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KAP1 (KRAB-associated protein 1) is best known as a co-repressor responsible
for inducing heterochromatin formation, notably at transposable elements.
However, it has also been observed to bind the transcription start site of actively
expressed genes. To address this paradox, we characterized the protein inter-
actome of KAP1 in the human K562 erythro-leukaemia cell line. We found
that the regulator can associate with a wide range of nucleic acid binding
proteins, nucleosome remodellers, chromatin modifiers and other transcrip-
tion modulators. We further determined that KAP1 is recruited at actively
transcribed polymerase II promoters, where its depletion resulted in pleo-
morphic effects, whether expression of these genes was normally constitutive
or inducible, consistent with the breadth of possible KAP1 interactors.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Introduction
KAP1/TRIM28 is a master regulator critical to processes such as stem cell
self-renewal and DNA-damage response [1–6]. Its best-described function thus
far is the binding through sequence-specific targeting Krüppel-associated
box domain-containing-zinc finger proteins (KZFPs) to transposable elements
(TEs), which leads to the transcriptional silencing of these genetic units [7–12].
At these sites, KAP1 acts as a scaffold protein for the formation of a heterochro-
matin-inducing machinery comprising HP1 (heterochromatin protein 1), the
histonemethyl-transferase SETDB1, the nucleosome remodelling and deacetylase
(NuRD) complex and the histone demethylase KDM1A [9,13–17]. Yet a growing
number of studies additionally describe a diametrically different pattern of
genomic recruitment for KAP1, with its accumulation at promoters of actively
transcribed genes, independently of KZFPs or any silencing complex
[1,13,18–22]. The mediators and associated effectors, as well as functional conse-
quences of KAP1 recruitment at these loci, are still debated. A model was
proposed whereby KAP1 directly bound the DNA fibre and acted as an RNA
polymerases II (PolII) stalling factor at gene promoters, where upon appropriate
stimuli, it underwent phosphorylation of serine 824 (pS824), which resulted
in releasing paused PolII, hence allowing or enhancing transcription of the under-
lying gene [19]. Another study centred on KAP1 recruitment at gene promoters
also found it to correlate with paused PolII genome-wide, and while the molecu-
lar mechanisms of its recruitment remained unexplored, there was evidence of
KAP1-mediated transcriptional control for inducible genes [21]. At promoters
of these genes, KAP1, together with the 7SK and small nuclear ribonucleoprotein
(snRNP) complex, appeared to function as a dynamic supplier of inactive positive
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GO molecular function complete GO accession no. p-value

DNA binding GO: 0003677 5.95 × 10–11

RNA binding GO: 0003723 5.51 × 10–17

poly(A) RNA binding GO: 0044822 2.50 × 10–16

chromatin binding GO: 0003682 1.78 × 10–11

nucleosome binding GO: 0031491 1.91 × 10–12

nucleic acid binding GO: 0003676 2.32 × 10–25

organic cyclic compound binding GO: 0097159 3.25 × 10–16

heterocyclic compound binding GO: 1901363 1.38 × 10–16
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Figure 1. (a) Silver-stained SDS-PAGE gel of KAP1 interactome obtained by pull-down of the tagged version of the protein in K562 cells. Lanes are loaded with,
from left to right: nuclear extracts (NE) of control (mock) IP, namely the corresponding extracts purified from the control cell line not expressing the tagged version
of KAP1, and KAP1 IP; molecular weight (MW) ladder; 1, 3, 10 ng of bovine serum albumin (BSA); MW ladder; chromatin-soluble (CS) mock- and KAP1 IP; MW
ladder. (b) Gene ontology (GO) analysis of KAP1 interactome, merging the interacting proteins purified from both nuclear and chromatin fractions isolated from K562
cells expressing the tagged version of KAP1. (c) Vector representation of KAP1 interactors obtained by pull-down of the tagged version of the protein in K562 cells.
Proteins with a total peptide-coverage of 5% or higher, either in the chromatin or in the nuclear fraction, were selected. Lines linking the proteins highlight
experimentally determined interactions (http://string-db.org). Disconnected nodes were excluded. Bold labels were used for KAP1 interactors experimentally validated
through independent studies (https://thebiogrid.org/). Green labels were used for units of the nucleosome remodelling and deacetylase (NuRD) complex. KAP1
interactors previously detected in unfractionated human embryonic stem cells and K562 cells (threshold p-value < 0.01) [23] are indicated with blue asterisks.
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transcription elongation factor b (P-TEFb), facilitating the
transition from the initiation to the elongation phase of PolII-
mediated transcription. While some of the findings reported in
these two studies coincided, functional data strikingly diverged,
since in the former KAP1 removal resulted in increased
transcription of KAP1-targeted inducible genes, whereas in the
latter, these genes were then repressed, while the expression of
most of their housekeeping counterparts was unaltered.

Here, we present proteomic and functional data indicating
that KAP1 can associate with a wide range of nucleic acid
binding proteins, nucleosome remodellers and other tran-
scriptional modulators, that it can associate with promoters
recognized by PolII, and that its impact at these genetic loci is
diverse, as predicted from the breadth of its protein interactome.
2. Results
(a) The interaction network of KAP1 is enriched in

nucleic acid binding proteins
Wepreviously examined the interactome of KAP1 by immuno-
precipitating the endogenous protein in whole-cell extracts of
human embryonic stem and K562 erythro-leukaemic cells.
While this approach revealed KAP1 association with proteins
critical for DNA replication, such as PCNA, RPA1 and sub-
units of the MCM (MiniChromosome Maintenance) complex,
it did not lend itself to the purification of sufficient amounts
ofmaterial to allow cell fractionation.We thus turned to immu-
noprecipitation (IP) of a doubly tagged form of KAP1 in K562
cells, extracting the chromatin from the nuclear fraction and
subjecting the products to mass spectrometry (MS/MS) analy-
sis. This tandem affinity-purification, where the sequential use
of two high-affinity antibodies increased specificity, revealed
higher amounts of KAP1 in chromatin extracts, indicating
that in the nucleus, this protein is mainly associated with
DNA (figure 1a and electronic supplementary material,
figure S1A). Fractionation of precipitated complexes revealed
a single elution peak extending over the first seven of 25 frac-
tions of a linear 15 to 35% (v/v) glycerol gradient in both
nuclear and chromatin extracts. Although not informative of
the number of distinct KAP1-associated complexes, it suggests
that these are of similar and relatively small molecular weight
(MW), with their migration possibly affected by associa-
tion with nucleic acids (electronic supplementary material,
figure S1B). The very top categories of a gene ontology search
based on molecular functions of KAP1 interactors included
RNA-binding proteins, in addition to DNA- and chromatin-
associated proteins (figure 1b). Accordingly, a somewhat
diffuse band of apparent MW below 20 kDa, detected on the
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silver stained gel in the total nuclear but not the nuclease-
treated chromatin soluble (CS) fraction, strongly suggested
that nucleic acids were co-immunoprecipitated with KAP1
(figure 1a). Known partners of KAP1, such as components of
the NuRD complex and HP1 proteins, associated with overex-
pressed KAP1 in K562 cells (figure 1c). These findings were in
agreement with previous MS/MS studies performed by our
group with the endogenous protein in human embryonic
stem cells (hESC), where we found significant enrichment of
the same cofactors [23] (electronic supplementary material,
figure S1C,E). In addition, proteins part of the DNA replication
andDNA repair machineries, such as components of theMCM
protein complex, RuvB-like proteins 1 and 2 (RUVBL1,
RUVBL2) andDNA-damage binding protein 1,were co-immu-
noprecipitated with KAP1 in both experimental settings [23]
(electronic supplementary material, figure S1D,E and table
S1). Finally, we also detected in these complexes a range of
nucleosome remodellers, such as components of SWItch/
Sucrose Non-Fermentable (SWI/SNF), and of RNA-binding
proteins, namely members of the DEAD-box RNA helicases
protein families (electronic supplementary material, figure
S1D,E). In particular, both components of the remodelling
and spacing factor (RSF), RSF1 andSMARCA5, a complex facil-
itating activator-dependent PolII transcription initiation [24],
were co-purified with KAP1. Moreover, in our experimental
settings, we detected a strong enrichment of DDX21, a helicase
that functions as PolII transcription elongation factor, by facili-
tating the release of the P-TEFb from the 7SK snRNP complex
[25], as well as genome stability guardian [26]. The breadth
and functional diversity of the KAP1 interactome stron-
gly suggests that this master regulator fulfils multifaceted
functions (figure 1c).
(b) Extensive recruitment of KAP1 to PolII promoters
In the light of our MS/MS results and recent findings support-
ing a putatively direct role of KAP1 in PolII-mediated gene
transcription, we sought to explore further correlations between
KAP1 genomic recruitment and active transcription. For this,
we chose the Hepa 1-6 murine hepatoma cell line, because we
had previously documented in these cells an extensive overlap
between KAP1 binding and histone marks associated with
active gene expression [27]. Of note, we found the general fea-
tures of KAP1 genomic recruitment to be otherwise similar in
these cells to those documented in other settings, whether
embryonic or differentiated cells from either human or
murine origin [8,10,18,28,29]. Analysis of chromatin IP coupled
with deep sequencing (ChIP-Seq) data in Hepa 1-6 cells con-
firmed a significant overlap of sites targeted by KAP1 with
regions enriched in the H3K27ac and H3K4me1 active histone
marks, and further revealed its co-localization with PolII at
many sites (figure 2a). A closer examination indicated that
this subset of KAP1-recruiting loci was devoid of the
H3K9me3 repressive mark, which otherwise displayed a
strong genome-wide correlation with KAP1 peaks at bona fide
targets of the KAP1–SETDB1 complex, such as TE-derived
sequences and the 30-end of KZFP genes as previously noted
in other systems (figure 2a and electronic supplementary
material, figure S2A,B) [30]. We examined the distribution of
KAP1 binding sites over selected gene features and observed
a remarkable enrichment at promoters (approximately 25%),
in agreement with the strong correlation with PolII-enriched
regions (figure 2b) and consistentwith data previouslyobtained
in other cells [8,18,28,29]. We further observed that KAP1 was
preferentially binding the promoters of highly transcribed
genes, which in turnwere characterized by a high PolII pausing
index (PI), defined as the ratio between PolII at the transcription
start site (TSS) region and over the gene body, in agreement to
previously established methods [31] (figure 2c).

(c) Pleomorphic influences of KAP1 on PolII distribution
and transcription

We then characterized the functional consequences of KAP1
recruitment at these promoters by comparing the transcrip-
tional profiles of control and of Kap1 knockdown (KD) Hepa
1-6 cells (electronic supplementary material, figure S3A,B).
Overall, KAP1 depletion led to limited perturbations of gene
expression, with a totals of only 145 downregulated and 134
upregulated PolII genes (figure 3a, left). However, we could
not correlate either of these changes with specific alterations
of PolII pausing index (figure 3a, right), determined in both
basal and KD conditions. Furthermore, KAP1 binding in the
proximity of a TSS was not predictive of the transcriptional
deregulation of the corresponding gene in KAP1-depleted
cells (figure 3b, left). Similarly, the PI of KAP1-targeted promo-
ters did not globally change upon KAP1 removal (figure 3b,
right and electronic supplementary material, figure S3C). How-
ever, when groups of genes with an elevated (≥4) PI at baseline
were analysed separately, a significant difference was detected
(figure 3c, left). This category of genes thus followed a pre-
viously reported pattern [32]. Nonetheless, when we
separated genes within this group based on whether or not
KAP1 was recruited over their promoter region, we observed
no deviation from the initial trend (figure 3c, right), indicating
that for the largest fraction of these genes, PI changes were
independent of KAP1 proximal binding.

(d) Induction of early response genes is variably
affected by KAP1

KAP1was reported to target the promoterand regulate the tran-
scription of inducible genes, including heat shock protein (HSP)
genes in the human embryonic kidney cell line HEK293T [19].
We confirmed a marked association of KAP1 with the promo-
ters of Hspa1a and Hspa1b genes in Hepa 1-6 cells as well as in
a distinct cellular system, namely mouse embryonic fibroblasts
(MEFs) (figure 4a). Remarkably, these genes were strongly
enriched in H3K9me3 and completely devoid of the active his-
tone marks H3K27ac and H3K4me1 (figure 4a and electronic
supplementary material, figure S4A). H3K9me3 at these loci
seemed to be KAP1-dependent, as the body of Hsp genes lost
H3K9me3 in Kap1 knockout (KO) MEFs (figure 4a). We could
not confidently assess alterations of the basal expression of
Hspa1a and Hspa1b upon Kap1 KD, since their transcripts
remained at the very limit of detection. Nevertheless, upon
heat shock, we could measure a significantly higher increase
in their induction in KAP1-depleted cells (figure 4b and
electronic supplementarymaterial, figure S4B). Immunofluores-
cence studies further revealed that S824-phosphorylated KAP1
accumulated in the cell nucleus uponheat shock (electronic sup-
plementary material, figure S4C), as previously reported [19].
Another set of inducible genes, including early growth
response, immediate early response protein genes and the tran-
scription factor JunB, were not deregulated in our datasets upon
KAP1 removal at basal level, althoughseveral of themdisplayed
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Figure 2. (a) Positional correlation between KAP1 binding sites or KAP1 binding sites that overlap H3K9me3-enriched loci and peaks of (top) PolII, (centre)
H3K4me1 and (bottom) H3K27ac. A symmetric window of 10 kilobase-pairs (kbp) was considered, and the correlation was normalized by the size of each dataset.
(b) Annotation of KAP1 peaks over selected genomic features. (c) (Top) Boxplot comparison of expression levels and (middle) pausing index (PI) of genes whose
promoter region is either bound or not bound by KAP1. (Bottom) Correlation analysis of PI and expression level for detectable genes, with colour shades reflecting
different data-point densities (darker colours corresponding to higher densities).
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mild shifts in PolII distribution (figure 4c and electronic
supplementary material, figure S4D).
3. Discussion
The body of KAP1 interactors reflects its recruitment predomi-
nantly to the chromatin fraction of the nucleus. In addition to
its known partners in heterochromatin formation and tran-
scriptional silencing, such as HP1 proteins and components
of the NURD complex, our analysis of the KAP1 interactome
in K562 leukaemic cells identified several factors involved in
modulating the structure of euchromatin and the activity of
RNA polymerases [24,25,33–37]. This fits with the detection
by several studies including ours of KAP1 at the promoters
of numerous PolII-transcribed genes.



all genes genes downregulated
upon Kap1 KD  

genes upregulated
upon Kap1 KD 

5

10

15

lo
g 2(

ex
pr

es
si

on
 le

ve
l)

0

1

2

3

4

5

lo
g 2(

PI
)

WT Kap1 KD WT Kap1 KD

5

10

15

lo
g 2(

ex
pr

es
si

on
 le

ve
l)

WT Kap1 KD WT Kap1 KD

0

1

2

3

4

5

lo
g 2(

PI
)

(c)

(b)

(a)
p = 9.009 × 10−7 p = 0.017 n.s. n.s.

p =
4.774 × 10–5

p =
2.806 × 10–10

KAP1 binding site at gene's promoter no KAP1 at promoter KAP1 binding site at gene's promoter no KAP1 at promoter

n.s.

2.0 2.5 3.0 3.5 4.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

2.0 2.5 3.0 3.5 4.0 4.5

−1

0

1

2

3

4

5

log2(PI WT) log2(PI WT) 

lo
g2

(P
I 

K
ap

1 
K

D
)

PI >– 4

KAP1 at promoter

PI >– 4

no KAP1 at promoter

p =
4.661 × 10–124

PI ≥ 4

WT Kap1 KD

0

1

2

3

4

5

lo
g 2(

PI
)

WT Kap1 KD WT Kap1 KD WT Kap1 KD

all genes genes downregulated
upon Kap1 KD  

genes upregulated
upon Kap1 KD 

WT Kap1 KD WT Kap1 KD WT Kap1 KD

p =
0.005

Figure 3. (a) Boxplot comparison of (left) expression levels and (right) pausing index (PI) in wild-type (WT) and Kap1 knockdown (KD) cells of the ensemble of
detected genes, as compared with genes significantly downregulated or upregulated upon Kap1 KD (‘down’ and ‘up’, respectively). (b) Boxplot comparison of
(left) expression levels and (right) PI of selected genes in WT and Kap1 KD cells. Detectable genes were separated based on the presence or absence of KAP1
peaks over their promoter regions, as determined by ChIP-Seq in WT settings. The promoter region of a gene was defined by taking its annotated 50 end position
and extending it by 250 nucleotides (nt) in either direction. (c) (Left) Boxplot comparing PI in WT and in their Kap1 KD counterpart cells of genes having a PI
greater than or equal to 4, as measured in the WT condition (N = 1538). (Middle and right) Correlation between PIs measured in WT and Kap1 KD cells for the same
group of genes, plotting separately genes bound by KAP1 in their promoter region and genes without a KAP1 peak in that same extremity in WT cells (N = 567 and
N = 971, respectively). The density of data-points in the plot is proportional to the shade of colour (higher density corresponding to darker colours). For all plots, the
Mann–Whitney–Wilcoxon test was used to assess the significance.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190334

5



H3K9me3

(a)

(c)

(b)

1110038B12Rik Hspa1b Hspa1a
Snord52

10 kb

1.8

0
0.4

0

KAP1

2.6

0
0.3

0

KAP1

KO
WT

H
ep

a 
1-

6
M

E
F

chr17: 35 090 000 35 105 000

H3K9me3

0

1

2

3

4

5

6

0

0.5

1.0

1.5

2.0

2.5

3.0
PI-WT PI-Kap1 KD + expression fold change 

Kap1 KD/WT

*n.s.

Egr2 Egr3 Ier2 Ier5

  X

Junb

   X

Actg1

     X

Tbp

  X

gene name

KAP1 binding site at gene's promoter

inducible genes housekeeping
genes

ge
ne

 e
xp

re
ss

io
n 

le
ve

l K
ap

1 
K

D
/W

T
 (

ab
so

lu
te

 f
ol

d 
ch

an
ge

) 

0

4

8

12

16

Tbp Actb Hspa1b Hspa1a

Kap1 KD WT

*
P

I

fo
ld

 in
du

ct
io

n 
(A

U
)

Figure 4. (a) Schematic view of the Hspa1b and Hspa1a loci, displaying, in order from the top: the track of annotated genes, KAP1 and H3K9me3 ChIP-Seq profiles
in Hepa 1-6 cells, KAP1 and H3K9me3 ChIP-Seq profiles in MEFs. For the latter, the track of H3K9me3 in Kap1 KO cells was superimposed on to the one in WT cells.
(b) RT-qPCR analysis of Tbp, actin β, Hspa1b and Hspa1a gene transcripts in Hepa 1-6 cells WT and Kap1 KD (transduced with an empty and a Kap1-targeting
sh-vector, respectively) after heat shock treatment. Expression levels were normalized to actin γ and ratios between the cell line derivatives and their untransduced
counterpart are shown. *p-value < 0.05. (c) (Left y-axis) PI in WT and Kap1 KD Hepa 1-6 cells (in blue and red, respectively) measured for the inducible genes Egr2,
Egr3, Ier2, Ier5 and Junb, and the housekeeping genes Actg1 and Tbp. (Right y-axis) Absolute value of expression level fold change in Kap1 KD over WT Hepa 1-6
cells measured by mRNA-Seq for the same set of genes. For each gene, we further reported whether its promoter region was bound by KAP1 in WT cells, as
determined by ChIP-Seq. n.s., non-significant. For detailed mRNA-Seq analysis methods refer to the electronic supplementary material.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20190334

6

KAP1 depletion induced pleomorphic effects on the
activity of its PolII promoter targets, and our data at least
partly invalidated several recently advanced models [19,21].
Kap1 KD induced a general decrease in PI at genes character-
ized by a high PI at basal conditions, the vast majority of
which was, however, not bound by KAP1 over the promoter
region. Moreover, the detected changes in PI were globally of
small magnitude and mostly uncoupled from differences in
transcriptional levels. In the case of HSP genes, we noted that
their epigenetic signature, characterized by strong enrichment
in H3K9me3 and lack of active histone modifications, was dia-
metrically different from the one found at other KAP1-bound
promoters. Additionally, the high PI of these genes reflected
the stalling and inactivity of PolII subunits at their promoters,
while the bulk of KAP1-targeted promoters were characterized
by high transcriptional activity in addition to high PIs. The
expression level of a second group of KAP1-bound inducible
genes, comprising transcriptionally active genes that were
devoid of the repressive mark H3K9me3, was not shifted
by the removal of KAP1 at baseline. Previous investigations
illustrating the functional versatility of the regulator, both in
its canonical KZFP-mediated TE targeting configuration [38]
and in combination with a panel of transcription factors
[28,39,40], focused on experimental systems where KAP1
acted either at discrete differentiation stages of selected tissues
or in specific signalling pathways. Taken together, these
findings indicate that inducible genes represent neither a
homogeneous system nor a directly relevant model for study-
ing the roles played by KAP1 at promoters of housekeeping
and stably expressed genes, where the regulator must exert
influences not detectable in our tissue culture system, or man-
ifested only under exceptional circumstances, as suggested by
the viability ofmice devoid of KAP1 in the liver or in part of the
brain [41,42].
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4. Experimental procedures
(a) Cell culture and mouse work
MEFs wild-type (WT) and KO for Kap1 were cultured and
generated as previously described [43] (strain C57BL/6 J).
Murine hepatoma Hepa 1-6 and K562 cells were cultured
using standard methods.

(b) Plasmids and lentiviral vectors
For KAP1 KD experiments, pLKO vector encoding shKAP1
and the empty vector as control were used. Forty-eight hours
after transduction, infected cells were selected with 2 µg ml−1

puromycin in growth medium for an additional 72 h. Lenti-
viral vector production protocols are available at http://
tronolab.epfl.ch and backbones at Addgene (http://www.
addgene.org). For the expression of FLAG-HA-KAP1, the
human KAP1 partially codon-optimized sequence was
cloned in the retroviral pOZ-N vector [44].

(c) Heat shock
Heat shock was performed by placing the culture dish over a
45°C water bath for 5 min, prior to RNA extraction.

(d) Immunofluorescence
Cells were fixed in methanol for 5 min at −20°C and label-
led with anti-phospho-S824 KAP1 (ab70369) or anti-KAP1
(MAB3662) followed by Alexa488- or Alexa565-conjugated
anti-mouse antibody. Nuclei were stained with DAPI (40,6-dia-
midino-2-phenylindole). Imageswere acquired using a 63× lens
on a Zeiss Axiovert 200 M microscope.

(e) RNA purification, RT-PCR (reverse transcriptase PCR)
and RNA-Seq

Total RNA was extracted and DNase-I treated using a spin
column-based RNA purification kit (Macherey-Nagel).
Complementary DNA (cDNA) was prepared with Super-
Script II reverse transcriptase (Invitrogen). The sequences of
primers used for SYBR green quantitative PCR (qPCR)
(Applied Biosystems) are provided in electronic supplemen-
tary material, experimental procedures. For the sequencing
of mRNA (poly(A)+), 100 bp single-end RNA-Seq libraries
were prepared using the Illumina TruSeq mRNA reagents
(Illumina). Cluster generation was performed with the result-
ing libraries using the Illumina TruSeq SR Cluster Kit v4
reagents. Sequencing was performed in 100 bp reads run on
an Illumina HiSeq 2500. Further information about the map-
ping and analysis procedures is provided in electronic
supplementary material, experimental procedures.

( f ) ChIP-qPCR and ChIP-Seq
ChIP and library preparation were done according to [9],
with modifications as described in electronic supplementary
material, experimental procedures. Sequencingwas performed
in 100 bp reads run on an Illumina HiSeq 2500. Primer
sequences used for ChIP-qPCR are provided in electronic sup-
plementary material, experimental procedures.

(g) LC-MS/MS (liquid chromatography–tandem mass
spectrometry) of FLAG-HA-tagged KAP1

KAP1waspurified fromDignamnuclear and chromatin extracts
[45] derived fromK562 cells stably expressing FLAG-HA-tagged
KAP1 (eKAP1), aswell as fromK562 cells not expressing the con-
struct by two-step affinity chromatography [44]. Briefly, eKAP1
K562 and K562 control cells were harvested by centrifugation,
washed in ice-cold full-strength PBS and resuspended in three
packed cell pellet volumes of ice-cold hypotonic buffer (HB:
20mM Tris-HCl pH 7.4, 10 mM NaCl and 1.5 mM MgCl2) and
incubated on ice for 10 min. Cell suspensions were transferred
to an ice-cooled Dounce homogenizer fitted with a B pestle,
lysed with 10–15 strokes and centrifuges at 3000g at 4°C for
15 min to pellet nuclei. Nuclei were resuspended in one packed
nuclear pellet volume of ice-cold low salt buffer (20mM Tris-
HCl pH 7.4, 0.02 M NaCl, 20% (v/v) glycerol, 0.2 mM EDTA,
1.5 mM MgCl2, 0.5 mM phenylmethylsulfonyl fluoride (PMSF)
and 1 mM dithiothreitol (DTT)). One packed nuclear pellet
volume of a high salt buffer (20mM Tris-HCl pH 7.4, 1.2 M
NaCl, 20% (v/v) glycerol, 0.2 mM EDTA, 1.5 mM MgCl2,
0.5 mM PMSF and 1 mMDTT) was added dropwise to the sus-
pension. After stirring on a rotary wheel at 4 °C for 30min to
allow extraction, the suspension was centrifuged at 25 000g for
30 min at 4°C; the supernatant corresponded to the nuclear
extract (NE). The chromatin-enriched pellet was resuspended
in one packed volume of low salt buffer and one packed
volumeofhigh salt buffer, andDNAandRNA in the suspension
were digestedwith 0.15 unit µl−1 benzonase (Sigma). The extrac-
tion continued on a rotary wheel at 37 °C for 15 min. The
suspension was cleared by centrifugation at 25 000g for 30 min,
and the supernatant containing the solubilized native chromatin
proteins was collected. Nuclear and chromatin-soluble extracts
(NE and CS, respectively) were incubated with anti-FLAG-con-
jugated agarose beads (A2220, Sigma) and the bound
polypeptides were eluted with the FLAG peptide (Sigma)
under native conditions. The affinity-purified material was
then incubated with anti-HA-conjugated agarose beads (HA-
agarose beads, sc-7392 AC, Santa Cruz) and eluted using HA
peptide (Roche) under native conditions. Five per cent of
FLAG-HA immunoaffinity-purified eKAP1 or mock immuno-
precipitations from 4 l of culture was resolved on SDS-PAGE
(NuPage gel, 4–12% gradient, Novex, Life Technologies) and
stained with the Silverquest kit (Invitrogen). The remainder of
the eluate was precipitated using the ProteoExtract Protein pre-
cipitation kit (Calbiochem) and analysed by tandem MS at the
Harvard Medical School Taplin Biological Mass Spectrometry
facility, Boston, MA, USA. The list of proteins with the relevant
MS/MS data is provided in electronic supplementary material,
table S1.

(h) Glycerol gradient sedimentation analysis
For density gradient sedimentation, 100 μl for NE and 150 µl
for CS of FLAG-purified material was loaded on a 5ml
15–35% (v/v) glycerol gradient in buffer G (20mM Tris-HCl
pH 7.5, 150mM NaCl, 5mM MgCl2, 0.1% (v/v) Tween 20,
10mM beta-mercaptoethanol, 0.5mM PMSF) and centrifuged
at 4°C, for 7 h at 40 000 r.p.m. in an SW 55 Ti rotor (Beckman
Coulter). Fractions of 200 μl were collected from the top of
the gradient, and numbered in linear, increasing order (1–25).

(i) Bioinformatics analyses and statistics
R v. 3.1.2 (http://www.R-project.org) orGraphPad Prism v. 6.0
and 7.0 (http://www.graphpad.com) was used for statistical
analyses and graphical representations of the data. H1 hESC
MS/MS results [23] were visualized and handled through Scaf-
fold (http://www.proteomesoftware.com/products/scaffold/),
using the ‘quantitative value’ option, selecting hits with a

http://tronolab.epfl.ch
http://tronolab.epfl.ch
http://tronolab.epfl.ch
http://www.addgene.org
http://www.addgene.org
http://www.addgene.org
http://www.R-project.org
http://www.R-project.org
http://www.graphpad.com
http://www.graphpad.com
http://www.proteomesoftware.com/products/scaffold/
http://www.proteomesoftware.com/products/scaffold/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.S

8
p-value < 0.01 and a cut-off of 10 in all replicates. Proteins were
further selected by the code GO0005634 for nuclear proteins.
The list of proteins with the relative quantitative MS/MS data
is provided in electronic supplementary material, table S1.

( j) Western-blot antibodies
Antibodies used in these studies include: mouse anti-TRIM28
(MAB3662, Millipore), mouse anti-PCNA (NA03, Calbiochem),
mouse anti-HP1Y (05-690, Millipore).

Ethics. Experimental protocols were performed according to European
Council Guidelines and the Swiss Federal Veterinary Office. Accepta-
ble standards of animal care and the experimental design of this
study were approved by the Ethics Committee for Animal Care of
the Vaud Region in Switzerland (licences 25350 and 22919).

Data accessibility. All next-generation sequencing data have been
submitted to the NCBI Gene Expression Omnibus (GEO) (http://
www.ncbi.nlm.nih.gov/geo/) database under the accession number
GEO: GSE106976. Additional data used in this study correspond
to the following accession numbers GEO: GSE74278 (9) and
GSE87734 (44).
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