

2 81.25 77.42 92.31 68.18 63.02

3 87.50 88.46 88.46 86.36 74.83

4 83.33 90.91 76.92 90.91 67.83

5 81.25 76.67 92.00 69.57 63.53

Average 85.42 84.62 89.94 80.28 71.44
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LSTM model’s model parameter optimization and effective feature
representation from original peptide sequences. In addition, we
have contributed two novel anticancer peptide benchmark datasets,
ACP740 and ACP240, in this work.

It is anticipated that ACP-DL will become a very useful high-
throughput and cost-effective tool, being widely used in anticancer
peptide prediction as well as cancer research. Further, as demonstrated
in a series of recent publications in developing new prediction
methods,49–51 user-friendly and publicly accessible web servers will
significantly enhance their impacts. It is our wish to be able to provide
in the future a web server for the prediction method presented in this
paper.

MATERIALS AND METHODS
In this study, we proposed a novel deep learning LSTMmodel to pre-
dict anticancer peptides, named ACP-DL, using high-efficiency fea-
tures provided by k-mer sparse matrix and the binary profile feature.
Furthermore, we evaluated ACP-DL’s predictive performance of
anticancer peptides in benchmark datasets ACP740 and ACP240.
Moreover, we compared ACP-DL with three widely used ma-
chine-learning models in the same datasets, including SVM,44

RF,46 and NB,47 to prove the robustness and effectiveness of the
proposed method. Eventually, we made a summary, analysis, and
discussion of the ACP-DL.

Construction of Datasets

We constructed two novel benchmark datasets in this work for ACP
identification, named ACP740 and ACP240. As previous studies sug-
gested, the new datasets comprised both positive and negative datasets,
while positive samples were experimentally validated ACPs and AMPs
without anticancer function were collected as negative samples.

The positive anticancer peptide samples can be represented as P + ,
and the negative non-anticancer peptides can be represented as P�.
So, the whole dataset can be represented as P.

P= P +WP� (Equation 1)

Moreover, there is no overlap between the positive and negative
datasets.

[=P +XP� (Equation 2)
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Dataset ACP740

We selected 388 samples as the initial positive data on the basis of Chen
et al.’s21 andWei et al.’s24 studies, of which 138 were from Chen et al.’s
work and 250 were fromWei et al.’s work. Correspondingly, the initial
negative data were 456 samples, of which 206 were from Chen et al.’s
work and 250 were from Wei et al.’s work, respectively. To avoid the
bias of dataset, the widely used tool CD-HIT52 was further used to re-
move those peptides sequences with a similarity of more than 90%.
As a result, we finally obtained a dataset containing 740 samples, of
which 376 were positive samples and 364 were negative samples.

Dataset ACP240

As the same procedure, to validate the generalization ability of the pre-
dictive model, we further constructed an additional dataset, named
ACP240, which initially included 129 experimentally validated anti-
cancer peptide samples as the positive dataset and 111 AMPs without
anticancer functions as the negative dataset, respectively.

Moreover, those sequences with a similarity of more than 90% were
removed using the popular tool CD-HIT.52 The similarity setting
was consistent with previous studies.21,22 The CD-HIT is available at
http://weizhong-lab.ucsd.edu/cdhit-web-server. There was no overlap
between dataset ACP740 and dataset ACP240, and these two datasets
are both non-redundant datasets. The two benchmark datasets are
publicly available at https://github.com/haichengyi/ACP-DL.
Representation of the Peptide Sequences

A peptide sequence can be represented as follows:

P= p1p2p3p.pl; (Equation 3)

where p1 represents the first residue in the peptide P, p2 denotes the
second residue in the peptide P, and so on; l represents the length of
P. Note that the residue pi is an element of the standard amino acid
alphabet to train a machine-learning model; the first step is to convert
diverse-length peptides into fixed-length feature vectors. In this study,
we exploited two feature representation methods, as described below.
Binary Profile Feature (BPF)

Asmentioned above, there are 20 different amino acids in the standard
aminoacid alphabet (A,C,D,E, F,G,H, I,K, L,M,N,P,Q,R, S, T,V,W,
and Y). Each amino acid type is encodedwith the following feature vec-
tor composed of 0/1.More specifically, thefirst amino acid typeA in the
alphabet is encoded as f(A) = (1,0,.,0), the second amino acid typeC is
encoded as f(C) = (0,1,.,0), and so on. Subsequently, for a given pep-
tide sequence P, its N terminus with the length of k amino acids was en-
coded as the following feature vector:

BPFðkÞ= �
f
�
p1
�
; f
�
p2
�
;.f

�
pk
��
; (Equation 4)

where k represents the length of the N terminus of the peptide P.22

Thus, the dimension of BPF(P) is 1 � 20. Experiments show that
the best results can be achieved when k is set to 7. So, one given pep-
tide sequence is encoded to a 1� 140 feature vector by binary profile.

http://weizhong-lab.ucsd.edu/cdhit-web-server
https://github.com/haichengyi/ACP-DL


Figure 4. Performance of the Proposed Model ACP-DL

and Comparison Model on Datasets ACP740 and

ACP240

(A) The performance of the proposed model ACP-DL in da-

taset ACP740. (B) The performance of the comparison

models in dataset ACP740, including SVM, RF, and NB. (C)

The performance of the proposed model ACP-DL in dataset

ACP240. (D) The performance of the comparison models in

dataset ACP240, including SVM, RF, and NB.
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K-mer Sparse Matrix

We also encoded the peptide sequence by using the k-mer sparse ma-
trix previously proposed.41 In detail, its k-1 consecutive nucleotides
and k consecutive nucleotides are regarded as a unit. 3-mer of pep-
tides is composed of 3 amino acids.53 First the 20 amino acids were
reduced into 7 groups based on their dipole moments and side chain
volume: Ala, Gly, and Val; Ile, Leu, Phe, and Pro; Tyr, Met, Thr, and
Ser; His, Asn, Gln, and Tpr; Arg and Lys; Asp and Glu; and Cys.16,54,55

So, the peptide sequence was reduced into a 7-letter alphabet. Then
we scanned each peptide sequence from left to right, stepping one
amino acid at a time, which is considered the characteristics of each
amino acid.

Suppose an above-mentioned peptide sequence length is L, there
would be 7k different possible k-mer and an L�k+ 1 step appearing
in the RNA sequence.

One peptide sequence is transformed into a 7k � ðL� k+ 1Þ k-mer
sparse matrix M. Initialization of all elements is 0. When
mjmj+ 1mj+ 2 are just equal to the ith k-mer among 7k different
k-mer, set the element aij = 1. The rest can be handled in the same
way. Thus, an input peptide sequence is converted into a 7k�
ðL� k+ 1Þ matrix M.

In this study, the value of k is set to 3 to process the peptide sequence.
The k-mer sparse matrix M can be defined as follows:

M =
�
aij
�
7k
� ðL� k + 1Þ (Equation 5)

aij =

�
1; if mjmj+ 1mj+ 2 = k�merðiÞ

0; else
: (Equation 6)
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The k-mer sparse matrix M is a low-rank matrix,
which almost retained all the raw information,
including sequence frequency, position, and order
hidden information. Then, singular value decom-
position (SVD)56 is used to reduce one two-
dimensional matrix M into a 1� 343 feature
vector.

Finally, we conjoined two different feature repre-
sentation methods’ output, each peptide sequence
gain 1� 483 conjoined feature vector. Meanwhile,
the whole dataset was transformed as a 2D matrix here. The feature
matrix was reshaped into a 3D tensor for training the LSTM model,
while the feature matrix without being formally reshaped was used
to train the comparison model.

Deep LSTM Model Architecture

LSTM is an improvement of a recurrent neural network (RNN),
which is mainly used in the natural language processing (NLP) and
speech recognition field.57–59 Different from a traditional neural
network, an RNN can take advantage of sequence information. Theo-
retically, it can utilize the information of arbitrary length sequence;
but, because of the problem of vanishing gradient in the network
structure, it can only retrospectively utilize the information on time
steps that are close to it in practical applications. To solve this prob-
lem, LSTM was presented with specially designed network architec-
ture, which can learn long-term dependency information naturally.
A general architecture of LSTM is composed of an input gate, a forget
gate, an update gate, and amemory block. The improvement of LSTM
is mainly from incorporating a memory cell that accepts the network
to learn when to forget previous hidden states and when to update
hidden states, according to the input information through time. It
uses dedicated storage units to store information. To our knowledge,
the deep LSTM model was first applied to predict novel anticancer
peptides in this work.

LSTM selectively passes information through a gate unit, which
mainly is by means of a sigmoid neural layer and a dot multiplica-
tion operation. Each element of the sigmoid layer output (a vector)
is a real number between 0 and 1, representing the weight (or per-
centage) that the corresponding information passes through. For
example, 0 means no information is allowed, and 1 means let all in-
formation pass.
erapy: Nucleic Acids Vol. 17 September 2019 5
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Table 3. Actual Performance of Comparison Models and ACP-DL in the Same Dataset

Dataset Model Acc (%) Sens (%) Spec (%) Prec (%) MCC (%) AUC

ACP740

SVM 64.59 62.43 90.68a 37.57 33.57 0.829

RF 76.35 75.10 80.34 72.27 53.06 0.842

NB 69.73 84.70a 49.21 90.94a 43.98 0.825

ACP-DL 81.48a 82.61 80.59 82.41 63.05a 0.894a

ACP240

SVM 77.50 85.89a 70.68 85.65a 57.31 0.855

RF 72.08 73.53 76.09 67.63 44.38 0.793

NB 72.50 72.26 79.94 63.95 45.44 0.719

ACP-DL 85.42a 84.62 89.94a 80.28 71.44a 0.906a

aThis measure of performance is the best among the compared methods.
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Forget Gate

In the information flow processing of LSTM, the first step is to
decide what information will discord from the cell state. This deci-
sion is accomplished by a way known as forget gate. Forget gate
reads ht�1 and xt , then outputs a value between 0 and 1 for each
digit in cell state Ct�1; 1 means reserved absolutely and 0 means
discard completely.

ft = s
�
Wf ,½ht�1; xt �+ bf

�
(Equation 7)
6 Molecular Therapy: Nucleic Acids Vol. 17 September 2019
Here, the ht�1 represents the output of the previous cell, xt represents
the current cell input, and s means Sigmoid function.
Input Gate

The next step is to decide howmuch new information will be added to
the cell state. To do this, there are two steps: first, a Sigmoid layer
called the input gate layer determines which information needs to
be updated; and then, a tanh layer generates a vector, which is the
Figure 5. Comparison of SVM, Random Forest, Naive

Bayes, and ACP-DL in Benchmark Datasets ACP740

and ACP240
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alternate content ~Ct to update. We combined the two parts to update
the state of cell.

it = sðWi,½ht�1; xt �+ biÞ (Equation 8)

~Ct = tanhðWc,½ht�1; xt �+ bcÞ (Equation 9)

Ct = ft � Ct�1 + it � ~Ct (Equation 10)

We multiply the old state with ft and discard the information we
need to discard. Then we add it � ~Ct . This is the new candidate
value, which is changed according to the degree of each state we
decide to update.

Output Gate

Ultimately, we need to determine what output is. This output will be
based on our cell state, but it is also a filtered version. First, we run a
sigmoid layer to determine which part of the cell state will be ex-
ported. Then, we process the cell state through a tanh function (to
get a value between �1 and 1) and multiply it with the output of
the Sigmoid gate, and eventually we just output the portion of the
output we determine.

ot = sðWo,½ht�1; xt �+ boÞ (Equation 11)

ht = ot � tanhðCtÞ (Equation 12)

In this experiment, considering the limited scale of anticancer peptide
samples, we set the parameter of LSTM input layer to 128, and the
output of LSTM layers was fed into a dense layer (a fully connected
neural network layer) as input to obtain a final prediction result.
We also used a sigmoid function as an activation function in the pro-
posed model. The mathematical behaviors of a sigmoid function can
be demonstrated as follows:

s = sigmoidðxÞ= 1
ð1+ e�xÞ: (Equation 13)

Between them, the dropout layer was applied to reduce over-fitting
and enhance the neural networkmodel robustness, and the parameter
dropout was set to 0.25. Moreover, a loss function can measure the
performance of machine-learning models. We selected to use log
loss function (binary cross-entropy) corresponding to sigmoid func-
tion as loss function, which can be defined as:

loglossðt; pÞ = � ðð1� pÞ � logð1� pÞ+ t � logðpÞÞ;
(Equation 14)

where p and t represent the prediction output of model and
true target value, respectively. Finally, the Adam60 optimizer was
used to update the weights of network iteratively, which is popular
in the deep learning field and combined the advantage of
root-mean-square propagation (RMSProp) and adaptive gradient
(AdaGrad) algorithm.
The implementation of the deep learning model is based on the Keras
framework, which is capable of running on top of TensorFlow, The-
ano, or CNTK and is supported on both GPUs and CPUs. It was
developed with a focus on enabling fast experimentation.61

Performance Evaluation Criteria

In this study, we proposed a novel deep learning LSTM model, ACP-
DL, using an efficiency feature to predict potential anticancer pep-
tides. We used 5-fold cross-validation to evaluate the performance
of ACP-DL and comparison models. In each validation, all data
randomly divide into five equal parts: the 4-fold set data are taken
as training data, and the remaining 1-fold data are taken as test
data. To guarantee the unbiased comparison, it was confirmed that
there was no overlap between training data and test data. The final
validation result was the average of 5-fold with SDs. We followed
the widely used evaluation criteria,62,63 including accuracy (Acc),
Sens or recall, Spec, Prec, and MCC, defined as follows:

Acc=
TN +TP

TN +TP + FN + FP
(Equation 15)

Sens=
TP

TP + FN
(Equation 16)

Spec=
TN

TN + FP
(Equation 17)

Prec=
TP

TP + FP
(Equation 18)

MCC=
TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp ;

(Equation 19)

where TN indicates the true negative number, TP denotes the true
positive number, FN represents the false negative number, and FP
stands for the false positive number. Certainly, the ROC curve and
the AUC were also adopted to evaluate the performance.
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