
GigaScience, 9, 2020, 1–12

doi: 10.1093/gigascience/giaa042
Technical Note

TE CHNICAL NO TE

MaRe: Processing Big Data with application containers
on Apache Spark
Marco Capuccini 1,2,*, Martin Dahlö2,3,4, Salman Toor1 and Ola Spjuth 2

1Department of Information Technology, Uppsala University, Box 337, 75105, Uppsala, Sweden; 2Department
of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24, Uppsala, Sweden; 3Science for Life
Laboratory, Uppsala University, Box 591, 751 24, Uppsala, Sweden and 4Uppsala Multidisciplinary Center for
Advanced Computational Science, Uppsala University, Box 337, 75105, Uppsala, Sweden
∗Correspondence address. Marco Capuccini, Uppsala University, Box 591, 751 24, Uppsala, Sweden. E-mail:

m.capuccini@gmail.com http://orcid.org/0000-0002-4851-759X

Abstract

Background: Life science is increasingly driven by Big Data analytics, and the MapReduce programming model has been
proven successful for data-intensive analyses. However, current MapReduce frameworks offer poor support for reusing
existing processing tools in bioinformatics pipelines. Furthermore, these frameworks do not have native support for
application containers, which are becoming popular in scientific data processing. Results: Here we present MaRe, an open
source programming library that introduces support for Docker containers in Apache Spark. Apache Spark and Docker are
the MapReduce framework and container engine that have collected the largest open source community; thus, MaRe
provides interoperability with the cutting-edge software ecosystem. We demonstrate MaRe on 2 data-intensive applications
in life science, showing ease of use and scalability. Conclusions: MaRe enables scalable data-intensive processing in life
science with Apache Spark and application containers. When compared with current best practices, which involve the use
of workflow systems, MaRe has the advantage of providing data locality, ingestion from heterogeneous storage systems,
and interactive processing. MaRe is generally applicable and available as open source software.

Keywords: MapReduce; application containers; Big Data; Apache Spark; workflows

Findings
Background and purpose

Life science is increasingly driven by Big Data analytics. From ge-
nomics, proteomics, and metabolomics to bioimaging and drug
discovery, scientists need to analyze larger and larger amounts
of data [1–5]. This means that datasets can no longer be stored
and processed in a researcher’s workstation but instead need
to be handled on distributed systems, at the organization level.
For instance, the European Bioinformatics Institute, in Hinx-
ton (United Kingdom), offers a total storage capacity of >160
petabytes for biologically significant data [6]. Such amounts of
data pose major challenges for scientific analyses. First, there is

a need to efficiently scale existing processing tools over mas-
sive datasets. In fact, bioinformatics software that was origi-
nally developed with the simplistic view of small-scale data will
not scale on distributed computing platforms out of the box.
The process of adapting such tools may introduce disruptive
changes to the existing codebase, and it is generally unsustain-
able for most organizations. Second, the complexity in program-
ming distributed systems may be hard to cope with for most re-
searchers, who instead need to focus on the biological problem
at hand. In addition, because life science is exploratory, scien-
tists increasingly demand the ability to run interactive analyses
rather than submitting jobs to batch systems. Third, when han-
dling Big Data in distributed systems, data locality is a major
concern. Indeed, if once data could be shuffled with little regard,

Received: 9 May 2019; Revised: 10 February 2020; Accepted: 7 April 2020

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-4851-759X
http://orcid.org/0000-0002-8083-2864
mailto:m.capuccini@gmail.com
http://orcid.org/0000-0002-4851-759X
http://orcid.org/0000-0002-4851-759X
http://creativecommons.org/licenses/by/4.0/

2 MaRe: Processing Big Data with application containers on Apache Spark

with massive datasets it is not only inefficient [7] but also pro-
hibitively expensive in terms of power consumption—estimated
to be on the order of several hundred thousand dollars per year
for a single next-generation high-performance computing (HPC)
cluster [8]. For geographically dispersed datasets, locality aware-
ness becomes even more challenging because computing re-
sources need to be dynamically acquired close to the data [9].
Cloud computing solves this problem by enabling the allocation
of virtual infrastructure on demand [10]. However, heterogene-
ity in storage systems for cloud providers [11] makes it hard to
abstract data ingestion from many different sources. Finally, be-
cause bioinformatics software is characterized by complex soft-
ware dependencies, deploying and managing a vast collection of
tools in a large distributed system also represents a major chal-
lenge [12].

Current bionformatics best practices make use of workflow
systems to orchestrate analyses over distributed computing
platforms [13]. Workflow systems provide high-level APIs that al-
low for defining an execution graph of existing processing tools.
At run time, the execution graph is used to pipeline the anal-
ysis on distributed cloud or HPC resources. Hence, the paral-
lelization of the analysis is transparently carried out, by execut-
ing non-dependent tasks at the same time. Cutting-edge work-
flow systems, such as Luigi [14], NextFlow [15], Galaxy [16], and
Pachyderm [17], allow for running processing tools as applica-
tion containers. This lightweight packaging technology allows
for encapsulating complete software environments, so that dis-
tributed systems can run the processing tools with no need
of additional dependencies, in an isolated manner [18]. Hence,
container-enabled workflow systems provide a fairly easy way
to define distributed analyses comprising existing bioinformat-
ics tools, and eliminating the need for managing complex soft-
ware delivery process and dependency management. Neverthe-
less, workflow-oriented processing falls short when it comes to
Big Data analyses. To the best of our knowledge, all of these sys-
tems use a decoupled shared storage system for synchroniza-
tion and intermediate results storage. When dealing with large
datasets, this translates to a massive and unnecessary commu-
nication in the underlying infrastructure. In addition, workflow
systems usually support a limited amount of storage back ends,
not seldom only POSIX file systems, making it hard to ingest
data from heterogeneous cloud resources. Finally, owing to their
batch-oriented nature, it is also intrinsically hard to enable in-
teractive, exploratory analyses using workflow-oriented frame-
works.

Google’s MapReduce programming model and its associated
implementation pioneered uncomplicated Big Data analytics on
distributed computing platforms [19]. When MapReduce is used,
the analysis is defined in a high-level programming language
that hides challenging parallel programming details including
fault tolerance, data distribution, and locality-aware schedul-
ing. Open source implementations of MapReduce are well es-
tablished in industrial and scientific applications [20, 21], and
numerous success stories in life science have been reported [22–
24].

Apache Spark has emerged as the project that collected the
largest community in the open source MapReduce ecosystems
[25]. In addition to the MapReduce implementation, Apache
Spark also provides increasingly important features, such as
in-memory, interactive, and stream processing. Furthermore,
owing to broad collaborations in the open source commu-
nity, Apache Spark supports all of the major storage systems,
enabling data ingestion from heterogeneous cloud resources.
These characteristics are particularly appealing for the case of

Big Data in life science. Nevertheless, Apache Spark and other
similar frameworks offer poor support for composing analyses
out of existing processing tools. This is usually limited to call-
ing external programs, which can only access data sequentially,
without support for application containers [26]. In fact, the main
way of implementing analytics in MapReduce-oriented environ-
ments is to code each transformation using 1 of the available
APIs. This way of implementing analyses contrasts with current
best practices in bioinformatics, which promote the use of ex-
isting tools as application containers with the goal of improv-
ing the delivery, interoperability, and reproducibility of scientific
pipelines [15].

Here we introduce MaRe—an open source programming li-
brary that extends Apache Spark, introducing comprehensive
support for external tools and application containers in MapRe-
duce. Similarly to container-enabled workflow systems, MaRe al-
lows analyses to be defined in a high-level language, in which
data transformations are performed by application containers.
In addition, MaRe provides seamless management of data local-
ity, as well as full interoperability, with the Apache Spark ecosys-
tem. This last point allows MaRe analyses to ingest data from
heterogeneous cloud storage systems and also provides support
for interactive processing. Finally, by supporting Docker, the de
facto standard container engine [27], MaRe is compatible with
numerous existing container images.

In summary, the key contributions of the presented work are
as follows:

� We introduce MaRe, an open source MapReduce-oriented
programming library for container-based data processing on
top of Apache Spark.

� We benchmark MaRe on 2 data-intensive applications in life
science, showing ease of use and scalability.

MaRe

Programming model
We introduce the MaRe programming model using a simple, yet
interesting, example in genomics. A DNA sequence can be rep-
resented as a text file written in a language of 4 characters: A,
T, G, C. The guanine-cytosine (GC) content in a DNA sequence
has interesting biological implications; for instance, there is ev-
idence that GC-rich genes are expressed more efficiently than
GC-poor genes [28]. Hence, within a large DNA sequence it can
be interesting to count G and C occurrences. Given an Ubuntu
Docker image [29], the task can easily be implemented in MaRe
using POSIX tools. Listing 1 shows such an implementation.

Being based on Apache Spark, MaRe has a similar program-
ming model. The control flow of the analysis is coded in Scala
[30], by the program in Listing 1. Such a program is called a
”driver” in the Apache Spark terminology. The driver program
can be packaged and submitted to a cluster (in batch mode), or
executed interactively using a notebook environment such as
Jupyter [31] or Apache Zeppelin [32]. Listing 1 starts by instan-
tiating a MaRe object, which takes a resilient distributed dataset
(RDD) [33], containing the input genome file in text format. Such
an RDD can be easily loaded using the Apache Spark API from
any of the supported storage backends. The map primitive (line
1–8) applies a command from the Docker image to each partition
of the RDD. In our example we specify the Ubuntu image on line
4, and we use a command that combines grep and wc to filter and
count GC occurrences (on line 6). The partitions are mounted
in the Docker containers at the configured input mount point
(’’/dna’’ at line 2), and the command results are loaded back

Capuccini et al. 3

Listing 1. GC count in MaRe

to MaRe from the configured output mount point (’’/count’’
on line 3). In the example we use ”TextFile” mount points be-
cause the input data are in text format. By default, MaRe con-
siders each line in a text file as a separate record, but custom
record separators can also be configured using the TextFile con-
structor.

At this point it is important to mention that MaRe can also
handle binary files. For such data formats, the driver program
should specify mount points of type "BinaryFiles.” In this case,
each RDD record is considered as a distinct binary file; thus, the
specified mount point results in a directory containing multiple
files (as opposed to TextFile, which mounts the records in a
single file). We provide an example of the BinaryFiles mount
point in the Evaluation section.

Coming back to Listing 1, after applying the "map” primitive,
each RDD partition is transformed into a distinct GC count. The
"reduce” primitive (lines 8–15) aggregates the counts in each
partition to a cumulative sum. Again, we use mount points of
type TextFile to mount the intermediate counts in the contain-
ers (’’/counts’’ on line 9) and to read back the cumulative sum
(’’/sum’’ on line 10). The sum is computed using the awk com-
mand from the Ubuntu image (lines 11–14). Finally, the result is
returned to the gcCount variable at line 1.

From the GC example, the reader may have noticed that our
programming model is strongly inspired by MapReduce. In ad-
dition, Apache Spark users may have noticed that the GC count
problem can easily be solved in pure Spark code. Indeed, the aim
of the example is just to provide an easy introduction to MaRe,
and 2 real-world applications are available in the Evaluation sec-
tion.

Apart from map and reduce, MaRe provides an additional
primitive. For real-world applications, we noticed that it is often
necessary to group dataset records according to a specific logic
before applying map or reduce. For this reason, MaRe also pro-
vides a "repartitionBy" primitive, which repartitions the RDD
records according to a configurable grouping rule. More specif-
ically, the repartitionBy primitive takes into account a user-
provided keyBy function, which is used to compute a key for each
record in the dataset. Then, the repartitioning is performed ac-
cordingly so that records with the same key end up in the same
partition. An example of repartitionBy is available in the Eval-
uation section.

Figure 1: Execution diagram for the map primitive. The primitive takes an RDD
that is partitioned over N nodes, it transforms each partition using a Docker con-
tainer, and it returns a new RDD′. The logic is implemented using mapPartitions
from the RDD API. Because mapPartitions generates a single stage, data are not

shuffled between nodes.

Implementation
MaRe comes as a thin layer on top of the RDD API [33], and it
relies on Apache Spark to provide important features such as
data locality, data ingestion, interactive processing, and fault tol-
erance. The implementation effort consists of (i) leveraging the
RDD API to implement the MaRe primitives and (ii) handling data
between containers and RDD structures.

Primitives Each instance of a MaRe object retains an underlying
RDD, which represents an abstraction of a dataset that is par-
titioned across Apache Spark workers. The map, reduce, and
repartitionBy primitives utilize the underlying RDD API to op-
erate such a dataset.

Fig. 1 shows the execution diagram for the map primitive. For
simplicity, in Fig. 1 we show a single partition per worker, but
in reality workers may retain multiple partitions. This primitive
takes an input RDD that is partitioned over N nodes, and it trans-
forms each partition using a Docker container command—thus
returning a new RDD′. This logic is implemented using ”map-
Partitions” from the RDD API. When calling mapPartitions, MaRe
specifies a lambda expression that (i) makes the data available
in the input mount point, (ii) runs the Docker container, and (iii)
retrieves the results from the output mount point. When using
mapPartitions, Apache Spark generates a single stage; thus, no
data shuffle is performed.

Fig. 2 shows the execution diagram for the reduce primitive.
This primitive takes an input RDD, partitioned over N nodes, and
it iteratively aggregates records, reducing the number of parti-
tions until an RDD′, containing a single result partition, is re-
turned. Again, the input RDD may retain multiple partitions per
node. However, as opposed to the map primitive, RDD′ always
contains a single partition when it is returned. Given a user-
configured depth K, the records in the RDD are aggregated us-
ing a tree-like algorithm. In each of the K levels in the tree, the
records within each partition are first aggregated using a Docker
container command. Like the map primitive, this first transfor-
mation is implemented using ”mapPartitions” from the RDD API.
Then, the number of partitions is decreased using ”repartition”

4 MaRe: Processing Big Data with application containers on Apache Spark

Figure 2: Execution diagram for the reduce primitive. The primitive takes an input RDD, partitioned over N nodes, and it iteratively aggregates records using a Docker

container, reducing the number of partitions until an RDD′ , containing a single result partition, is returned. The logic is implemented using mapPartitions and reparti-
tion from the RDD API, to aggregate records in partitions and to decrease the number of partitions, respectively. Because repartition is called in each of the K iterations,
K stages are generated, giving place to K data shuffles.

from the RDD API. This process is repeated K times until 1 sin-
gle partition is left. At this point the records within the remain-
ing partition are aggregated again using mapPartitions (from the
RDD API), and RDD′ is returned. A new stage is generated each
time repartition is used. Hence, reduce leads to K data shuffles.
For this reason, when aggregating records, the user-provided
command should always reduce the size of the partition. In ad-
dition, for consistent results, the command should perform an
associative and commutative operation. By default MaRe sets K
to 2; however, the user may chose a higher tree depth when it is
not possible to sufficiently reduce the dataset size in 1 go.

Finally, the repartitionBy primitive is implemented by us-
ing keyBy and then repartition from the RDD API. MaRe uses the
user-provided grouping rule with keyBy to compute a key for
each RDD record, and then it applies repartition in conjunc-
tion with HashPartitioner [34], which makes sure that records
with the same key end up in the same partition.

Data handling One of the advantages of Apache Spark over other
MapReduce-like systems is its ability to retain data in memory.
To achieve this when passing the data to the application con-
tainers, there are a few options available: (i) Unix pipes [35], (ii)
memory-mapped files [36], and (iii) tmpfs [37]. Solutions (i) and
(ii) are the most memory-efficient because they do not need to
materialize the data when passing it to the containers. However,
(i) allows records to be seen only once in a stream-like manner,
while (ii) requires the container-wrapped tools to be able to read
from a memory-mapped file. Apache Spark loads data in mem-
ory sequentially and partition-wise. Partition size is configurable
and often equals the block size in the underlying storage system.
For the Hadoop distributed file system (HDFS) this value defaults
to 128 MB, meaning that on an 8-core machine materializing
again partitions on an in-memory file system would require 2 GB
of memory in total—which is usually not a problem for modern
data centers. Therefore, to support any wrapped tool, we decided
to start by implementing solution (iii). This means that MaRe
uses an in-memory tmpfs file system as temporary file space for
the input and output mount points. The solution allows a stan-
dard POSIX mount point to be provided to the containers, while
still retaining reasonable performance [37]. However, MaRe also

provides users with the option of selecting any other disk-based
file system for the temporary mount points. Even if this could in
principle edge performance, this can be useful when a docker-
ized tool does not allow for splitting large partitions in smaller
chunks of records; we show an example of this in the Evaluation
section.

Evaluation

We evaluate MaRe on 2 data-intensive applications in life sci-
ence. The first application can be decomposed to somewhat in-
dependent jobs, where the data assigned to each job can be rel-
atively small. This is where MapReduce-oriented programming
libraries such as MaRe excel. Conversely, the second application
requires larger chunks of data to be computed all at once, thus
allowing us to show the performance penalty that is introduced
in such a case. We evaluate in more detail (i) how the analyses
can be implemented in MaRe and (ii) how the analyses scale over
multiple nodes. To the best of our knowledge, no stable Spark-
native implementation of the tools presented in the analyses is
publicly available, making a fair performance comparison with
a system that does not delegate data processing to an external
application container unfeasible. To this extent, we would like to
add that if such implementation were available there would be
no advantage in rewriting the analyses using our programming
library.

The scalability experiments were carried out on cPouta, an
OpenStack-based cloud service operated by the Information
Technology Center for Science (CSC) in Finland [38]. The driver
programs were run interactively using an Apache Zeppelin en-
vironment [32], and the notebooks were made available to sus-
tain reproducibility [39]. In addition, we also made available a
deployment automation that enables our set-up to be replicated
on cPouta, as well as any other OpenStack-based cloud provider
[40].

Virtual screening
Virtual screening (VS) is a computer-based method to iden-
tify potential drug candidates by evaluating the binding affin-
ity of virtual compounds against a biological target protein [41].
Given a 3D target structure, a molecular docking software is

Capuccini et al. 5

run against a large library of known molecular representations.
For each compound in the virtual molecular library the dock-
ing software produces a pose, representing the orientation of
the molecule in the target structure, and a binding affinity score.
The poses with the highest affinity scores can be considered as
potential drug leads for the target protein.

VS is data intensive because molecular libraries usually con-
tain millions of compounds. A simple, yet effective, approach
to scale VS consists of (i) distributing the molecular library over
several nodes, (ii) running the docking software in parallel, and
(iii) aggregating the top-scoring poses. Listing 2 shows how this
logic can be implemented in MaRe, using FRED [42] as molecular
docking software and sdsorter [43] to filter the top-scoring poses.

Listing 2. Virtual screening in MaRe

In Listing 2, we initialize MaRe by passing it a molecular li-
brary that was previously loaded as an RDD (libraryRDD on line
1). We implement the parallel molecular docking using the map

primitive. On lines 2 and 3, we set input and output mount
points as text files, and assuming the library to be in Structure-
Data File (SDF) format [44] we use the custom record separa-
tor: "\n$$$$\n”. On line 4, we specify a Docker image containing
FRED. The image is not publicly available because it also con-
tains our FRED license, but the license can be obtained free of
charge for research purposes and we provide a Dockerfile [39] to
build the image. On line 5, we specify the FRED command. We
use an HIV-1 protease receptor [45] as target (which is wrapped
in the Docker image), and we set (i) -hitlist size 0 to not fil-
ter the poses in this stage, (ii) -conftest none to consider the
input molecules as single conformations, (iii) -dbase /in.sdf

to read the input molecules from the input mount point, and
(iv) -docked molecule file /out.sdf to write the poses to the
output mount point.

The map phase produces a pose for each molecule in
libraryRDD. On line 12, we use the reduce primitive to fil-
ter the top 30 poses. On lines 13 and 14, we set the in-
put and output mount points as we do for the map primi-
tive. On line 15, we specify a publicly available Docker im-
age containing sdsorter. On line 16, we specify the sdsorter

command, and we set (i) -reversesort=’’FRED Chemgauss4

score’’ to sort the poses from highest to lowest FRED score,
(ii) -keep-tag=’’FRED Chemgauss4 score to keep the score in
the results, (iii) -nbest=30 to output the top 30 poses, and (iv)
/in.sdf /out.sdf to read and write from the input mount point
and to the output mount point, respectively. Note that this com-
mand performs an associative and commutative operation, thus
ensuring correctness in the reduce phase. Finally, the results are
returned to topPosesRDD, on line 1.

We benchmarked the analysis coded in Listing 2 against the
SureChEMBL library [46] retrieved from the ZINC database [47],
containing ∼2.2M molecules. The benchmark ran on top of a
stand-alone Apache Spark cluster composed of 1 master and 12
worker nodes. Each node provided 10 cores and 43 GB of mem-
ory, thus resulting in a total of 120 cores and 516 GB of memory.
The data were made available to the workers using a co-located
HDFS storage. Under these settings, we evaluated the scalabil-
ity in terms of weak scaling efficiency (WSE). This performance
metric shows how the system scales when the amount of data
and parallelism increase. To compute the WSEs we first ran the
benchmark on 1/12 of the dataset using the dockerized tools on
a worker node using their built-in, single-node parallelization.
Then, we reran the pipeline using MaRe on 2/12, 4/12, 6/12, ...
and 12/12 of the datasets, using 2, 4, 6, ...and 12 worker nodes,
respectively. The WSE is then computed as the time for process-
ing 1/12 of the data using the built-in, single-node paralleliza-
tion, divided by the time for processing N/12 of the data using N
nodes (for N = 2, 4, 6, ...,12). The ideal case, when the number of
nodes is doubled, is to be able to process twice as much data in
the same amount of time. Hence, a higher WSE indicates better
performance.

Fig. 3 shows the WSE for the full analysis, when using tmpfs
and a disk-based, ext4 file system [48] as temporary mount
points. From the experiments it emerges that there is little dif-
ference between the 2 methods in terms of scaling efficiency—
tmpfs improved the WSE by 0.02 at most. Indeed, the results in
Fig. 3 indicate very good scalability, with a WSE close to ideal for
both tmpfs and ext4. For 120 cores, the full benchmark ran in
2 hours and 21 minutes while 1/12 of the input data were pro-
cessed by the built-in, single-node parallelization in 2 hours and
14 minutes—resulting in 0.94 WSE. This means that the over-
head introduced by MaRe accounts for only 7 minutes in total.

Finally, to ensure the correctness of the parallelization, we
ran sdsorter and FRED on a single core against 1,000 molecules
that we randomly sampled from SureChEMBL, and we compared
the results with those produced by the code in Listing 2.

Single-nucleotide polymorphism calling
A single-nucleotide polymorphism (SNP) is a position in a DNA
sequence where a single nucleotide (or base pair) is different
from another DNA sequence to which it is being compared [49].
When considering multiple samples, DNA sequences are usually
compared individually to a reference genome: an agreed-upon
sequence that is considered to represent an organism’s genome.
Once each DNA sequence has had its SNPs detected, or ”called,”
the differences between the samples can be compared.

SNPs occur frequently. In fact, in humans roughly every
850th base pair is an SNP [50]. Calling SNPs has several use
cases. For instance, SNPs can be used as high-resolution mark-
ers when comparing genomic regions between samples [51], as
well as indicators of diseases in an individual [52]. Modern high-
throughput sequencing methods for reading DNA often make
use of a technique called ”massively parallel sequencing” to read
sequences longer than ∼200 bp, with a sufficiently small error

6 MaRe: Processing Big Data with application containers on Apache Spark

Figure 3: WSE for the VS application implemented in MaRe (Listing 2). The results are produced by using SureChEMBL as input, and we show the WSE when using
tmpfs and ext4 as temporary mount point for passing the data to the containers.

rate. This is done by cleaving multiple copies of the source DNA
into random fragments (called ”reads”) that are small enough
to be accurately read, and then by aligning them to a reference
genome. The overlapping fragments together form the sequence
of the source DNA.

In order to accurately sequence 3 billion bases from a single
human individual, 30-fold more read data need to be sequenced
[1]. This makes SNP calling data-intensive, thus requiring par-
allelization. A simple MapReduce-oriented approach consists of
(i) distributing the reads across several nodes, (ii) aligning the
reads to a reference genome in parallel, and (iii) calling the SNPs
with respect to the reference genome. The last step requires all
the reads from a chromosome to be included in the SNP call-
ing; thus, the maximum allowed parallelism is equal to the to-
tal number of chromosomes. Listing 3 shows how the described
parallelization can be implemented in MaRe, using BWA for the
alignment [53] and GATK [54] for the SNP calling. In contrast to
the VS example, BWA and GATK provide a multithreaded imple-
mentation of the algorithms. Therefore, in Listing 3, we leverage
this implementation for single-node parallelization.

In Listing 3, MaRe is initialized by passing an RDD contain-
ing the reads for a human individual in interleaved FASTQ for-
mat [55] (readsRDD on line 1). We implement the parallel reads
alignment using the map primitive. From lines 2 to 4, we set the
mount points as text files, and we specify a publicly available
Docker image containing the necessary software tools. On line
5 we specify the BWA command and we set (i) -t 8 to utilize
8 threads, (ii) -p /ref/human g1k v37.fasta to specify the ref-
erence genome location (in the container), and (iii) the input
mount point /in.fastq. In addition, on line 9 we pipe the re-
sults to another piece of software, called samtools [56], to con-
vert them from the binary BAM format [56] to the text SAM for-
mat [56]. Converting the results to text format makes it easier to
parse the chromosome location in the next step.

When calling SNPs, GATK needs to read all of the aligned
reads for a certain DNA region. Using chromosomes to de-
fine the regions makes sure that no reads will span a region
break point—a problem that would need to be handled if chro-
mosomes were to be split in smaller regions. To achieve this
we need to (i) perform a chromosome-wise repartition of the
dataset and (ii) allow MaRe to write temporary mount point data
to disk. Point (ii) is enabled by setting the TMPDIR environment
variable to a disk mount, in the Apache Zeppelin configuration.

Listing 3. SNP calling in MaRe

Capuccini et al. 7

Even if this could potentially edge performance, this is neces-
sary because the full partition size exceeds the tmpfs capac-
ity in our worker nodes. Point (i) is implemented by using the
repartitionBy primitive, on line 11. In particular, we specify a
keyBy function that parses and returns the chromosome identi-
fier (on line 12), and a number of partitions that is equal to the
number of worker nodes (on line 13).

The map primitive (on line 14) uses the chromosome-wise par-
titioning to perform the SNP calling, with GATK. Because the
data are in SAM format, we set the input mount point as text
file (line 15). However, because we are going to zip the results
before aggregating the SNPs (line 32), we set the output mount
point as a binary files directory (’’/out’’, on line 16). On line
17, we set the same Docker image that we used for the initial
mapping step, and, on line 18, we specify a command that (i)
prepends the necessary SAM header to the input data (which is
available inside the container under /ref/human g1k v37.dict,
on line 19), (ii) coverts the SAM input to BAM format (line 23),
(iii) builds an index for the BAM format (line 26), and (iv) runs
the multithreaded SNP calling using GATK, producing a Variant
Call Format (VCF) file [57] (line 28). A detailed description of the
options used for each command can be found in the GATK doc-
umentation [58].

Finally, to aggregate the SNPs to a single zipped file, we use
the reduce primitive. In this case we use binary file mount points
(lines 35 and 36) and a publicly available image containing the
VCFtools software [57] (line 37). On line 39, the specified com-
mand uses vcf-concat to merge all of the VCF files in the in-
put mount point, and then it zips and writes them to the out-
put mount point (line 40). Because MaRe applies the reduce
command iteratively, intermediate partitions will contain mul-
tiple files. Therefore, to avoid file-name clashes, we include a
random identifier in the command output (${RANDOM} at line
40).

We benchmarked the analysis in Listing 3 against the full in-
dividual reads dataset HG02666 (∼30 GB compressed FASTQ files),
from the 1000 Genomes Project (1KGP) [50]. The benchmark ran
on top of a stand-alone Apache Spark cluster composed of 1
master and 14 worker nodes. Each node provided 8 cores and
40 GB of memory, thus resulting in a total of 112 cores and 480
GB of memory. In addition, because after the chromosome-wise
repartitioning, the partition size exceeded the tmpfs space in our
workers, we used instance favors with a local solid state drive
(SSD). This allowed the temporary mount point data to be writ-
ten and read faster when compared to the previous benchmark.
The data were made available to the workers using a co-located
HDFS storage. Under these settings, we evaluated the scalabil-
ity in terms of strong scaling efficiency (SSE). This performance
metric shows how the system scales when the parallelism is in-
creased while keeping the input size static. We evaluated this
benchmark using SSE instead of WSE because there is no triv-
ial way for downsampling the reference genome while keeping
the behavior of the tools unaltered; the algorithms end up tak-
ing longer as they perform an exhaustive search when the ref-
erence genome is downsampled. To compute the SSEs we first
ran the benchmark using the dockerized tools on a worker node
with their built-in, single-node parallelization. Then, we reran
the pipeline using MaRe on 6, 8, 10, 12, and 14 worker nodes.
Then, letting T1 be the time for running the benchmark using
the built-in, single-node parallelization and TN be the time for
running the benchmark using N nodes (for N = 6, 8, 10, 12), we
computed the SSE as T1/(N × TN) (we did not run on 2 and 4 nodes
because the dataset size exceeded the total memory available to
the Spark workers in these settings). The ideal case, when dou-

bling the number of nodes, is to be able to run the benchmark
twice as fast. Hence, a higher SSE indicates better performance.

Fig. 4 shows the SSE for the full analysis. The SSE starts at 0.76
for 48 cores and decreases to 0.59 when running on 112 cores.
Even if this does not show optimal performance, as in the VS
use case, it still indicates good scalability. Indeed, the full bench-
mark ran in 3 hours and 24 minutes using MaRe on 112 cores,
while it took 28 hours and 14 minutes using the built-in, single-
node parallelization—leading to a speedup of 8.3.

The alignment portion of the benchmark uses BWA, which
allows the reads to be input using pipes. It is interesting to com-
pare how the SSE differs when using this input method as op-
posed to materializing the data on a temporary ext4 file space.
Even though the standard RDD API provides a pipe method to
do so, as we mentioned previously, this built-in implementation
runs the external tool for each RDD record—which would result
in considerable overhead. Instead, we compare the SSE achieved
by MaRe with a pipePartition method, available in our bench-
mark repository [39], which pipes entire RDD partitions though
a single dockerized tool instance. Fig. 5 shows the results of this
comparison. Using pipes improved the SSE by ∼0.15 when run-
ning on 48 and 64 cores, by ∼0.08 when running on 80 and 96
cores, and by ∼0.12 when running on 112 cores. However, this
improvement accounted for saving 6 minutes when running on
112 cores, which is negligible because the full analysis (including
variant calling) took >3 hours to complete in such a setting.

Discussion and conclusions

Big Data applications are getting increasing momentum in life
science. Nowadays data are stored and processed in distributed
systems, often in a geographically dispersed manner. This in-
troduces a layer of complexity that MapReduce frameworks,
such as Apache Spark, excel at handling [59]. Container en-
gines, and in particular Docker, are also becoming an essen-
tial part of bioinformatics pipelines because they improve de-
livery, interoperability, and reproducibility of scientific analyses.
By enabling application containers in MapReduce, MaRe con-
stitutes an important advance in the scientific data-processing
software ecosystem. When compared to current best practices
in bioinformatics, relying solely on using workflow systems to
orchestrate data pipelines, MaRe has the advantage of provid-
ing locality-aware scheduling, transparent ingestion from het-
erogeneous storage systems, and interactivity. As data become
larger and more globally distributed, we envision scientists in-
stantiating MaRe close to the data, and performing interactive
analyses via cloud-oriented resources. In addition to the inter-
active mode, MaRe also support batch-oriented processing. This
is important because it enables integration with existing bioin-
formatics pipelines. In practical terms, a packaged MaRe appli-
cation can be launched by a workflow engine to enable data-
intensive phases in a pipeline, and submitted to any of the re-
source managers supported by the Apache Spark community
(including HPC systems [60]).

In the Evaluation section we show how researchers can easily
implement 2 widely used applications in life science using MaRe.
Both analyses can be coded in <50 lines of code, and they are
seamlessly parallelized. The results show near optimal scalabil-
ity for the VS application, with tmpfs improving performance
over ext4 only by a negligible factor. The reason why there is no
relevant performance improvement in using the former is that
the container’s running time dominates the time for materializ-
ing data on the temporary file space. Even though this may vary
in other applications, in our experience this will often be the

8 MaRe: Processing Big Data with application containers on Apache Spark

Figure 4: SSE for the SNP calling implemented in MaRe (Listing 3). The results are produced by using a full individual dataset from the 1KGP as input.

Figure 5: SSE for the SNP calling alignment stage implemented in MaRe (Listing 3, lines 1–13). The results are produced by using a full individual dataset from the 1KGP
as input, and we show the SSE when using an SSD-based, ext4 temporary mount point as well as Unix pipes for passing the data to the containers.

case for bioinformatics analyses, not justifying the additional ef-
fort in setting up a tmpfs space.

Scalability in the SNP-calling analysis is reasonably good but
far from optimal. The reason for this is that before running the
haplotype caller, a reasonable amount of data need to be shuf-
fled across the nodes because GATK needs to see all of the data
for a single chromosome at once in order to function properly,
thus causing a large amount of data to be materialized on disk.
Such overhead can be partly mitigated by enabling data streams
via standard input and output between MaRe and containers, as
the results in Fig. 5 show. This constitutes an area for future im-
provement; however, because GATK is unable to read data from
the standard input, such improvement would not be directly ap-
plicable to the presented use case.

ADAM [61], a genomics data-processing framework built on
top of Apache Spark, shows ideal scalability for a few, commonly
used preprocessing steps in genomics pipelines—such as the
SNP pipeline that we show in this article. Nevertheless, in real-
world scenarios external software would still need to be used to
compose end-to-end workflows. Indeed, ADAM itself provides
a utility to integrate external tools into its pipelines [62]. Be-
cause this utility is based on pipes and it does not support ap-
plication containers natively, it provides less flexibility in com-
parison with MaRe. Indeed, because MaRe is fully interopera-
ble with Apache Spark, our recommendation for running ge-
nomics pipelines would be to use ADAM for the supported pre-

processing steps and then MaRe to integrate external tools in the
workflow.

The benchmarks that we show in this article are representa-
tive of 2 classes of problems where the application of MaRe could
lead to different results in terms of performance. Materializing
data is necessary to support any containerized tool, but our re-
sults show that this edges performance when records in large
partitions need to be processed all together. In this case, reim-
plementing the analyses natively in Spark using the language
of choice could lead to better performance; ADAM is a good ex-
ample of this approach. It is however important to point out that
the effort of reimplementing existing bioinformatics tools is sel-
dom sustainable by research organizations. To give the reader an
idea of this, ADAM is the product of a large collaboration main-
taining thousands of lines of code. Owing to the current prolif-
eration and heterogeneity of bioinformatics tools [63, 64], it is
hard to imagine that such effort would generally be sustainable
for many other applications. To this extent, MaRe stands out be-
cause it enables bioinformaticians to develop interoperable, dis-
tributed pipelines that scale reasonably well without the need
to rewrite the existing codebase.

In conclusion, MaRe provides a MapReduce-oriented model
to enable container-based bioinformatics analyses at scale. The
project is available on GitHub [65] under an open source license,
along with all of the code to reproduce the analyses in the Eval-
uation section [39].

Capuccini et al. 9

Methods
Apache Spark

Apache Spark is an open source cluster-computing framework
for the analysis of large-scale datasets [66]. The project origi-
nally started with the aim of overcoming the lack of in-memory
processing in traditional MapReduce frameworks. Today, Apache
Spark has evolved into a unified analytics engine, encompass-
ing high-level APIs for machine learning, streaming, graph pro-
cessing, and SQL, and it has become the largest open source
project in Big Data analytics, with >1,000 contributors and
>1,000 adopting organizations [25].

Clustering model
The Apache Spark clustering model includes a driver program,
1 or more worker nodes, and a cluster manager. The driver
program is written by the user and controls the flow of the
programmed analysis. For interactive analysis the driver pro-
gram can run in notebooks environments such as Jupyter [31]
and Apache Zeppelin [32]. Worker nodes communicate with the
driver program, thus executing the distributed analysis as de-
fined by the user. Finally, a cluster manager handles resources
in the cluster, allowing for the executing processes to acquire
them in the worker nodes. Apache Spark is cluster-manager ag-
nostic and it can run in stand-alone settings, as well as on some
popular platforms (e.g., Kubernetes [67], Mesos [68], and Hadoop
YARN [69]).

Resilient distributed datasets
RDDs [33] are central to the Apache Spark programming model.
RDDs are an abstraction of a dataset that is partitioned across
the worker nodes. Hence, partitions can be operated in paral-
lel in a scalable and fault-tolerant manner, and possibly cached
in memory for recurrent access. As a unified processing engine,
Apache Spark offers support for ingesting RDDs from numer-
ous Big-Data–oriented storage systems. RDDs can be operated
through Scala [30], Python [70], Java [71], and R [72] APIs. Such
APIs expose RDDs as object collections, and they offer high-level
methods to transform the datasets.

The mapPartition and repartition methods, from the RDD
API, are useful to understand the MaRe implementation. The
mapPartition method is inspired by functional programming
languages. It takes as an argument a lambda expression that
codes a data transformation, and it applies it to each partition,
returning a new RDD. The repartition method, as the name sug-
gests, changes the way the dataset records are partitioned across
the worker nodes. It can be used to increase and decrease the
number of partitions, thus affecting the level of parallelism, and
it can also sort records in partitions, according to custom logics.
In this case, an additional RDD method, namely, keyBy, needs
to be used to compute a key for each RDD record. Similarly to
mapPartition, keyBy applies a user-provided lambda expression
to compute the record keys. Such keys are then used by reparti-
tion in conjunction with an extension of the Partitioner class [34]
to assign records to partitions. For instance, when using Hash-
Partitioner [73] records with same key always end up in the same
RDD partition.

Stages and data locality
RDD methods are lazily applied to the underlying dataset. This
means that until something needs to be written to a storage sys-
tem or returned to the driver program, nothing is computed.
In this way, Apache Spark can build a direct acyclic graph and
thus optimize the physical execution plan. A physical execu-

tion plan is composed of processing tasks that are organized in
stages. Typically, inside each stage the physical execution plan
preserves data locality, while between stages a data shuffle oc-
curs. In particular, a sequence of mapPartition methods gener-
ate a single stage, giving place to almost no communication in
the physical execution plan. In contrast, each time repartition is
applied to an RDD, a new stage is generated (and data shuffling
occurs).

Docker

Docker has emerged as the de facto standard application con-
tainer engine [27]. Like virtual machines (VMs), application con-
tainers enable the encapsulation of software components so
that any compliant computer system can execute them with
no additional dependencies [18]. The advantage of Docker and
similar container engines over virtualization consists of elimi-
nating the need to run an operating system (OS) for each iso-
lated environment. In contrast to hypervisors, container en-
gines leverage kernel namespaces to isolate software environ-
ments, and thus run containers straight on the host OS. This
makes application containers considerably lighter than VMs,
enabling a more granular compartmentalization of software
components.

Software Delivery
By enabling the encapsulation of entire software stacks, con-
tainer engines have the potential to considerably simplify appli-
cation delivery. Engines such as LXC [74] and Jails [75] have been
available for almost 2 decades. Nevertheless, when compared
to Docker these systems are poor in terms of software delivery
functionalities. This is the reason why software containers’ pop-
ularity exploded only when Docker emerged.

Docker containers can be defined using a text specifica-
tion language. Using such language, users compose a Docker-
file that is parsed by Docker and then compiled into a Docker
image. Docker images can then be released to public or pri-
vate registries, becoming immediately available over the Inter-
net. Therefore, by running the Docker engine, the end users can
conveniently start the released containers locally.

Volumes
When using Docker containers for data processing, volumes
play an important role. Indeed, there is a need for a mechanism
to pass the input data to the containers and to retrieve the pro-
cessed output from the isolated environment. Docker volumes
allow for defining shared file spaces between containers and the
host OS. Such volumes can be easily created when starting con-
tainers, by specifying a mapping between host OS file, or direc-
tories, and container mount points. Inside the containers these
shared objects simply appear as regular files, or directories, un-
der the specified mount point.

Availability of Supporting Source Code and
Requirements

Project name: MaRe
Project home page: https://github.com/mcapuccini/MaRe
Operating system(s): Platform independent
Programming language: Scala
Other requirements: Apache Spark and Docker
License: Apache License 2.0
RRID:SCR 018069

https://github.com/mcapuccini/MaRe
https://scicrunch.org/resolver/RRID:SCR_018069

10 MaRe: Processing Big Data with application containers on Apache Spark

Availability of Supporting Data and Materials

The dataset supporting the VS evaluation in this article is avail-
able in the ZINC database [47]. The specific subset that we used
is available at http://zinc12.docking.org/catalogs/surechembl.

The 1KPG [50] dataset supporting the SNP evaluation is avail-
able on Amazon S3 (s3://1000genomes/phase3/data/HG02666).
The relative BioProject accession number is PRJNA28889.

Images, results in tabular format, and an archival copy of the
code are also available via GigaDB [76].

Abbreviations

1KGP: 1000 Genome Project; API: application programming in-
terface; bp: base pairs; BWA: Burrows-Wheeler Aligner; CSC: In-
formation Technology Center for Science; GATK: Genome Anal-
ysis Toolkit; GC: guanine-cytosine; HDFS: Hadoop distributed
file system; HIV: human immunodeficiency virus; HPC: high-
performance computing; OS: operating system; POSIX: Portable
Operating System Interface; RDD: resilient distributed dataset;
SDF: structure-data file; SNP: single-nucleotide polymorphism;
SSD: solid state drive; SSE: strong scaling efficiency; VCF: vari-
ant call format; VM: virtual machine; VS: virtual screening; WSE:
weak scaling efficiency.

Ethics Approval and Consent to Participate

All of the 1KGP data are consented for analysis, publication, and
distribution. Ethics and consents are extensively explained in
the 1KGP publications [50].

Competing Interests

The authors declare that they have no competing interests.

Funding

This research was supported by The European Commission’s
Horizon 2020 program under grant agreement No. 654241 (Phe-
noMeNal).

Authors’ Contributions

M.C. and O.S. conceived the project. M.C. designed and imple-
mented MaRe. M.C. and M.D. carried out the evaluation exper-
iments. M.D. provided expertise in genomics. S.T. provided ex-
pertise in cloud computing. All authors read and approved the
final manuscript.

Acknowledgments

We kindly acknowledge contributions to cloud resources by CSC
(https://www.csc.fi), the Nordic e-Infrastructure Collaboration
(https://neic.no), and the SNIC Science Cloud [77]. The academic
license for the docking software was provided by OpenEye Sci-
entific.

References

1. Stephens ZD, Lee SY, Faghri F, et al. Big data: astronomical
or genomical?. PLoS Biol 2015; 13(7):e1002195.

2. Foster LJ, DeMarco ML. At the intersection of proteomics and
big data science. Clin Chem 2017;63(10):1663.

3. Peters K, Bradbury J, Bergmann S, et al. PhenoMeNal: Pro-

cessing and analysis of metabolomics data in the cloud. Gi-
gascience 2018;8(2):giy149.

4. Peng H. Bioimage informatics: a new area of engineering bi-
ology. Bioinformatics 2008;24(17):1827–36.

5. Brown N, Cambruzzi J, Cox PJ, et al. Big Data in drug discov-
ery. Prog Med Chem 2018;57:277–356.

6. Cook CE, Lopez R, Stroe O, et al. The European Bioinformatics
Institute in 2018: tools, infrastructure and training. Nucleic
Acids Res 2018;47(D1):D15–D22.

7. Tan J, Meng X, Zhang L. Delay tails in MapReduce scheduling.
ACM SIGMETRICS Perform Eval Rev 2012;40(1):5–16.

8. Lawrence Livermore National Laboratory. Gearing up for the
next challenge in high-performance computing. 2015. https:
//str.llnl.gov/march-2015/still. Accessed 25 April 2019.

9. Convolbo MW, Chou J, Hsu CH, et al. GEODIS: towards the
optimization of data locality-aware job scheduling in geo-
distributed data centers. Computing 2018;100(1):21–46.

10. Fox A, Griffith R, Joseph A, et al. Above the clouds: A Berke-
ley view of cloud computing. Dept Electrical Eng Comput Sci
Univ Calif Berkeley Rep UCB/EECS 2009;28(13):2009.

11. Mansouri Y, Toosi AN, Buyya R. Data storage management
in cloud environments: Taxonomy, survey, and future direc-
tions. ACM Comput Surv 2018;50(6):91.

12. Williams CL, Sica JC, Killen RT, et al. The growing need for
microservices in bioinformatics. J Pathol Inform 2016;7:45.

13. Leipzig J. A review of bioinformatic pipeline frameworks.
Brief Bioinform 2017;18(3):530–6.

14. Lampa S, Alvarsson J, Spjuth O. Towards agile large-scale
predictive modelling in drug discovery with flow-based pro-
gramming design principles. J Cheminform 2016;8(1):67.

15. Di Tommaso P, Chatzou M, Floden EW, et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35(4):316.

16. Moreno P, Pireddu L, Roger P, et al. Galaxy-Kubernetes in-
tegration: scaling bioinformatics workflows in the cloud.
BioRxiv 2018:488643.

17. Novella JA, Emami Khoonsari P, Herman S, et al. Container-
based bioinformatics with Pachyderm. Bioinformatics
2018;35(5):839–46.

18. Open Container Initiative. The 5 principles of Standard Con-
tainers. 2016. https://github.com/opencontainers/runtime-
spec/blob/master/principles.md. Accessed 25 April 2019.

19. Dean J, Ghemawat S. MapReduce: simplified data processing
on large clusters. Commun ACM 2008;51(1):107–13.

20. Bhandarkar M. MapReduce programming with Apache
Hadoop. In: 2010 IEEE International Symposium on Paral-
lel and Distributed Processing (IPDPS), Atlanta, GA. 2010,
doi:10.1109/IPDPS.2010.5470377.

21. Gunarathne T, Wu TL, Qiu J, et al. MapReduce in the clouds
for science. In: 2010 IEEE Second International Conference
on Cloud Computing Technology and Science. Washington,
DC: IEEE; 2010:565–72.

22. Mohammed EA, Far BH, Naugler C. Applications of the
MapReduce programming framework to clinical big data
analysis: current landscape and future trends. BioData Min
2014;7(1):22.

23. Guo R, Zhao Y, Zou Q, et al. Bioinformatics applications on
Apache Spark. Gigacience 2018;7(8):giy098.

24. Schönherr S, Forer L, Weißensteiner H, et al. Cloudgene: a
graphical execution platform for MapReduce programs on
private and public clouds. BMC Bioinform 2012;13(1):200.

25. Zaharia M, Xin RS, Wendell P, et al. Apache spark: a
unified engine for big data processing. Commun ACM
2016;59(11):56–65.

http://zinc12.docking.org/catalogs/surechembl
s3://1000genomes/phase3/data/HG02666
https://www.csc.fi
https://neic.no
https://str.llnl.gov/march-2015/still
https://github.com/opencontainers/runtime-spec/blob/master/principles.md

Capuccini et al. 11

26. Ding M, Zheng L, Lu Y, et al. More convenient more over-
head: the performance evaluation of Hadoop streaming. In:
Proceedings of the 2011 ACM Symposium on Research in Ap-
plied Computation. 2011:307–13.

27. Shimel A. Docker becomes de facto Linux standard. 2016.
http://www.networkworld.com/article/2226751/opensourc
e-subnet/docker-becomes-de-facto-linux-standard.html.
Accessed 25 April 2019.

28. Kudla G, Lipinski L, Caffin F, et al. High guanine and cytosine
content increases mRNA levels in mammalian cells. PLoS
Biol 2006;4(6):e180.

29. Ubuntu Docker Image. https://hub.docker.com/ /ubuntu. Ac-
cessed 25 April 2019.

30. Odersky M, Altherr P, Cremet V, et al. An overview of
the Scala programming language. Technical Report LAMP-
REPORT-2006-001. École Polytechnique Fédérale de Lausanne
(EPFL) 1015 Lausanne, Switzerland. 2006.

31. Kluyver T, Ragan-Kelley B, Pérez F, et al. Jupyter Notebooks-
a publishing format for reproducible computational work-
flows. In: ELPUB. 2016:87–90.

32. Cheng Y, Liu FC, Jing S, et al. Building big data process-
ing and visualization pipeline through Apache Zeppelin. In:
PEARC ’18: Practice and Experience in Advanced Research
Computing, Pittsburgh, PA. New York, NY: ACM; 2018:57,
doi:10.1145/3219104.3229288.

33. Zaharia M, Chowdhury M, Das T, et al. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation. 2012:15–
28.

34. Laskowski J, HashPartitioner. https://books.japila.pl/apache
-spark-internals/apache-spark-internals/latest/rdd/spark-r
dd-HashPartitioner.html. Accessed 28 April 2020.

35. Peek J, O’Reilly T, Loukides M. UNIX power tools. O’Reilly me-
dia. 1997.ISBN 1-56592-260-3.

36. Tevanian A, Rashid RF, Young M, et al. A UNIX interface for
shared memory and memory mapped files under Mach. In:
USENIX Summer Citeseer. 1987:53–68.

37. Snyder P. tmpfs: A virtual memory file system. In: Proceed-
ings of the Autumn 1990 EUUG Conference. 1990:241–8.

38. cPouta Community Cloud. https://research.csc.fi/cpouta.
Accessed 25 April 2019.

39. MaRe Benchmarks. https://github.com/mcapuccini/mare-b
enchmarks. Accessed 25 April 2019.

40. OpenStack Apache Spark Terraform Module. https://github
.com/mcapuccini/terraform-openstack-spark. Accessed 25
April 2019.

41. Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screen-
ing for drug discovery: a problem-centric review. AAPS J
2012;14(1):133–41.

42. McGann M. FRED pose prediction and virtual screening ac-
curacy. J Chem Inform Model 2011;51(3):578–96.

43. sdsorter. https://sourceforge.net/projects/sdsorter. Ac-
cessed 25 April 2019.

44. Dalby A, Nourse JG, Hounshell WD, et al. Description of sev-
eral chemical structure file formats used by computer pro-
grams developed at Molecular Design Limited. J Chem In-
form Comput Sci 1992;32(3):244–55.

45. Bäckbro K, Löwgren S, Österlund K, et al. Unexpected binding
mode of a cyclic sulfamide HIV-1 protease inhibitor. J Med
Chem 1997;40(6):898–902.

46. Papadatos G, Davies M, Dedman N, et al. SureChEMBL:
a large-scale, chemically annotated patent document
database. Nucleic Acids Res 2015;44(D1):D1220–8.

47. Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free tool
to discover chemistry for biology. J Chem Inform Model
2012;52(7):1757–68.

48. Mathur A, Cao M, Bhattacharya S, et al. The new ext4 filesys-
tem: current status and future plans. In: Proceedings of the
Linux symposium, vol. 2. World Scientific and Engineering
Academy and Society (WSEAS); 2007:21–33.

49. Karki R, Pandya D, Elston RC, et al. Defining ”mutation” and
”polymorphism” in the era of personal genomics. BMC Med
Genomics 2015;8(1):37.

50. , 1000 Genomes Project Consortium Auton A, Brooks
LD, Durbin RM1000 Genomes Project Consortium, et al.
A global reference for human genetic variation. Nature
2015;526(7571):68–74.

51. Collins FS. Medical and societal consequences of the Human
Genome Project. N Engl J Med 1999;341(1):28–37.

52. Kruglyak L. Prospects for whole-genome linkage disequi-
librium mapping of common disease genes. Nat Genet
1999;22(2):139–44.

53. Li H, Durbin R. Fast and accurate short read align-
ment with Burrows–Wheeler transform. Bioinformatics
2009;25(14):1754–60.

54. McKenna A, Hanna M, Banks E, et al. The Genome
Analysis Toolkit: a MapReduce framework for analyz-
ing next-generation DNA sequencing data. Genome Res
2010;20(9):1297–303.

55. Cock PJA, Fields CJ, Goto N, et al. The Sanger FASTQ file for-
mat for sequences with quality scores, and the Solexa/Illu-
mina FASTQ variants. Nucleic Acids Res 2010;38(6):1767–71.

56. Li H, Handsaker B, Wysoker A, et al. The Sequence
Alignment/Map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

57. Danecek P, Auton A, Abecasis G, et al. The variant call format
and VCFtools. Bioinformatics 2011;27(15):2156–8.

58. GATK Documentation. https://software.broadinstitute.org/
gatk/documentation/tooldocs/current. Accessed 25 April
2019.

59. Khanam Z, Agarwal S. Map-reduce implementations: survey
and performance comparison. Int J Comput Sci Inf Technol
2015;7(4), doi:10.5121/ijcsit.2015.7410.

60. Chaimov N, Malony A, Canon S, et al. Scaling Spark on HPC
systems. In: Proceedings of the 25th ACM International Sym-
posium on High-Performance Parallel and Distributed Com-
puting. ACM; 2016:97–110.

61. Nothaft FA, Massie M, Danford T, et al. Rethinking data-
intensive science using scalable analytics systems. In: Pro-
ceedings of the 2015 ACM SIGMOD International Conference
on Management of Data. 2015:631–646.

62. Using ADAM’s Pipe API. . https://adam.readthedocs.io/en/lat
est/api/pipes/. Accessed 25 April 2019.

63. Duck G, Nenadic G, Filannino M, et al. A survey of bioinfor-
matics database and software usage through mining the lit-
erature. PLoS One 2016;11(6):e0157989.

64. Dahlö M, Scofield DG, Schaal W, et al. Tracking the NGS
revolution: managing life science research on shared high-
performance computing clusters. Gigascience 2018;7(5),
doi:10.1093/gigascience/giy028.

65. MaRe. https://github.com/mcapuccini/MaRe. Accessed 25
April 2019.

66. Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: cluster
computing with working sets. In: HotCloud’10: Proceedings
of the 2nd USENIX conference on hot topics in cloud com-
puting. Berkeley, CA: USENIX Assoc; 2010:95.

67. Kubernetes. https://kubernetes.io. Accessed 25 April 2019.

http://www.networkworld.com/article/2226751/opensource-subnet/docker-becomes-de-facto-linux-standard.html
https://hub.docker.com/_/ubuntu
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-HashPartitioner.html
https://research.csc.fi/cpouta
https://github.com/mcapuccini/mare-benchmarks
https://github.com/mcapuccini/terraform-openstack-spark
https://sourceforge.net/projects/sdsorter
https://software.broadinstitute.org/gatk/documentation/tooldocs/current
https://adam.readthedocs.io/en/latest/api/pipes/
https://github.com/mcapuccini/MaRe
https://kubernetes.io

12 MaRe: Processing Big Data with application containers on Apache Spark

68. Hindman B, Konwinski A, Zaharia M, et al. Mesos: a plat-
form for fine-grained resource sharing in the data center. In:
NSDI’11: Proceedings of the 8th USENIX conference on Net-
worked Systems Design and Implementation, Boston, MA.
Berkeley, CA: USENIX Assoc; 2011:295–308.

69. Hadoop YARN. https://hadoop.apache.org/docs/current/had
oop-yarn/hadoop-yarn-site/YARN.html. Accessed 25 April
2019.

70. The Python Programming Language. http://www.python.org.
Accessed 25 April 2019.

71. The Java Programming Language. https://docs.oracle.co
m/javase/8/docs/technotes/guides/language/index.html.
Accessed 25 April 2019.

72. Ihaka R, Gentleman R. R: a language for data analysis and
graphics. J Comput Graph Stat 1996;5(3):299–314.

73. Laskowski J. Partitioner. https://books.japila.pl/apache-spa
rk-internals/apache-spark-internals/latest/rdd/spark-rdd
-Partitioner.html. Accessed 28 April 2020.

74. LXC. https://linuxcontainers.org/. Accessed 25 April 2019.
75. Kamp PH, Watson RN. Jails: Confining the omnipotent root.

In: Proceedings of the 2nd International SANE Conference,
vol. 43; 2000:116.

76. Capuccini M, Dahlö M, Toor S, et al. Supporting data for
”MaRe: Processing Big Data with application containers on
Apache Spark.” GigaScience Database 2020. http://dx.doi.org
/10.5524/100733.

77. Toor S, Lindberg M, Falman I, et al. SNIC science cloud (SSC):
A national-scale cloud infrastructure for Swedish academia.
In: 2017 IEEE 13th International Conference on e-Science (e-
Science). IEEE; 2017:219–27.

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://www.python.org
https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-rdd-partitions.html
https://linuxcontainers.org/
http://dx.doi.org/10.5524/100733

