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During the domestication of the goose a change in its feather color took place,
however, the molecular mechanisms responsible for this change are not completely
understood. Here, we performed whole-genome resequencing on three pooled samples
of geese (feral and domestic geese), with two distinct feather colors, to identify
genes that might regulate feather color. We identified around 8 million SNPs within
each of the three pools and validated allele frequencies for a subset of these
SNPs using PCR and Sanger sequencing. Several genomic regions with signatures
of differential selection were found when we compared the gray and white feather
color populations using the FST and Hp approaches. When we combined previous
functional studies with our genomic analyses we identified 26 genes ((KITLG, MITF,
TYRO3, KIT, AP3B1, SMARCA2, ROR2, CSNK1G3, CCDC112, VAMP7, SLC16A2,
LOC106047519, RLIM, KIAA2022, ST8SIA4, LOC106044163, TRPM6, TICAM2,
LOC106038556, LOC106038575, LOC106038574, LOC106038594, LOC106038573,
LOC106038604, LOC106047489, and LOC106047492) that potentially regulate feather
color in geese. These results substantially expand the catalog of potential feather color
regulators in geese and provide a basis for further studies on domestication and avian
feather coloration.

Keywords: goose, feather color, genome, pool-seq, SNP

INTRODUCTION

Through more than 5000 years of constant artificial selection, domesticated geese have acquired
a number of modifications to their appearance compared to their wild ancestors and relatives
(Zeuner, 1963; Albarella, 2005). Most Asian and some European domestic goose breeds were
derived from the swan goose (Anser cygnoides) (Buckland and Gérard, 2002). Domestication
involved a complex set of metabolic, physiological and behavioral changes, including traits
involving the liver, meat, eggs and feathers, but the most visible difference between wild and
domestic swan geese is their feather coloration (Sossinka, 1982). Wild swan geese are characterized
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by their iconic feathers with gray stripes (Figure 1A), while
domestic swan geese have an all-white color appearance
(Figures 1B,C; Gao et al., 2016).

Since feather coloration and patterns are prominent features
in birds, and play essential roles in their survival, mechanisms
that regulate the differentiation of feather color has been
intensively studied (Abolins-Abols et al., 2018; Gao et al., 2018).
Feather color is the consequence of two different, but related,
physical processes, pigmentation and structural coloration, where
pigmentation is the primary basis for the color diversity in
animals (D’Alba et al., 2012). Melanins and carotenoids are
widely distributed pigments in avian feathers and are the main
contributors to the diversity of feather color in birds. The melanin
content is usually higher than that of carotenoids, where studies
have shown that the melanin content of feathers in swallows
is four orders of magnitude greater than that of carotenoids
(McGraw et al., 2004; McGraw, 2006; Delhey, 2015). The genetic
control of melanogenesis in birds is achieved through genes
that encode specific enzymes involved in melanin synthesis as
well as other regulatory and structural proteins required for the
distribution of melanin (Galván and Solano, 2016).

Investigations in some avian species have identified a limited
number of genes involved in the mechanisms controlling feather
coloration, however, only a few studies have focused on changes
in feather color in geese or swans (Theron et al., 2001; Mundy
et al., 2004; Bed’hom et al., 2012; Emaresi et al., 2013; Wang
et al., 2014; Poelstra et al., 2015; Zhou et al., 2018; Wen et al.,
2021). Melanic plumage polymorphisms in the lesser snow geese
(Anser caerulescens caerulescens) and arctic skuas (Stercorarius
parasiticus) correlate with changes in the copy number of
variant MC1R alleles (Mundy et al., 2004). In the black and
black-necked swans (Cygnus atratus and C. melanocoryphus),
independently derived nucleotide substitutions in MC1R, which
cause amino acid changes at important functional sites, have
been identified that are consistent with increased MC1R activity
and melanism pigment synthesis (Pointer and Mundy, 2008).
In the domestic swan geese, three SNPs in TYR and one
in MITF have been reported to be associated with white
plumage (Wang et al., 2014). Recently, Wen et al. (2021)
reported, in a genomic level examination of plumage color
in domestic geese, an 18 bp deletion in an intron region of
KIT (NW_013185664.1, 11,785,718–11,785,736 bp) that was
associated with white feather color.

Although TYR, MITF and KIT have been found to be
associated with differences in feather coloration in domestic
geese (Wang et al., 2014; Wen et al., 2021), a full understanding
of the genetic basis of feather color formation in this species
remains incomplete. With the unprecedented development of
high-throughput sequencing, it has become possible to examine
the genetic basis of differences in feather color at the genomic
level (Zhou et al., 2018).

In this study, we performed whole-genome pooled sequencing
(Pool-Seq) on three populations of swan geese with wild type
and white-colored feathers. By identifying genomic regions that
experienced selective sweeps, we aimed to identify genes that have
experienced artificial selection and thus might explain the change
in feather color in domesticated geese.

MATERIALS AND METHODS

Whole-Genome Pooled Sequencing of
Goose DNA Samples
A total of 117 feral gray (Anser cygnoides, 60 females, 57
males, group gray; Figure 1A), 25 feral white (Anser cygnoides,
10 females, 15 males, group White_1; Figure 1B), and 87
domesticated white (Anser cygnoides domesticus, 52 females, 35
males, group White_2; Figure 1C) geese were sampled. These
samples were collected from large populations to minimize
genetic relationships. We choose our sample sizes for this
Pool-seq study based on previous reports on Darwin’s finch
(sample size range 8–35) and monarch butterflies (sample size
range 9–101) (Zhan et al., 2014; Lamichhaney et al., 2015).
The accuracy of Pool-Seq increases with larger numbers of
individuals included in the pool (Futschik and Schlötterer, 2010;
Gautier et al., 2013). This suggests that our samples should be
sufficient to identify SNPs and genes associated with feather
color. A subset of SNPs identified from Pool-Seq were validated
by Sanger sequencing to assess the accuracy of estimating allele
frequencies (AFs) using Pool-Seq. Blood samples were collected
by venipuncture. Gray and White_1 geese were acquired from
a population maintained at the Xianghai breeding base in
Jilin city, Jilin province, China. White_2 geese, belonging to
the Huoyan breed, were obtained from the Liaoyang Animal
Science Research Institute, Liaoning province, China. Geese in
the group gray, with wild-type feather color, were the offspring
of a mating between a population of male wild geese and
female domestic geese. After several generations of breeding, a
sub-population of feral white (White_1) geese appeared among
the feral gray geese. Although fed by humans, unlike the
domesticated white geese (White_2), both the feral gray and
feral white geese possess flight abilities similar to those of wild
geese, which is considered to be a signature of feralization
(Gering et al., 2019).

Genomic DNA was extracted individually from blood samples
of each goose using a Blood Genome DNA Extraction Kit
(TIANGEN, DP348) following the manufacturer’s instructions.
Equimolar quantities (3 µg/ml) of DNA from each individual
were pooled to establish the three sequencing libraries. The first
pooled sample was from 117 feral gray geese, the second from 25
feral white geese and the third from 87 domestic white geese. The
concentrations and purity of genomic DNA were checked before
library construction. Libraries were generated via adapter ligation
and DNA cluster preparation and subjected to 150 bp paired-
end sequencing on an Illumina HiSeq 4000 platform. Sequencing
depth of each library was at least 30×. Library construction
and genome sequencing was conducted by the Beijing Genomics
Institute Co., Ltd. (Shenzhen, China).

Data Processing, Mapping and SNP
Calling
We applied the PoolParty pipeline (Micheletti and Narum, 2018),
which was designed for pool sequencing, to analyze the sequence
data. The module PPAlign was used to align each read to the
reference genome and for SNP calling. The parameters of module
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FIGURE 1 | Images of swan geese (Anser cygnoides) sequenced in this study showing their feather color phenotypes. (A) Feral gray geese (group gray) have the
same feather phenotype as wild geese. (B) A feral white goose (group White_1) living in a population of feral gray geese. (C) Domesticated white geese (group
White_2).

PPAlign were: “THREADZ = 32 BQUAL = 20 MAPQ = 5
SNPQ = 20 MINLENGTH = 25 INWIN = 3 MAF = 0.05
KMEM = Xmx4g MINDP = 10”. Briefly, BBDuk1 was used
to obtain clean data by trimming primer dimers and adapter
sequences from the reads, discarding bases with quality lower
than Q20 and reads with lengths less than 25 bp. BWA-MEM
(Li and Durbin, 2009) was then used to map the clean data
to the goose reference genome (AnsCyg_PRJNA183603_v1.0)2

(Lu et al., 2015).
Prior to SNP calling, SAMBLASTER3 was used to mark

duplicate read pairs and compress the alignment to eliminate
any bias generated during the PCR amplification for library
preparation and/or sequencing (Faust and Hall, 2014). Aligned
results were then sorted by Picard Tools4 () and ambiguously
mapped or unaligned reads were removed with SAMtools
(Li et al., 2009). BCFtools (Li, 2011) was then used to call
and filter the SNPs into a VCF file. Filtered alignments
were combined in mpileup format for downstream analyses.
SNPs with sequencing depth < 10 folds, quality < 20,
minor allele frequency (MAF) < 0.05 or within 15 bp of
indel were discarded.

Variant Discovery and SNP Annotation
SNP annotation and the functional consequences of sequence
variants were predicted using the Ensembl Variant Effect
Predictor (VEP) tool using Ensembl database version 103 with
the input VCF file (McLaren et al., 2016). Annotated results
of VEP included transcripts, proteins, regulatory regions, and
phenotype (McLaren et al., 2016). We grouped loss-of-function
(LoF) variants into four categories (1, stop-gain and stop-loss; 2,
frameshift indel; 3, donor and acceptor splice-site; and 4, initiator
codon variants) (Sveinbjornsson et al., 2016). Marker coverage for

1http://sourceforge.net/projects/bbmap/
2https://www.ncbi.nlm.nih.gov/genome/?term=Anser+cygnoides
3https://github.com/GregoryFaust/samblaster
4http://broadinstitute.github.io/picard/

each gene included 10 kb of upstream and downstream flanking
region (Potter et al., 2010). We focused on LoF variant annotation
results for the downstream analysis.

Sanger Sequencing Validation of SNP
Allele Frequencies (AFs)
SNP AFs were calculated from the read depths of each
allele in the Pool-Seq data. To confirm the accuracy of AFs
estimated from the Pool-Seq data, we performed a Kendall
W’s coordination coefficient test on a subset of the SNPs (28
loci) (Dodge and Commenges, 2006). Of these SNPs, 15 SNPs
(SNP01, SNP06 and SNP11-23 in Supplementary Table 1) were
selected as they had the lowest P-values in the comparison
of the Gray and White_2 groups by Fisher’s exact test based
on read depth of alleles. Eight SNPs (SNP02-05 and SNP7-
10 in Supplementary Table 1) were selected as they were
adjacent to SNP01 and SNP06 and could be amplified with
the same primer pairs used for them. Five SNPs (SNP24-28 in
Supplementary Table 1) located in four genes (KITLG, MITF,
TYRO3, andKIT) were also selected as these genes had previously
been reported to be associated with the regulation of feather
or coat color (Wehrle-Haller, 2003; Zhu et al., 2009; Zhou
et al., 2018; Wu et al., 2019). The SNP alleles selected for
validation were genotyped in all 229 individual geese by Sanger
sequencing and the AFs were calculated from the genotype
data. The two estimates of AFs, which were obtained from
Pool-Seq and Sanger sequencing data, were compared using
the Kendall W’s coordination coefficient test. Chi-square tests
were performed to test the significance of the associations
between the five SNPs in the color-related genes (KITLG,
MITF, TYRO3, and KIT) and feather color phenotype. Primers
used for the amplification of the selected SNPs are listed in
Supplementary Table 1.

Detection of Selective Sweeps
To accurately detect genomic regions in geese that had
experienced selection during domestication and to estimate
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the patterns of genetic diversity across the goose genome,
we conducted selective sweep analyses including the fixed
index (FST) and pooled heterozygosity (Hp) approaches (Rubin
et al., 2010; Micheletti and Narum, 2018). FST in 10-kb
non-overlapping sliding windows were calculated using the
“fst-sliding.pl” module in Popoolation2 (Kofler et al., 2011),
according to Weir and Cockerham’s method (Weir and
Cockerham, 1984). The global parameters of FST approach were:
“MINCOV = 10 MAXCOV = 100 MAF = 0.05.” Hp and negative
Z-transformed Hp (−ZHp) were calculated using a custom
python3 script in 10-kb non-overlapping sliding windows. The
Hp approach determines, for each pool and SNP, the numbers
of reads corresponding to the most (nMAJ) and least (nMIN)
abundant alleles. For each window in each breed pool, the
heterozygosity score of the pool was calculated as:

Hp =
2
∑

nMAJ
∑

nMIN

(
∑

nMAJ +
∑

nMIN)2

Where nMAJ and nMIN represent the numbers of reads
corresponding to the most and least abundant allele. Individual
Hp values were then Z-transformed as follows:

−ZHp = −
Hp− µHp

σHp

Windows with less than 10 SNPs were discarded to avoid
spurious signals. Windows located in the top 3% of the FST
distribution and top 3% of the −ZHp distribution were regarded
as candidate regions for selective sweeps (Wang et al., 2015).
Genes overlapping these regions were identified using Ensembl
genome annotation.

Genomic regions that might have experienced selective sweeps
were identified through three steps: (1) windows in the top
3% of the FST distributions of both the Gray vs. White_1
and the Gray vs. White_2 comparisons were identified; (2)
windows in the top 3% of the −ZHp distributions of both
the White_1 and the White_2 populations were identified;
(3) the intersection of region identified in (1) and (2) were
considered to have experienced a selective sweep. Genes located
in these overlapped regions might be involved in the change of
goose feather color.

Gene Ontology (GO) and KEGG Pathway
Enrichment Analysis
To determine the possible function of genes that were located
in the selective sweep regions, we identified orthologous human
genes using the BioMart online tool5. The orthologous genes
were then uploaded into the DAVID online tool to test
for enrichment in gene ontology (GO) terms (Huang et al.,
2009). KEGG pathway analysis was conducted using the online
KOBAS tool (Xie et al., 2011). A Fisher’s exact test was
then used to determine the significance of the enrichments of
the GO terms and KEGG pathways, with a significant level
of P < 0.05.

5http://www.ENSEMBL.org/biomart/martview/

RESULTS

Statistics of the Genome Resequencing
Data
A total of 148.26 Gb clean data was obtained from the three
Pool-Seq libraries (Table 1). Mapping rates for the libraries varied
between 98.14 and 98.23%, with the final effective mapping
depths ranging from 44.09- to 44.13-fold. The Q20 rates for the
three libraries were all over 98%. An average of 8,476,172 SNPs
was identified in each library.

Sanger Sequencing Validation
To assess the reliability of estimating allele frequencies of
SNPs using the population genomic sequencing (Pool-Seq) data,
we genotyped 28 SNPs from an average of 210 individuals
using Sanger sequencing (Supplementary Tables 2, 3). AFs
calculated from the Sanger sequencing data, based on individual
amplifications and sequencing, were in accord with the AFs
calculated from the Pool-Seq data. Kendall W’s coordination
coefficients for the comparisons of the AFs estimated from
the Pool-Seq and Sanger genotypes for the Gray, White_1 and
White_2 populations were 0.96, 0.97 and 0.94 (P < 0.05),
respectively, showing that there is a good concordance between
the results obtained using the two different methods.

Among the 28 SNPs examined above, five were SNPs that
are located in four genes (KITLG, MITF, TYRO3, and KIT)
previously reported to be associated with feather or coat color
(Wehrle-Haller, 2003; Zhu et al., 2009; Zhou et al., 2018; Wu
et al., 2019). Of these five SNPs, two are located in the 3′ UTR
of KITLG (NW_013185706.1: G232853A and NW_013185706.1:
C232854T), one in the 5′ UTR of MITF (NW_013185692.1:
G4400553C), one in the TYRO3 (S772G) coding region and
one in the KIT (T887A) coding region (Table 2). Results from
a Chi-square test showed an extremely significant association
between the SNP genotypes and feather color phenotypes
(P < 0.001) for these SNPs.

Selective Sweep Analysis
Hp and −ZHp distributions are presented in Supplementary
Figure 1. The selective sweep analyses identified (1) 317 regions
in the top 3% of the FST distributions of the intersection
of the Gray vs. White_1 (FST value, mean = 0.119, range
0.095–0.457) and the Gray vs. White_2 (FST value, mean = 0.258,
range 0.202–0.727) comparisons and (2) 253 regions in the
top 3% of the −ZHp distributions of the intersection of the

TABLE 1 | Summary statistics of the clean data from
whole-genome resequencing.

Parameter Gray White_1 White_2

Clean data (Gb) 49.42 49.40 49.44

Reads (M) 329.45 329.30 329.59

Map reads rate (%) 98.14 98.20 98.23

Q20 rate (%) 98.08 98.14 98.17

Sequencing depth 44.11 44.09 44.13

Total SNPs 8,785,296 8,680,731 7,962,489
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TABLE 2 | Genotypes of the five PCR verified loci.

SNP informationa Gene Genotype Numbers of individualsb χ2 value

Gray White_1 White_2

NW_013185706.1: 3′UTR_G232853A KITLG GG 37 22 (88%) 84 (100%) 102.89

GA 77 (68%) 3 0 (P < 0.001)

AA 0 0 0

NW_013185706.1: 3′UTR_C232854T KITLG CC 37 22 (88%) 84 (100%) 102.89

CT 77 (68%) 3 0 (P < 0.001)

TT 0 0 0

NW_013185692.1: 5′UTR_G4400553C MITF GG 83 (74%) 6 14 80.44

GC 29 17 (68%) 49 (59%) (P < 0.001)

CC 0 2 20

NW_013185657.1: cds_A2638G:S772G TYRO3 AA 31 20 (80%) 86 (100%) 106.57

AG 76 (71%) 5 0 (P < 0.001)

GG 0 0 0

NW_013185664.1: cds_A2659G:T887A KIT AA 0 0 0 93.80

AG 67 (66%) 2 0 (P < 0.001)

GG 35 23 (92%) 78 (100%)

aSNP information is displayed in the following format: NCBI GenBank accession number: nucleotide position in the goose reference genome (cds, 5′UTR or 3′UTR) +
nucleotide in the reference genome (reference nucleotide) + SNP position in the transcript + mutant nucleotide: amino acid in the goose reference transcript + codon
position in the transcript + amino acid mutation or no change.
bNumbers of individuals (Gray| White_1| White_2) for which reliable genotypes could be inferred from the Sanger sequencing data. The percentage in parenthesis is the
percentage of the genotype in the number of verified individuals.

White_1 (−ZHp value, mean = 2.835, range 2.014–4.952) and
White_2 (−ZHp value, mean = 2.904, range 2.317–3.755)
populations (Figure 2). A total of 99 genes were identified in
the 317 regions identified by the FST distributions and 103
genes identified in the 253 regions identified by the −ZHp
distributions (Supplementary Tables 4, 5). Among the 99 genes
identified from the FST distributions, four (SLC16A2, AP3B1,
SMARCA2, and VAMP7) have previously been associated with
animal coloration (Table 3). Similarly, 5 of the 103 genes
from the −ZHp distributions (SLC16A2, ROR2, CSNK1G3,
CCDC112, and VAMP7) were previously associated with animal
coloration (Table 3).

More importantly, 27 regions, which included 17 genes,
were found in the overlap of the 317 FST and 253 −ZHp top 3%
regions, including two, SLC16A2 and VAMP7 that had previously
been associated with animal coloration (Table 4). The 15 novel
genes identified here are: LOC106038556, LOC106038575,
LOC106038574, LOC106038594, LOC106038573, RLIM,
LOC106038604, KIAA2022, ST8SIA4, LOC106044163, TRPM6,
TICAM2, LOC106047489, LOC106047492, and LOC106047519
(Table 4). LoF (loss of function) variants were found for 9 of
the genes (8 detected by both the FST and the Hp approaches
(LOC106038574, LOC106038604 LOC106044163, TICAM2,
LOC106047489, VAMP7, LOC106047492, and LOC106047519)
and one by only Hp (CCDC112) in the selective sweep
regions of geese with different feather colors (or in the 10
kb region upstream and downstream of the sweep regions)
(Supplementary Table 6).

GO and KEGG Pathway Enrichment
Analysis
We conducted GO and KEGG pathway analyses of the 17 genes
identified in the selective sweep regions. These genes were found

to be significantly enriched for the GO term “late endosomal
membrane category” (GO: 0031902, P < 0.05) and in three
pathways, “RNA polymerase,” “SNARE interactions in vesicular
transport” and “cytosolic DNA-sensing pathway” (P < 0.05,
Supplementary Table 7).

DISCUSSION

In this study, we performed whole-genome Pool-Seq on three
populations of geese with two different colors of feathers to
identify SNPs, and genes that might be responsible for these
differing phenotypes. The Kendall W’s coefficients for the
AFs calculated from the Pool-Seq and Sanger sequencing data
indicated a good correlation between them, which suggests
that our Pool-Seq data is adequate for identifying loci that are
differentiated between the goose phenotypes. Selective sweep
analyses of this SNP data was used to identify genomic regions
that show signatures of selection during the domestication of
geese. This lead to the identification of 17 genes located in
candidate regions identified by both the FST and Hp approaches,
suggesting a high probability that selection occurred on these
genes and that they might be associated with the change in feather
color seen in these geese. VEP annotation of these 17 genes
identified eight with loss-of-function (LoF) alleles potentially
involved in regulating feather color.

Among the 17 identified genes (Table 4), three (VAMP7,
SLC16A2, and LOC106047519) have previously been associated
with the regulation of coat color in animals (Imokawa et al.,
1992; Yatsu et al., 2013; Baxter et al., 2019). VAMP7, vesicle
associated membrane protein 7, is localized to Tyrp1-containing
vesicles/organelles and acts as part of the SNARE machinery
with syntaxin-3 and SNAP23 on melanosomes to regulate
Tyrp1 transport in mouse melanocytes (Yatsu et al., 2013).
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FIGURE 2 | Genomic landscape of the signatures of positive selection detected using the FST and −ZHp approaches. FST and −ZHp thresholds (cutoff 3%) are
represented as red lines. Blue dots represent the 17 candidate genes in the overlapping windows from the FST and Hp methods. Genomic scaffolds represent the
complete goose genome composed of multiple scaffolds.

VAMP7 may play a key role in melanin formation and
thus influence goose feather color. SLC16A2 has an effect on
pigmentation phenotypes in the zebrafish, and has the GO

TABLE 3 | Genes associated with animal coloration that overlap with the selected
regions under detected by the FST or Hp approach.

Method Scaffolda Gene symbol Summary of gene
function

FST (Top 3%) NW_013185770.1 AP3B1 Melanin formation (Jing
et al., 2014)

NW_013185722.1 SLC16A2 Pigment-related (Baxter
et al., 2019)

NW_013185909.1 SMARCA2 Melanin formation
(Mehrotra et al., 2014)

NW_013185915.1 VAMP7 Melanin formation
(Yatsu et al., 2013)

Hp (Top 3%) NW_013185722.1 SLC16A2 Pigment-related (Baxter
et al., 2019)

NW_013185840.1 ROR2 Melanin formation
(O’Connell et al., 2013)

NW_013185881.1 CSNK1G3 Pigment-related (Al
Robaee et al., 2020)

NW_013185883.1 CCDC112 Pigment-related (Tian
et al., 2014)

NW_013185915.1 VAMP7 Melanin formation
(Yatsu et al., 2013)

aAnsCyg_PRJNA183603_v1.0 primary assembly.
Gene names in bold have LoF variation according to VEP annotation.

term “pigmentation” annotated in the Zebrafish Information
Network6 database (Baxter et al., 2019). LOC106047519 belongs
to the ETB-R gene family, which also includes the Endothelin
B receptor (EDNRB), and has been described as an EDNRB-
like gene (Kanehisa, 1997; Kanehisa and Goto, 2000). EDNRB
is reported to be associated with the development of cells
of the melanocytic lineage (Imokawa et al., 1992), suggesting
that LOC106047519 might also perform a function similar to
EDNRB to regulate feather color. Our VEP analysis identified LoF
mutations in VAMP7 and LOC106047519, but not in SLC16A2.
These results suggest that VAMP7 and LOC106047519 might
not only regulate pigmentation in the previously investigated
animals but also play a role in the change in feather
color in the goose.

Using either the FST or the Hp approach we identified
five other genes (AP3B1, SMARCA2, ROR2, CSNK1G3, and
CCDC112) that have been reported to be associated with
animal coloration (Table 3). Substitutions in AP3B1 cause
distinct phenotypes in the pigmented cells in mouse eyes and
possibly plays a role in organelle biogenesis associated with
melanosomes (Jing et al., 2014). SMARCA2, a member of
the SWI/SNF family, is involved in melanocyte differentiation
and melanoma (Mehrotra et al., 2014; Markiewicz and Idowu,
2020). ROR2 is involved in the formation of melanoma in
humans, suggesting a role in melanin formation (O’Connell
et al., 2013). Expression of CSNK1G3, a gene related to human

6https://zfin.org
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TABLE 4 | 17 genes found in the overlapping regions identified by both the FST

and the Hp differentiation approaches.

Scaffolda Positionb Gene symbol Gene description

NW_013185722.1 261,870 LOC106038556 Homeobox protein
CDX-4-like

NW_013185722.1 288,464 LOC106038575 Uncharacterized
LOC106038575

NW_013185722.1 301,490 LOC106038574 Pre-mRNA
3′-end-processing factor
FIP1-like

NW_013185722.1 338,779 LOC106038594 Ligand of Numb protein X
2-like

NW_013185722.1 371,156 LOC106038573 Uncharacterized
LOC106038573

NW_013185722.1 502,677 SLC16A2 Solute carrier family 16
member 2

NW_013185722.1 517,620 RLIM Ring finger protein, LIM
domain interacting

NW_013185722.1 537,179 LOC106038604 Uncharacterized
LOC106038604

NW_013185722.1 548,033 KIAA2022 Neurite extension and
migration factor

NW_013185807.1 123,1519 ST8SIA4 ST8 alpha-N-acetyl-
neuraminide
alpha-2,8-
sialyltransferase 4

NW_013185817.1 975,069 LOC106044163 Proprotein convertase
subtilisin/kexin type 5-like

NW_013185817.1 143,0086 TRPM6 Transient receptor
potential cation channel
subfamily M member 6

NW_013185883.1 304,453 TICAM2 Toll like receptor adaptor
molecule 2

NW_013185915.1 689,355 LOC106047489 SLAIN motif-containing
protein-like

NW_013185915.1 717,937 VAMP7 Vesicle associated
membrane protein 7

NW_013185915.1 737,829 LOC106047492 DNA-directed RNA
polymerases I and III
subunit RPAC2-like

NW_013185915.1 745,589 LOC106047519 Endothelin B receptor-like

aSame as Table 3.
bStart position of the gene in the genome.
Eight gene names in bold have LoF variants according to VEP annotation.

vitiligo, is significantly reduced in C57BL/6 black mice with
tyrosinase-induced depigmented skin (Ocampo-Candiani et al.,
2018; Al Robaee et al., 2020). CCDC112 regulates pigmentation
and the expression level of this gene differs between Silkie
and White Leghorn chickens (Tian et al., 2014). We found
a LoF mutation in CCDC112 in gray that might partly
explain the difference in feather color in geese. Our results
suggest that it is possible that these five genes also affect
feather color in geese.

We also focused on four genes (KITLG, MITF, TYRO3,
and KIT) that were previously reported to be associate with
feather color (Wehrle-Haller, 2003; Zhu et al., 2009; Zhou et al.,
2018; Wu et al., 2019). The SNP genotypes for these genes
were also validated by Sanger sequencing (Table 2). A changes
in an untranslated region (UTRs) can lead to changes in the

expression of genes (Barrett et al., 2012). Here, we identified
three SNPs, two located in the 3′ UTR of KITLG and one in
the 5′ UTR of MITF, which are significantly associated with
feather color phenotypes in our geese. This suggests that these
three SNPs affect the expression of KITLG and MITF resulting
in a change in feather color. Non-synonymous mutations are
more likely to affect the biological function of a gene. Here, we
identified two non-synonymous substitutions in KIT (T887A)
and TYRO3 (S772G) that are significantly associated with
feather color phenotypes, indicating that they may regulate
goose feather color.

GO and KEGG enrichment analyses of the 17 candidate genes
in the most significant sweep areas are significantly enriched
in the GO term late endosome membrane (Supplementary
Table 7). Two of the candidate genes (VAMP7 and TICAM2)
are associated with this term. We also identified three pathways
(RNA polymerase, SNARE interactions in vesicular transport and
cytosolic DNA-sensing pathway) that are significantly enriched,
where VAMP7 is also involved with SNARE interactions in
vesicular transport. Although the enriched GO term and
the pathways do not seem to directly correlate with animal
coloration, it is still possible that the genes involved in them could
regulate feather coloration in geese.

In conclusion, we identified 26 genes (17 detected by both
the FST and Hp approaches, five by either FST or Hp and four
previously reported color-related genes) from our genomic Pool-
Seq data that might be responsible for the change in feather
color that occurred during the domestication of geese (Anser
cygnoides). Among these 26 genes, 12 have previously been
found to be associated with animal coloration in other studies.
The roles of the other genes in feather coloration requires
further investigation. Additional studies, including functional
experimentation, are needed to confirm the roles of these genes,
and the consequence of the mutations caused by the SNPs, on
phenotypic variation in feather color in geese.
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